МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего образования «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Кафедра физики твердого тела

наименование кафедры

Моделирование высокочастотных вольт-фарадных характеристик МОП структур

АВТОРЕФЕРАТ МАГИСТЕРСКОЙ РАБОТЫ

студента	2	курса	201	группы	
			11.04.04 Э	лектроника и наноэлектроника	
направления (специальности)			профиль	«Диагностика нано- и биомедицинских	
		_	систем»		
код и наименование направления (специальности)					
факультета нано- и биомедицинских технологий					
наименование факультета, института, колледжа					
Олопе Олумиде Инносент					
фамилия, имя, отчество					

Научный руководитель		
доцент, к.фм.н.		М.Ю. Калинкин
должность, уч. степень, уч. звание	подпись, дата	инициалы, фамилия
Зав. кафедрой		
профессор, д.фм.н		Ал.В. Скрипаль
должность, уч. степень, уч. звание	подпись, дата	инициалы, фамилия

Саратов 2020

введение

Метод контроля C-V характеристик является *актуальным и* применяется при создании СБИС. Например, при проведении термополевых испытаний этим методом определяют стабильность подзатворного диэлектрика. Измерения могут показать, сдвигается ли напряжение плоских зон и на какую величину.

Целью работы явилось исследование особенности вольтфарадных характеристик кремниевых металл-окисел-полупроводниковых (МОП) структур на высокой частоте, связанных с полным зарядом (зарядом на границе раздела плюс зарядом в диэлектрике).

Задачи:

1. Теоретически описать физические процессы неидеальной структуры металл-окисел-полупроводник.

2. Провести компьютерное моделирование вольт-емкостной характеристики идеальной МОП структуры с помощью математического пакета Scilab.

3. Экспериментально исследовать зависимость дифференциальной емкости на частоте 1 МГц от напряжения смещения МОП структур р- и n – типов.

В качестве материала исследования использовались кремниевые пластины p- и n – типа с напыленным на непланарную сторону алюминиевым омическим контактом. Пластины на планарной стороне имели слой оксида и вакуумно напыленные поверх оксида через маску алюминиевые затворы квадратной формы 1,0x1,0 мм²

Выпускная работа состоит из списка сокращений, введения, главы1. Обзор литературы, главы 2. Исследуемые МОП структуры и экспериментальная установка, главы 3. Результаты экспериментов, заключения, списка используемых источников и приложения с программным кодом на языке Scilab.

В работе проведено компьютерное моделирование вольт – емкостных характеристик в математическом пакете Scilab (ссылка на код программы:

2

https://yadi.sk/d/MiMdn118m1RR0g). Исследована особенность поведения вольтфарадных характеристик реальных МОП структур, проявляющаяся в растяжении графика вдоль оси напряжений. Эта особенность подтверждается компьютерным моделированием, и связана с наличием полного заряда на границе и в диэлектрике. *Научная новизна* исследования заключается в том, что на экспериментальной ВФХ обнаружен участок слабого изменения (плато), в области обогащения.

Положения, выносимые на защиту:

• Процесс калибровки установки автоматического измерения вольтемкостных характеристик ИППМ-2 модернизирован с помощью сконструированного модуля переключения эталонной емкости.

• Наложение экспериментальной вольт – фарадной характеристики на теоретическую показывает, что наличие ненулевого напряжения плоских зон приводит как к смещению вольт-фарадной характеристики, так и к растяжению ее вдоль оси напряжений.

• На экспериментальной ВФХ обнаружен участок слабого изменения (плато), в области обогащения, что говорит о неизменности полного заряда при изменении напряжения затвор- подложка и, возможно, связанного с наличием поверхностных состояний, либо встроенного в диэлектрик заряда.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

1.Обзор литературы. Метод контроля C-V характеристик является *актуальным* [1-3]. Физика работы МОП структуры подробно рассмотрена в [4-5]. Математическое моделирование физических процессов с помощью пакета Matlab приведено в [6]. Методы контроля характеристик МОП структуры по ВЧ вольт-фарадной характеристики описаны в [7-9]

Моделирование зависимости удельной емкости C'_{eq} МОП структуры от поверхностного напряжения затвор-подложка V_{gb} на ВЧ проводилось при следующих значениях констант и параметров [6]:

3

$$q = 1,6 \cdot 10^{-19} \text{ Kл}$$
 -заряд электрона
 $n_i = 1,45 \cdot 10^{10} \text{ см}^{-3}$ -собственная концентрация электронов в кремнии
 $N_a = 1.0 \cdot 10^{16} \text{ см}^{-3}$ -концентрация акцепторной примеси
 $N_d = 1.0 \cdot 10^{16} \text{ см}^{-3}$ -концентрация донорной примеси
 $T = 300 \text{ K}$ - термодинамическая температура
 $k = 1,38.10^{-23} \text{ Дж/K}$ - постоянная Больцмана
 $-1,2B < \varphi_s < 1,2B$ -поверхностный потенциал
 $\epsilon_o = 8,854 \cdot 10^{-14} \text{ Ф/см}^{-1}$ -электрическая постоянная
 $\epsilon_{Si} = 11,7\epsilon_o$ -абсолютная диэлектрическая проницаемость кремния
 $\epsilon_{OX} = 3,97\epsilon_0$ -абсолютная диэлектрическая проницаемость оксида кремния
 $T_{ox} = 500 \cdot 10^{-7} \text{ см}$ - толщина оксида

по формулам, выражающим больцмановское приближение функции распределения, уравнение электронейтральности, решение уравнения Пуассона для плотности объемного заряда вблизи поверхности и определение дифференциальной емкости через заряд:

$\varphi_t = kT/q$	- температурный потенциал		
$\varphi_f = \varphi_t \cdot \ln(N_a/n_i)$	- разность потенциалов уровн		
	Ферми и уровня Ферми		

$$\varphi_f = -\varphi_t \cdot \ln(N_d/n_i)$$

 $p_{p0} = n_i \cdot exp(\varphi_f/\varphi_t)$

 $n_{p0} = n_i \cdot exp(-\varphi_f/\varphi_t)$

 разность потенциалов уровня
 Ферми и уровня Ферми
 собственного полупроводника ртипа

- то же для полупроводника nтипа

равновесная концентрация дырок
в полупроводнике р- типа (hole
concentration at thermal equilibrium)
равновесная концентрация
электронов в полупроводнике ртипа (electron concentration at
thermal equilibrium)

$$\begin{aligned} p_{n0} &= n_{l} \cdot exp \Big(\varphi_{f} / \varphi_{t} \Big) & \quad \text{- равновесная концентрация дырок в полупроводнике n- типа (Hole concentration at thermal equilibrium) \\ n_{n0} &= n_{i} \cdot exp \Big(-\varphi_{f} / \varphi_{t} \Big) & \quad \text{- равновесная концентрация электронов в полупроводнике n- типа (Electron concentration at thermal equilibrium) \\ A_{HF} &= 1 - exp (-\varphi_{s} / \varphi_{t}) & \quad \text{- лля p- типа} \\ &+ exp (-2\varphi_{f} / \varphi_{t}) & \quad \text{- лля p- типа} \\ &+ exp (-2\varphi_{f} / \varphi_{t}) & \quad \text{- лля p- типа} \\ &+ exp (-2\varphi_{f} / \varphi_{t}) & \quad \text{- лля p- типа} \\ &+ exp (-2\varphi_{f} / \varphi_{t}) & \quad \text{- лля p- типа} \\ &+ exp (-2\varphi_{f} / \varphi_{t}) & \quad \text{- лля n- типа} \\ &+ exp (-2\varphi_{f} / \varphi_{t}) & \quad \text{- лля n- типа} \\ &+ exp (2\varphi_{f} / \varphi_{t}) & \quad \text{- лля n- типа} \\ &+ exp (2\varphi_{f} / \varphi_{t}) & \quad \text{- лля n- типа} \\ &+ exp (2\varphi_{f} / \varphi_{t}) & \quad \text{- лля n- типа} \\ &+ exp (2\varphi_{f} / \varphi_{t}) & \quad \text{- лля n- типа} \\ &+ exp (2\varphi_{f} / \varphi_{t}) & \quad \text{- лля n- типа} \\ &+ exp (2\varphi_{f} / \varphi_{t}) & \quad \text{- лля n- типа} \\ &+ exp (2\varphi_{f} / \varphi_{t}) & \quad \text{- лля n- типа} \\ &+ exp (2\varphi_{f} / \varphi_{t}) & \quad \text{- лля n- типа} \\ &+ exp (2\varphi_{f} / \varphi_{t}) & \quad \text{- лля n- типа} \\ &+ exp (2\varphi_{f} / \varphi_{t}) & \quad \text{- лля n- типа} \\ &+ exp (2\varphi_{f} / \varphi_{t}) & \quad \text{- лля n- типа} \\ &+ exp (2\varphi_{f} / \varphi_{t}) & \quad \text{- лля n- типа} \\ &+ exp (2\varphi_{f} / \varphi_{t}) & \quad \text{- лля n- типа} \\ &+ exp (2\varphi_{f} / \varphi_{t}) & \quad \text{- лля n- типа} \\ &+ exp (2\varphi_{f} / \varphi_{t}) & \quad \text{- лля n- типа} \\ &+ exp (2\varphi_{f} / \varphi_{t}) & \quad \text{- лля n- типа} \\ &+ exp (2\varphi_{f} / \varphi_{t}) & \quad \text{- лля n- типа} \\ &+ exp (2\varphi_{f} / \varphi_{t}) & \quad \text{- лля n- типа} \\ &+ exp (2\varphi_{f} / \varphi_{t}) & \quad \text{- лля n- типа} \\ &+ exp (2\varphi_{f} / \varphi_{t}) & \quad \text{- лля n- типа} \\ &+ exp (2\varphi_{f} / \varphi_{t}) & \quad \text{- лля n- типа} \\ &+ exp (2\varphi_{f} / \varphi_{t}) & \quad \text{- лля n- типа} \\ &+ exp (2\varphi_{f} / \varphi_{t}) & \quad \text{- лля n- типа} \\ &+ exp (2\varphi_{f} / \varphi_{t}) & \quad \text{- лля n- типа} \\ &+ exp (2\varphi_{f} / \varphi_{t}) & \quad \text{- лля n- типа} \\ &+ exp (2\varphi_{f} / \varphi_{t}) & \quad \text{- лля n- типа} \\ &+ exp (2\varphi_{f} / \varphi_{t}) & \quad \text{- лля n- типа} \\ &+ exp (2\varphi_{f} / \varphi_{t}) & \quad \text{- лля n- типа} \\ &+ exp (2\varphi_{f} / \varphi_{t}) & \quad \text{- лля n- типа} \\ &+ exp (2\varphi_{f} /$$

если $\varphi_s < 0$

Ниже приведены результаты моделирования.

Рис.1. Зависимость нормированной удельной емкости от напряжения затвор-подложка для p- типа (вверху) и n – типа (внизу)

2. Исследуемые МОП структуры и экспериментальная установка. На рисунке приведена планарная поверхность исследуемой МОП структуры до и после припаивания с помощью индия микропроволочных контактов

Рис. 2. Увеличенное изображение планарной стороны кремниевой МОП структуры с алюминиевыми затворами (слева). Планарная сторона с припаянной с помощью индия микропроволокой к одному из затворов (справа)

Исследования проводились на установке [8] для автоматического измерения вольт-емкостных характеристик полупроводниковых структур ИППМ-2. Установка состоит из генератора сигнала 1 МГц амплитудой 10 мВ, блока постоянного смещения от-20В до 20В, RC – цепи, благодаря АЧХ которой формируется выходной сигнал, зависящий от величины измеряемой емкости, усилителя и детектора.

Для возможности проведения калибровки во время длительных измерений без извлечения рабочего столика с образцом из установки была сконструирована схема переключателя калибровки. Такая модернизация позволяет повысить точность измерений.

Рис. 3. Принципиальная схема (слева) и сконструированный переключатель калибровки (справа) С1- эталонный калибровочный конденсатор 100 пФ, С2- неизвестная емкость образца, которую нужно измерить, S1, S2 - переключатели (совмещенные в одном), Pr1 - вход измерительной установки ИППМ-2 (клеммы рабочего столика)

3. Результаты экспериментов. На рис. 3.2. показана экспериментальная вольт-емкостная характеристика.

Толщина пленки окисла [7-9]: $d = \frac{kS(MM^2)}{C_{max}(\Pi\Phi)} = 0,22$ (мкм), где: S = 1,0 мм²площадь напыленного контакта; k = 34 для термической пленки SiO_2 ; $C_{max} = 158$ пФ.

По известной величине d и отношению $\frac{C_{min}}{C_{max}}$, взятому из вольт-ёмкостной характеристики, определили концентрацию легирующей примеси в приповерхностном слое полупроводника по номограмме № 1 руководства [8]: N=1,5*10¹⁴ см⁻³

Для полученной концентрации и данной толщины окисла по номограмме № 2 определили величину ёмкости в точке плоских зон: $\frac{C_{FB}}{C_{OK}} = 0,6$ ($C_{OK} = C_{max}$).

По экспериментальной вольт-ёмкостной характеристике, зная C_{FB}/C_{OK} , определили напряжение плоских зон структуры $V_{FB} = 2,0$ В.

В Scilab провели математическое моделирование фундаментальных уравнений, описывающих процессы в полупроводнике, при полученных из эксперимента значениях толщины окисла, концентрации примеси и пяти значениях коэффициента растяжения вдоль оси напряжений графика вольтфарадной характеристики.

Ниже приведены результаты измерений вольт – фарадной характеристики с наложением на нее смоделированных зависимостей с разным коэффициентом растяжения. Наилучшее согласование между экспериментальным и теоретическим графиком происходит при коэффициенте 10÷15

Рис. 4. Результаты измерений вольт – фарадной характеристики с наложением на нее смоделированных зависимостей с разным коэффициентом растяжения вдоль оси напряжений

Рассчитали плотность полного заряда на границе раздела и в диэлектрике: $Q_s\left(\frac{\kappa_{\pi}}{cM^2}\right) = \frac{C_{max}(\pi\Phi)}{S(MM^2)}V_{FB}(B)10^{-10} = 3,2 * 10^{-8}.$ Провели касательную к полученной вольт ёмкостной характеристике в точке, соответствующей ёмкости плоских зон C_{FB} и определили тангенс угла наклона $tg\alpha_1$. Для данных концентраций и толщин окисла по номограмме № 3 определили тангенс угла наклона «идеальной» вольт ёмкостной характеристики $tg\alpha_2$. Определили эффективную плотность быстрых состояний на единичный энергетический интервал: $N_{ss} = 6,25A \frac{C_{max}(п\Phi)}{S(MM^2)} (\frac{tg\alpha_2}{tg\alpha_1} - 1) * 10^8 \text{сm}^{-2} * \text{B}^{-1}$, где «*A*» определяется по номограмме 4: A=4,7; S=1,0 (мм²)

$$N_{ss} = 6,25 * 4,7 \frac{160}{1} (15 - 1) * 10^8 \approx 6,6 * 10^{12} (\text{cm}^{-2} * \text{B}^{-1})$$

ЗАКЛЮЧЕНИЕ

В ходе выполнения магистерской работы были исследованы параметры и характеристики МОП - структур.

На основе систем уравнений, описывающей процессы на границах металл – оксид – полупроводник, были смоделированы вольт- фарадные характеристики для ВЧ зондирующего сигнала. Было проведено моделирование зависимости объемной плотности заряда и удельной емкости структуры от поверхностного потенциала и от напряжения затвор – подложка для р- и n – типа структур.

Описана технология калибровки установки и предложена модернизация процесса калибровки. Описана технология подготовки образцов для измерения и проведено измерение площади затворов.

Проведен технологический этап скрайбирования и припаивания микропроволоки к МОП структуре.

Получены вольт- фарадные характеристики образцов МОП – структур р – и n- типа.

Измерены концентрация легирующей примеси, напряжение плоских зон. Проведено наложение экспериментальной вольт – фарадной характеристики на теоретическую. Показано, что наличие ненулевого напряжения плоских зон приводит как к смещению вольт-фарадной характеристики, так и к растяжению ее вдоль оси напряжений. Проведено измерение полного заряда на границе и в диэлектрике.

На экспериментальной вольт-фарадной характеристике обнаружен участок слабого изменения (плато), в области обогащения, что говорит о неизменности полного заряда при изменении напряжения затвор- подложка и, возможно, связанного с поверхностными состояниями, либо встроенным в диэлектрик зарядом.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Беляев А. Е. и др. Физические методы диагностики в микро- и наноэлектронике //Харьков: ИСМА. – 2011. – Т. 384.

2. Поклонский Н. А. и др. Эквивалентные схемы замещения структуры металл (Al)–диэлектрик (Si3N4)–полупроводник (n-Si) в режимах сильной инверсии и обогащения. – 2014.

3. Kasap S., Capper P. (ed.). Springer handbook of electronic and photonic materials. – Springer, 2017.

4. Грундман М. Основы физики полупроводников. Нанофизика и технические приложения //М.: Физматлит. – 2012. – Т. 771.

5. Гуртов В. А. Г957 Твердотельная электроника: учеб. пособие ПетрГУ. – 2008.

6. Bhattacharyya A. B. Compact MOSFET models for VLSI design. – John Wiley & Sons, 2009.

7. Петров М. Н., Гудков Г. В. Моделирование компонентов и элементов интегральных схем. – 2011.

8. Автоматизированная установка измерения вольт- емкостных характеристик ИППМ-2. Руководство. 1971 г.

9. «Руководство к практическим занятиям по курсу «Методы исследования полупроводниковых материалов, приборов и ИМС»/ Под ред. Д.И. Биленко. Саратов Изд-во Саратовского ун-та 1980г., Ч1,2.

12