МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Кафедра математической теории упругости и биомеханики

Биомеханический анализ тканей мочеточника человека

АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ

студентки 4 курса 431 группы направления 01.03.03 — Механика и математическое моделирование механико-математического факультета Бызовой Милены Андреевны

Научный руководитель к.фм.н., доцент		А.А. Голядкина
	подпись, дата	
Зав. кафедрой д.фм.н., профессор		Л.Ю. Коссович
	подпись, дата	

Введение

Мочевыделительная система человека — система органов, формирующих, накапливающих и выделяющих мочу [Сапина М.Р, 1997]. Она обеспечивает освобождение организма от конечных продуктов тканевого метаболизма, которые уже не могут быть использованы и часто бывают токсичны. Одним из ключевых органов мочевыделительной системы являются мочеточники.

Самым распространенным заболеванием мочеточников является — уролитиаз. Неблагоприятные экологические и социальные условия быта предрасполагают к росту заболеваемости. Решение проблем, связанных с лечением мочекаменной болезни, одна из важнейших задач. Главной задачей хирургов является не только разрушение конкремента, но и обеспечение минимального травматического воздействия на стенку мочеточника и предотвращение развития опасных осложнений. Ведение различных исследований, внушают определенный оптимизм, но найти однозначный подход к лечению мочеточников — сложная задача.

проблемы обусловлена Актуальность данной высокой встречаемости этого вида патологии и неоднозначность подхода к решению. Значимость работы состоит в возможности использования 3D виртуальных построенных моделей мочеточников на стадии предоперационного планирования, позволяя проводить оценку вариантов хирургического реконструктивного лечения для конкретного пациента и диагностики.

Целью дипломной работы является биомеханический анализ тканей мочеточника в норме и при патологии. Для достижения поставленной цели были сформулированы следующие задачи:

- 1. Изучение литературы по научному направлению.
- 2. Изучение и постановка медицинской задачи.
- 3. Построение 3D моделей изучаемого объекта.
- 4. Изучение и постановка биомеханической задачи.
- 5. Проведение конечно-элементного моделирования.
- 6. Анализ результатов конечно-элементного моделирования.

Первая глава бакалаврской работы посвящена медицинской постановке задачи. Рассмотрены нормальная и патологическая анатомия мочеточников.

Мочеточник — парный трубчатый орган, обеспечивающий проведение мочи из почечной лоханки в мочевой пузырь, располагается в забрюшинном пространстве. Его длина составляет 25-30 см. Диаметр мочеточников изменяется по всей длине участка. Она может варьировать от 0,3 см до 0,9 см. Участки, где наблюдается самое большое сужение, часто застревают конкременты, что приводит к развитию серьезных воспалительных процессов. Длина мочеточников у женщин и мужчин различна. У женщин она на 2-4 см меньше из-за анатомических особенностей.

Орган принято делить на три зоны: брюшной, тазовый и дистальный. Стенка мочеточника состоит из трех слоев: внутреннего — слизистой оболочки; среднего — мышечной оболочки; внешнего — адвентициальной оболочки. Благодаря эластичности стенок органа, он легко растягивается.

Работа мочеточника целиком контролируется вегетативным отделом нервной системы человека. Основная роль мочеточника заключается в проталкивании жидкости от лоханок почек до полости мочевого пузыря. Продвижение жидкости внутри протоков обеспечивается перистальтикой. Нормой является перекачивание мочи в объеме 10-14 мл в минуту. Внутреннее давление "пристраивается" к почкам, а в полости мочевого пузыря – к мочеточникам.

Уролитиаз — это самая распространенная патология в практике врачейурологов, проявляющаяся в образовании камней в различных отделах мочевыводящих путей. Наиболее распространенным видом мочекаменной болезни является камень в мочеточнике. В России, по официальным данным, мочекаменной болезнью страдают 500-550 человек на 100 тысяч взрослого населения [Вощула В.И, 2006].

Фундаментом образования мочевых камней лежат следующие нарушения обмена веществ:

1. повышенный уровень мочевой кислоты в моче или крови;

2. повышенный уровень солей оксалата, фосфатых солей в моче.

Самыми частыми и серьезными осложнениями мочекаменной болезни являются: острый пиелонефрит, острое поражение почек, гидронефроз.

Существует 3 варианта развития заболевания:

Первый – когда конкремент полностью перекрывает просвет мочеточника.

Второй — когда камень частично препятствует оттоку мочи и располагается в мочеточнике, не создавая при этом никакого дискомфорта. Тем не менее наличие конкремента в мочеточнике все же сказывается на работе почек.

Третий – когда конкремент самостоятельно с болезненными ощущениями для человека, покидает мочеточник.

Камни в мочеточнике по сравнению с конкрементами других локализаций опасны наиболее тяжелыми и серьезными осложнениями: разрыхление слизистой оболочки мочеточника, кровоизлияния в его подслизистый слой, гипертрофию мышечной стенки. Основным компонентом камня является: урат (желтый, коричневый цвета); оксалат (черный); фосфат (бело-серый). Все конкременты классифицируются по плотности. Радиоплотность измеряется в единицах Хаунсфилда (НU) и делится на 4 группы в таблице 1. С помощью весов Mettler точности 10-5 были вычислены: вес конкрементов, а затем их плотности и модуль Юнга в таблице 2.

Таблица 1 – Классификация конкрементов по плотности

No	Обозначение	Величина	Единицы
	плотности	плотности	измерения
1	P	< 500 ед.	HU
2	P	501 – 1000 ед.	HU
3	P	1001 – 1500 ед.	HU
4	P	> 1500 ед.	HU

Таблица 2 – Значения механических характеристик конкрементов

Преимущественный состав	Плотность, кг/м ³	Модуль Юнга, Н/м², 10 ⁵
Урат	1130	5,7
Фосфат	1200	7,3

Урат-оксалат	1230	6,2
Урат	2595	4,7
Фосфат	1530	14,3
Оксалат	1250	14,6

Во второй главе проведено изучение механических свойств мочеточников. Испытания проводились на машине Instron 3342 с помощью программы Bluehill 3 для образцов мочеточников со скоростью 10 мм/мин. Для эксперимента были взяты две пары здоровых мочеточников человека. Каждый мочеточник был разделен на три сегмента для наилучшего исследования механических свойств. Ведь как мы ранее разобрались в их анатомо-физиологических характеристиках они различны, и наша задача как раз в этом разобраться.

В результате проведенного исследования были определены значения модуля Юнга в «рабочем» диапазоне (таблица 3), а также проведен сравнительный анализ полученных значений со значениями, вычисленными машиной. Кроме того, по данным натурного эксперимента построены графики зависимости напряжение-деформация (рисунок 1).

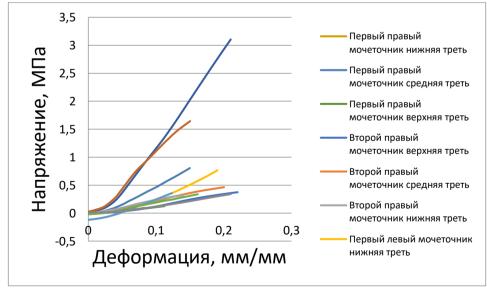


Рисунок 1 — Сводный график зависимости напряжения от деформации участков правых и левых мочеточников

Таблица 3 – Сравнение полученных значений модуля Юнга для образцов мочеточника

Наименование образца	Модуль Автоматический, МПа	Собственное значение по формуле $E = \frac{\sigma}{\varepsilon}$, МПа	Погрешность $\delta = \left \frac{E - E_3}{E_3} \right \cdot 100\%$
Первый правый мочеточник нижняя треть	8,9	4,05	54
Второй правый мочеточник нижняя треть	1,62	3,3	103
Первый правый мочеточник средняя треть	6,21	3,9	37
Второй правый мочеточник средняя треть	3,06	3,17	3
Первый правый мочеточник верхняя треть	1,73	0,94	45,6
Второй правый мочеточник верхняя треть	3,17	3,25	2
Первый левый мочеточник нижняя треть	4,77	1,6	66,4
Второй левый мочеточник нижняя треть	16,51	16,14	2
Первый левый мочеточник средняя треть	3,24	1,8	44
Второй левый мочеточник средняя треть	16,12	17	5
Первый левый мочеточник верхняя треть	3,07	1,65	46
Второй левый мочеточник верхняя треть	1,53	1,4	8

В ходе проведения исследования четко прослеживалось увеличение прочностных характеристик от верхней части к нижней. Также увеличивалась максимальная и относительная деформация стенки. Модуль Юнга при этом наоборот уменьшался от верхней к средней трети, увеличиваясь затем от средней к нижней трети.

Третья глава посвящена построению трехмерной модели мочеточников с использованием программы под названием SolidWorks. Программный продукт SolidWorks является самым распространенным инструментом, используемым для автоматизированного проектирования (САПР) и 3D моделирования.

Построено две модели: модель здоровых мочеточников и модель мочеточника с конкрементом. Все начиналось с выбора плоскости для

построения двумерного эскиза. Далее, пользуясь эскизом, моделировали твердое тело, состоящее из лоханки, мочеточников и мочевого пузыря. Используя экспериментальные параметры, мы задавали физические размеры нашей модели: внешний радиус мочеточников – 2.3-4 мм, радиус конкремента 3.2 мм, толщина стенки 0.2 мм. Для нашей работы потребовались различные функции программы SolidWorks: двумерный эскиз; бобышка/основание (необходима ПО сечениям ДЛЯ построения элемента); вокруг твердотельного вращение контура заданной (использовалось для построения конкремента). Вследствие получаем модель, состоящую из двух деталей (рисунок 2). Далее трехмерная геометрия импортировалась в программную систему конечно-элементного пакета – ANSYS.

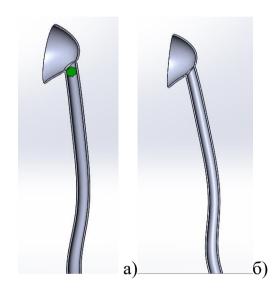


Рисунок 2 – Построенные модели мочеточников: a) с конкрементом; б) здорового мочеточника

В четвертой главе рассмотрена математическая постановка задачи. Предполагалась, ЧТО материал стенок мочеточника И конкрементов изотропен Перемещения однороден, И идеально эластичен. И соответствующие компоненты скорости обозначаются ИМ стенки u, v, w, u_t, v_t, w_t . Движение стенок в нестационарном случае описывается вторым законом Ньютона, записанным в общем виде:

$$\rho \frac{\partial^2 \tilde{u}}{\partial t^2} - \nabla * c \nabla \tilde{u} = F,$$

где F — вектор внешних сил, c — константа, которая зависит от условия конкретной задачи, ρ — плотность стенки мочеточника.

Учитывая, что деформации стенок предполагаются малыми, будем использовать тензор деформаций Коши:

$$\varepsilon_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right),$$

Закон Гука для идеально упругого материала имеет вид:

где
$$\sigma = \begin{bmatrix} \sigma_x & \tau_{xy} & \tau_{xz} \\ \tau_{yx} & \sigma_x & \tau_{yz} \\ \tau_{zx} & \tau_{zy} & \sigma_x \end{bmatrix}$$
 - симметричный тензор напряжений, ε -

тензор деформаций,

$$D = \frac{E}{(1+v)(1-2v)} \begin{bmatrix} 1-v & v & v & 0 & 0 & 0 \\ v & 1-v & v & 0 & 0 & 0 \\ v & v & 1-v & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1-2v}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1-2v}{2} & \frac{0}{2} \end{bmatrix},$$

где v – коэффициент Пуассона, E – модуль Юнга материала стенки.

Уравнения равновесия элемента стенки мочеточника имеют вид:

$$-\nabla \sigma = F$$
.

Аналогично записываются уравнения движения камня:

$$\rho' \frac{\partial^2 \widetilde{u'}}{\partial t^2} - \nabla c' \nabla \widetilde{u'} = F'.$$

Деформации, возникающие на поверхности камня велики, поэтому будем использовать тензор Грина:

$$\frac{\gamma'_{ij}}{2} = \varepsilon'_{ij} = \frac{1}{2} \left(\frac{\partial u'_i}{\partial x'_i} + \frac{\partial u'_j}{\partial x'_i} + \frac{\partial u'_k}{\partial x'_i} * \frac{\partial u'_k}{\partial x'_i} \right).$$

Закон Гука будет иметь вид:

$$\sigma' = D'\varepsilon'$$

В общем виде уравнения равновесия элемента камня имеют вид:

$$-\nabla \sigma' = F'$$
.

В качестве граничных условий предполагалось, что торцы стенок мочеточника жестко закреплены, то есть перемещения и поворот торцов равны нулю во всех направлениях т.е. наложено ограничение по степеням свободы UX=0, UY=0, UZ=0.

Начальные условия. В начальный момент времени мочеточник и камень находились в покое:

$$\begin{aligned} u|_{t=0} &= v|_{t=0} = w|_{t=0} = u_t|_{t=0} = v_t|_{t=0} = w_t|_{t=0} = 0\\ u'|_{t=0} &= v'|_{t=0} = w'|_{t=0} = u_t'|_{t=0} = v_t'|_{t=0} = w'_t|_{t=0} = 0 \end{aligned}$$

В пятой главе проведен численный анализ модели в конечноэлементном пакете Ansys. Была сформулирована постановка задачи и сделан подробный анализ результатов конечно-элементного моделирования здорового мочеточника и с заболеванием уролитиаз.

Сейчас МКЭ считается мощным инструментом для инженерного анализа и физических исследований благодаря созданию компьютерных программных пакетов, таких как ANSYS. ANSYS — это передовое программное обеспечение для инженерного анализа и численного моделирования.

Для численного анализа была построена нерегулярная тетраэдрическая конечно-элементная сетка, с количеством элементов 134841 и количеством узлов 310951, с минимальным размером ребра в 1,5 мм.

В свойствах граничных условий предполагалось, жесткое закрепление торцов исследуемых моделей, то есть наложено ограничение по степеням свободы: UX = 0, UY = 0 и UZ = 0.

Для анализа гидродинамики мочеточников были проведены конечноэлементные расчеты с приложением физиологического давления. Урина переходит из лоханок почек в мочеточники под давлением величиной в 50 Па. А на выходах мочеточниковых отверстий давление задавалось нулевым, в виду отсутствия сопротивления.

В результате конечно-элементного моделирования мочеточников в норме, с патологическим сужением и уролитиазом были получены картины распределения значений напряжения, деформации, касательных напряжений, давления и векторов течения жидкости (урины) (рисунок 3).

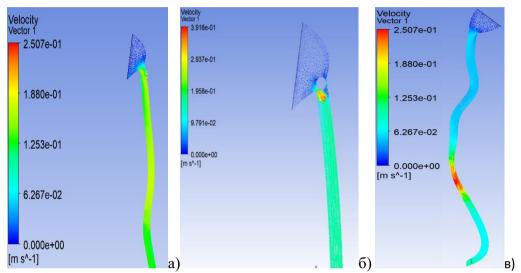


Рисунок 3 — Распределение значений скорости жидкости (м/с): а) модель здорового мочеточника, б) модель мочеточника с конкрементом, в) модель мочеточника с анатомическим сужением

Анализ моделей мочеточников с патологиями (аномальное сужение и уролитиаз) позволил визуализировать смещение зоны максимальных значений.

Численные результаты конечно-элементного моделирования мочеточников в норме и при патологии представлены в таблицах 4 и 5.

Таблица 4 — Максимальные значения напряженно-деформированного состояния тканей мочеточников

	Значения		Эквивалентная	Касательны
Параметры		Напряжение,	упругая	e
Параметры	модуля вектора перемещения	МПа	деформация,	напряжения
			MM/MM	, МПа
Без патологии	2,1*10 ⁻²	1,2*10 ⁻²	2,2*10 ⁻⁴	3,9*10 ⁻⁴
Анатомическое	2,4*10-2	2,7*10 ⁻⁴	5,7*10 ⁻⁵	3,9*10 ⁻⁴
сужение	2,4*10	2,7 10	5,7 10	
Уролитиаз	1,4*10 ⁻²	$2,3*10^{-3}$	$1,15*10^{-3}$	1,3*10 ⁻³

Таблица 5 – Максимальные значения гидродинамических характеристик

Параметры	Скорость, м/с	Давление, Па
Без патологии	0,16	46,5
Анатомическое сужение	0,25	55
Уролитиаз	0,39	209

Проведенное конечно-элементное моделирование показало, что самым неблагоприятным заболеванием, с механической точки зрения, является заболевание – уролитиаз.

Заключение

По проделанной работе можно сделать следующие выводы, что все поставленные задачи выполнены в полном объеме.

- 1. Все поставленные задачи выполнены в полном объеме.
- 2. Были изучены анатомические и физиологические свойства мочеточников.
- 3. Проведено исследование механических свойств тканей. Проведенные исследования над этим органом позволили определить модуль Юнга, который машина, а в частности и мы, рассчитали в заданном рабочем диапазоне, определили погрешности.
- 4. Созданы 3D виртуальные модели мочеточников, которые позволяют вносить в них различные дополнения и модификации.
- 5. С использованием 3D виртуальных моделей мочеточников проведено конечно-элементное моделирование и оценка результатов.
- 6. Использование созданных виртуальных моделей мочеточников в урологии, на стадии предоперационного планирования, позволит проводить диагностику оценку вариантов хирургического реконструктивного лечения для конкретного пациента.