# МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г.ЧЕРНЫШЕВСКОГО»

Кафедра общей физики

## ЭФФЕКТИВНОСТЬ ИСПОЛЬЗОВАНИЯ АЛМАЗНЫХ ТЕПЛООТВОДОВ В УСТРОЙСТВАХ ТВЕРДОТЕЛЬНОЙ ЭЛЕКТРОНИКИ

АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ

студента 4 курса 4022 группы Института физики направления подготовки 03.03.02 «Физика»

### Красюкова Александра Александровича

Научный руководитель д.ф.- м.н., доцент

С.В. Овчинников

| Зав. кафедрой       |  |
|---------------------|--|
| д.ф м.н., профессор |  |

А.А. Игнатьев

Саратов 2021

### Введение

Тема данной работы посвящена расчёту влияния алмазной плёнки на тепловое сопротивление медного теплоотвода и оценке эффективности использования алмазных включений в теплоотвод для систем с сильной локализацией тепловых источников

Объект исследования - многослойная структура, расчёт тепловых сопротивлений теплоотводов с алмазными включениями.

Цель исследования - оценка эффективности использования алмазных включений в теплоотвод для систем с сильной локализацией тепловых источников. Такая оценка проведена на основе расчётов тепловых сопротивлений теплоотводов с алмазными включениями.

Для достижения цели требуется выполнить следующие задачи:

1.Собрать и проанализировать теоретический материал по теме.

2.Изучить программу для расчёта теплового сопротивления многослойных структур, написанную на языке ФОРТРАН ,описанной в [1-2].

3. Провести расчёт теплового сопротивления теплоотвода с алмазными включениями варьируемой толщины.

4. Проанализировать результаты расчёта и сделать выводы.

Научная новизна данного исследования заключается в исследовании эффективности использования алмазных включений в теплоотвод для систем с сильной локализацией тепловых источников и оценке целесообразности.

Структура работы определена задачами исследования, логикой раскрытия темы. Работа состоит из введения, двух глав, заключения и списка используемой литературы, пять графиков и семь таблиц.

Во введении обосновывается актуальность работы, формулируются цели и задачи исследования, а также его теоретическое и практическое значение.

В первой главе работы представлен краткий обзор по технологиям алмазоподобных плёнок, используемых в теплоотводах для делокализации теплового потока и снижения теплового сопротивления.

Во второй главе приведены результаты расчётов теплового сопротивления медного теплоотвода, покрытого алмазной плёнкой варьируемой толщины, при различных размерах площадки, являющейся тепловым источником для теплоотвода.

В заключении подводится итог проведённой работы, формулируются общие выводы исследования.

### Глава 1. АЛМАЗЫ И ВЫСОКОТЕПЛОПРОВОДНЫЕ МАТЕРИАЛЫ ДЛЯ ТЕПЛООТВОДОВ

Применение алмазных включений в теплоотводы для микроминиатюрных полупроводниковых приборов может значительно улучшить тепловые характеристики таких приборов. Тепловая проводимость алмаза в зависимости от его разновидностей 2–5 раз превосходит этот параметр для меди (таблица 1.1) [3 – 5].

| Материал       | Температура, °С | Теплопроводность,<br>Вт/(м·К) |
|----------------|-----------------|-------------------------------|
| Алмаз          | 20              | 2000                          |
| Медь           | 20              | 384                           |
| Алюминий       | 20              | 209                           |
| Сталь          | 20              | 47                            |
| Карбид кремния | 40              | 21,5                          |
| Окись алюминия | 100             | 6,9                           |

Таблица 1.1 Теплопроводность алмазов и других материалов

Теплоотвод с алмазным включением обладает способностью рассеяния большей тепловой намного удельной мощности, чем обычных y теплоотводящих материалов, поэтому мощные полупроводниковые приборы, оснащенные алмазными теплоотводами, могут работать с повышенной Алмазные полезной мошностью на выходе. теплоотводы находят большой применение для транзисторов мощности, диодов Ганна, интегральных схем повышенной мощности, полупроводниковых лазеров,

лавинно-пролетных диодов, варикапов и переключающих полупроводниковых приборов [3 – 5].

Поэтому в последнее время все более пристальное внимание разработчиков теплоотводов обращено на поликристаллический CVD-алмаз (CVD: chemical vapor deposition – химическое осаждение из газовой фазы), выращиваемый в плазмохимическом реакторе на основе CBЧ разряда на подложке из кремния.

Интерес к этому материалу вызван его уникальными физикохимическими свойствами и возможностью получения теплоотводящих подложек большой площади.

| Материал     | Теплопроводность,<br>Вт/м·К | ТКЛР, ×10 <sup>-6</sup> 1/°С |  |  |
|--------------|-----------------------------|------------------------------|--|--|
| CVD-алмаз    | 2000                        | 1,0                          |  |  |
| ВеО-керамика | 215                         | 7,6                          |  |  |
| AlN-керамика | 200                         | 6                            |  |  |
| Медь         | 380 396                     | 16,5                         |  |  |
| Сапфир       | 40                          | 8,2                          |  |  |

Таблица 1.2.

Использование алмазных подложек в качестве изолирующего теплоотвода позволит поднять мощностные характеристики приборов за счёт уменьшения теплового сопротивления и увеличения предельного тока и рассеиваемой мощности в 1,5...2 раза [6].

## Глава 2. ИССЛЕДОВАНИЕ ТЕПЛОВОГО СОПРОТИВЛЕНИЯ МЕДНОГО ТЕПЛООТВОДА, ПОКРЫТОГО АЛМАЗНОЙ ПЛЁНКОЙ

Получены результаты расчётов теплового сопротивления теплоотвода. Алмазная плёнка H2 имеет размеры A=B=5мм и толщину H2=0.01мм, а размеры теплового источника a=b по аналогии будут варьироваться от 0.05мм до 0.9мм.

| Тепловое сопротивление теплоотвода с алмазной пленкой $R_{Ta},$ К/Вт |                                            |                                   |                                   |                                   |                                   |  |
|----------------------------------------------------------------------|--------------------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|--|
| Размер<br>источника                                                  | <i>H</i> <sub>2</sub> =0,<br>пленки<br>нет | <i>H</i> <sub>2</sub> =0.01м<br>м | <i>H</i> <sub>2</sub> =0.03м<br>м | <i>H</i> <sub>2</sub> =0.05м<br>м | <i>H</i> <sub>2</sub> =0.07м<br>м |  |
| a=b=0.05mm                                                           | 28.55                                      | 12.68                             | 8.36                              | 7.26                              | 6.77                              |  |
| a=b=0.07mm                                                           | 20.37                                      | 10.32                             | 6.68                              | 5.64                              | 5.17                              |  |
| a=b=0.1mm                                                            | 14.22                                      | 8.21                              | 5.34                              | 4.4                               | 3.95                              |  |
| a=b=0.2mm                                                            | 7.06                                       | 5.02                              | 3.49                              | 2.84                              | 2.48                              |  |
| a=b=0.3mm                                                            | 4.67                                       | 3.64                              | 2.67                              | 2.2                               | 1.92                              |  |
| a=b=0.4mm                                                            | 3.47                                       | 2.85                              | 2.19                              | 1.83                              | 1.61                              |  |
| a=b=0.5mm                                                            | 2.76                                       | 2.34                              | 1.85                              | 1.57                              | 1.39                              |  |
| a=b=0.6mm                                                            | 2.28                                       | 1.99                              | 1.61                              | 1.39                              | 1.23                              |  |
| a=b=0.7mm                                                            | 1.94                                       | 1.72                              | 1.42                              | 1.24                              | 1.11                              |  |
| a=b=0.8mm                                                            | 1.69                                       | 1.51                              | 1.28                              | 1.12                              | 1.01                              |  |
| a=b=0.9mm                                                            | 1.49                                       | 1.35                              | 1.15                              | 1.02                              | 0.93                              |  |

**Таблица 2.1** Результат расчётов теплового сопротивления прямоугольной модели теплоотвода с варьируемой толщиной алмазной плёнки



**Рис 2.2.** Зависимость теплового сопротивления прямоугольного теплоотвода от размера теплового источника медной пластины (1) и медной пластины с алмазной плёнкой, толщиной 0,01 мм (2).

На основе полученных данных уже можно заметить, что вследствие делокализации теплового потока с помощью алмазной плёнки, общее тепловое сопротивление прямоугольной модели теплоотвода с сильной локализацией уменьшилось с 28.55 *К\Вт* до 12.68 *К\Вт*, что является изменением более чем в два раза. Так же наблюдается снижение теплового сопротивления с увеличением размеров теплового источника.

В таблице 2.1 представлены результаты расчёта теплового сопротивления прямоугольной модели теплоотвода с толщиной алмазной пленки от 0,01 мм до 0,07 мм, а в таблице 2.2 значение толщины алмазного покрытия варьируется от 0,1 мм до 0,3 мм.

| Тепловое сопротивление теплоотвода с алмазной плёнкой R <sub>Ta</sub> , K/Bт |                                  |                                   |                                  |                                   |                                  |
|------------------------------------------------------------------------------|----------------------------------|-----------------------------------|----------------------------------|-----------------------------------|----------------------------------|
| Размер<br>источника                                                          | <i>H</i> <sub>2</sub> =0,1м<br>м | <i>H</i> <sub>2</sub> =0.15м<br>м | <i>H</i> <sub>2</sub> =0.2м<br>м | <i>H</i> <sub>2</sub> =0.25м<br>м | <i>H</i> <sub>2</sub> =0.3м<br>м |
| a=b=0.05mm                                                                   | 6.41                             | 6.13                              | 6.0                              | 5.93                              | 5.88                             |
| a=b=0.07mm                                                                   | 4.81                             | 4.54                              | 4.4                              | 4.33                              | 4.28                             |
| a=b=0.1mm                                                                    | 3.61                             | 3.34                              | 3.21                             | 3.13                              | 3.08                             |
| a=b=0.2mm                                                                    | 2.18                             | 1.93                              | 1.81                             | 1.73                              | 1.69                             |
| a=b=0.3mm                                                                    | 1.67                             | 1.45                              | 1.31                             | 1.26                              | 1.22                             |
| a=b=0.4mm                                                                    | 1.39                             | 1.2                               | 1.09                             | 1.02                              | 0.98                             |
| a=b=0.5mm                                                                    | 1.21                             | 1.04                              | 0.94                             | 0.88                              | 0.84                             |
| a=b=0.6mm                                                                    | 1.08                             | 0.93                              | 0.84                             | 0.78                              | 0.74                             |
| a=b=0.7mm                                                                    | 0.98                             | 0.84                              | 0.76                             | 0.71                              | 0.67                             |
| a=b=0.8mm                                                                    | 0.89                             | 0.77                              | 0.7                              | 0.65                              | 0.62                             |
| a=b=0.9mm                                                                    | 0.82                             | 0.72                              | 0.65                             | 0.6                               | 0.57                             |

Таблица 2.2. – Продолжение таблицы 2.1



**Рис 2.3** Зависимость теплового сопротивления RTот размера теплового источника для медной пластины (1) без алмазной плёнки и медной пластины с алмазной плёнкой:  $H_2$ =0.01мм (2),  $H_2$ =0.03мм (3),  $H_2$ =0.05мм (4),  $H_2$ =0.07мм (5).

Рассмотрев результаты расчётов, представленных в таблицах (2.1–2.2), а также на рис. 2.2 и 2.3, можно заметить как увеличение толщины алмазной плёнки благоприятно сказывается на снижении теплового сопротивления, что говорит нам о эффективном растекании теплового потока по алмазной плёнке и теплоотводу в целом.

| Тепловое сопротивление цилиндрической модели теплоотвода, К/Вт |                                         |                                   |                                   |                                   |                               |  |
|----------------------------------------------------------------|-----------------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-------------------------------|--|
| Размер<br>источника<br><i>r</i> , мм                           | <i>H</i> <sub>2</sub> =0, пленки<br>нет | <i>H</i> <sub>2</sub> =0.01м<br>м | <i>H</i> <sub>2</sub> =0.03м<br>м | <i>H</i> <sub>2</sub> =0.05м<br>м | <i>H</i> <sub>2</sub> =0.07мм |  |
| 0.05mm                                                         | nm 14.44 8.1 5.31                       |                                   | 4.4                               | 3.96                              |                               |  |
| 0.07mm                                                         | 10.28                                   | 6.43                              | 4.3                               | 3.51                              | 3.11                          |  |
| 0.1mm                                                          | 7.15                                    | 4.95 3.43                         |                                   | 2.79                              | 2.45                          |  |
| 0.2mm                                                          | 3.51                                    | 2.81 2.13                         |                                   | 1.78                              | 1.56                          |  |
| 0.3mm                                                          | 2.29                                    | 1.95                              | 1.56                              | 1.31                              | 1.18                          |  |
| 0.4mm                                                          | 1.68                                    | 1.49                              | 1.23                              | 1.07                              | 0.96                          |  |
| 0.5mm                                                          | 1.32                                    | 1.19                              | 1.01                              | 0.89                              | 0.81                          |  |
| 0.6mm                                                          | 1.08                                    | 0.99                              | 0.85                              | 0.76                              | 0.69                          |  |
| 0.7mm                                                          | 0.9                                     | 0.84                              | 0.74                              | 0.66                              | 0.61                          |  |
| 0.8mm                                                          | 0.77                                    | 0.72                              | 0.64                              | 0.58                              | 0.54                          |  |
| 0.9mm                                                          | 0.67                                    | 0.63                              | 0.57                              | 0.52                              | 0.48                          |  |

**Таблица 2.3.** Результат расчётов теплового сопротивления для цилиндрической модели теплоотвода с изменением толщины алмазной плёнки *H*<sub>2</sub>



**Рис 2.5.** Зависимость теплового сопротивления RT цилиндрической модели теплоотвода от размера теплового источника для медной пластины без алмазной пленки (1) и для медной пластины с алмазной плёнкой толщиной 0,01 мм (2).

Исходя из расчётных данных таблицы (2.3) и графика на рис. 2.5, мы видим, аналогичную ситуацию, как и прямоугольной модели. Вследствие делокализации теплового потока с помощью алмазной плёнки, общее тепловое сопротивление цилиндрической модели уменьшилось с 14.44 К\Вт 8.1 до K\Bm что является существенно разнится с показателями точно так же наблюдается снижение прямоугольной модели, однако эффективности с увеличением размеров теплового источника.

Для более полного анализа произведены расчёты теплового сопротивления цилиндрической модели с толщиной алмазной плёнки H2= 0.1мм, 0.15мм, 0.2мм, 0.25мм, 0.3мм.

**Таблица 2.4.** Результат расчётов теплового сопротивления для цилиндрической модели теплоотвода с изменением толщины алмазной плёнки *H*<sub>2</sub>– продолжение таблицы 2.3

| Тепловое сопротивление цилиндрической модели теплоотвода, К/Вт |                                  |                                   |                                  |                                   |                              |  |
|----------------------------------------------------------------|----------------------------------|-----------------------------------|----------------------------------|-----------------------------------|------------------------------|--|
| Размер источника                                               | <i>H</i> <sub>2</sub> =0,1м<br>м | <i>H</i> <sub>2</sub> =0.15м<br>м | <i>H</i> <sub>2</sub> =0.2м<br>м | <i>H</i> <sub>2</sub> =0.25м<br>м | <i>H</i> <sub>2</sub> =0.3мм |  |
| <i>r</i> =0.05mm                                               | 3.61                             | 3.33                              | 3.19                             | 3.11                              | 3.06                         |  |
| <i>r</i> =0.07mm                                               | 2.78                             | 2.51                              | 2.38                             | 2.3                               | 2.25                         |  |
| <i>r</i> =0.1mm                                                | 2.15                             | 1.9                               | 1.77                             | 1.69                              | 1.64                         |  |
| <i>r</i> =0.2mm                                                | 1.35                             | 1.15                              | 1.04                             | 0.97                              | 0.92                         |  |
| <i>r</i> =0.3mm                                                | 1.03                             | 0.87                              | 0.78                             | 0.72                              | 0.67                         |  |
| <i>r</i> =0.4mm                                                | 0.84                             | 0.71                              | 0.64                             | 0.58                              | 0.54                         |  |
| <i>r</i> =0.5mm                                                | 0.71                             | 0.61                              | 0.54                             | 0.5                               | 0.46                         |  |
| <i>r</i> =0.6mm                                                | 0.62                             | 0.53                              | 0.48                             | 0.44                              | 0.41                         |  |
| <i>r</i> =0.7mm                                                | 0.55                             | 0.47                              | 0.42                             | 0.39                              | 0.36                         |  |
| r=0.8mm                                                        | 0.49                             | 0.42                              | 0.38                             | 0.35                              | 0.33                         |  |
| <i>r</i> =0.9mm                                                | 0.44                             | 0.39                              | 0.35                             | 0.32                              | 0.3                          |  |

Рассмотрев результаты расчётов из приведённых таблиц, было замечено как увеличение толщины алмазной плёнки благоприятно сказывается на снижении теплового сопротивления, что говорит нам о эффективном рассеивании теплового потока теплоотводом.

#### Заключение

Пленки поликристаллического алмаза могут быть успешно применены для создания теплоотводов с низким значением теплового сопротивления на участке от сильно локализованного теплового источника до поверхности рассеяния тепла в среду. Тепловое сопротивление рассеяния тепла в окружающую среду – это отдельная задача теплового проектирования.

Для каждой степени локализации теплового источника, то есть от соотношения размеров активного кристалла, сидящего на теплоотводе, и размеров теплоотвода существует оптимальная толщина алмазного покрытия, увеличение которой нецелесообразно. Эта толщина зависит от теплопроводности материалов теплоотвода, соотношения всех размеров и должна определяться на этапе теплового проектирования.

При этом необходимо учитывать, что в алмазном покрытии присутствует анизотропия теплопроводности: нормальная составляющая теплопроводности (в направлении, перпендикулярном слою) на 10 – 15% превосходит тангенциальную составляющую (в направлении по плоскости слоя). А в некоторых случаях такая разница может достигать до 50%.

Eщë отметим. что при температурах выше комнатной теплопроводность алмаза уменьшается в силу возрастающей роли фононфононного рассеяния. В диапазоне температур 300...500К, важном для практических применений, теплопроводность может быть аппроксимирована степенной зависимостью  $\lambda \approx const \cdot T^{-n}$ , где показатель *n* зависит от степени дефектности алмаза, т.е. от значения λ при комнатной температуре. Для качественных пластин ( $\lambda = 1800 \dots 2000 \text{ Вт/(м·K)}$ ) показатель  $n \approx 1$  [7]. Это 200°C означает, что при нагреве от комнатной температуры ДО теплопроводность алмаза уменьшается примерно в 1,6 раза.

#### Список использованных источников

- 1. СВИДЕТЕЛЬСТВО РФ об официальной регистрации программы для ЭВМ № 2004610993. Овчинников С.В., Самолданов В.Н., Ляшенко А.В., Солопов A.A. Программа расчета стационарного теплового сопротивления многослойных конструктивных элементов мощного магнитоэлектронного транзистора с формой. прямоугольной Зарегистрировано в реестре программ для ЭВМ 21.04.04.
- Овчинников С. В., Солопов А. А. Формулы для аналитического расчета тепловых сопротивлений цилиндрических элементов твердотельной радиоэлектроники с локализованным тепловыделением // Гетеромагнитная микроэлектроника : сб. науч. тр. / под ред. проф. А. В. Ляшенко. – Саратов : Изд-во Сарат. ун-та, 2013. – Вып. 15. С. 32 – 37.
- Моряков О. С. Алмазные теплоотводы в конструкции полупроводниковых приборов // Обзоры по электронной технике. Сер. Полупроводниковые приборы. – М.: ЦНИИ «Электроника», 1982. Вып. 1(857). 46 с.
- 4. *Байтч А.Т.* Алмазные теплоотводы для твердотельных приборов // Зарубежная радиоэлектроника. 1971. № 6. С. 142 147.
- 5. *Eden R. C.* Applications of Diamond Substrates for Advanced Density Packaging // Diamond and Related Materials. 1993. № 3.
- 6. *Мальцев П.П., Редькин С.В., Глинский И.А.* и др. Алмазные наноструктуры для теплоотводов СВЧ полупроводниковой электроники // Российские нанотехнологии. 2016. Т. 11. № 7–8. С. 82 88.
- 7. *Sukhadolau A.V., Ivakin E.V.* et al. Thermal conductivity of CVD diamond at elevated temperatures // Diamond and Related Materials, 2005, v.14, p.589.