МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Кафедра дискретной математики и информационных технологий

РАЗРАБОТКА ПРОГРАММНО-АППАРАТНОГО КОМПЛЕКСА ДЛЯ УПРАВЛЕНИЯ АДРЕСНЫМИ СВЕТОДИОДНЫМИ ЛЕНТАМИ WS2812B НА БАЗЕ ОДНОПЛАТНОГО КОМПЬЮТЕРА RASPBERRY PI

АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ

студента 4 курса 421 группы	
направления 09.03.01 — Информатика и в	ычислительная техника
факультета КНиИТ	
Давиденко Алексея Алексеевича	
Научный руководитель	
ассистент	А. А. Трунов
Заведующий кафедрой	
доцент, к. фм. н.	Л. Б. Тяпаев

ВВЕДЕНИЕ

Невозможно себе представить современную жизнь без искусственных источников света. Эти источники продолжают играть важнейшую роль в технологическом прогрессе и применяются во всех сферах, например в сфере развлечений.

Сочетание различных световых сигналов может влиять на настроение человека, делая его более спокойным, активным, радостным или грустным. В паре со звуковыми сигналами, это может оказывать более сильное воздействие, что активно применяется в сфере развлечений, например, в проведении световых шоу, концертов, презентаций компаний и других областях.

Одним из основных видов искусственных источников света являются светодиоды, полупроводниковые приборы, создающие оптическое излучение при пропускании через него электрического тока в прямом направлении. Адресные же светодиоды, в свою очередь, являются подтипом светодиодов, ключевой особенностью которых является возможность управления каждым светодиодом, находящимся в ленте адресных светодиодов, по отдельности за счёт встроенного контроллера. Но также в работе с адресными светодиодами существует трудность, заключающаяся в необходимости более сложного управляющего контроллера, чем для обычных светодиодов.

Звуками, в свою очередь, также можно управлять. Получая на устройстве считывания некий звуковой поток, можно его проанализировать, получить набор его набор характеристик, и, преобразовав, трансформировать его в другой звуковой поток, либо, например, в световой поток.

Реализовать трансформацию звукового потока в световой можно на различных платформах: на персональных компьютерах, плат с микроконтроллерами, либо одноплатных компьютерах Raspberry Pi. Ввиду своих дороговизны, низкой энергоэффективности и избыточной производительности, не оптимально производить эту операцию на персональных компьютерах. Arduino являются подходящим вариантом для реализации такой трансформации, но, ввиду недостаточности производительности, также не являются оптимальным решением, если необходимо в рамках одной платы реализовать несколько проектов. Наиболее оптимальным является использование одноплатных компьютеров Raspberry Pi, которые объединяют в себе удобство в использовании персональных компьютеров, использование одного из дистрибутивов Linux в качестве операционной

системы, а так же энергоэффективность и компактность плат с микроконтроллерами.

Актуальность работы заключается в том, что в различных сферах требуется использование света и музыки для достижения поставленной цели. В разработках, связанных с концепцией «умный дом», например, световые сигналы дополняют играющую музыку, включенную пользователем.

Целью выпускной квалификационной работы является разработка и тестирование программно-аппаратного комплекса, позволяющего управлять адресными светодиодными лентами с помощью звука, а так же веб-приложения, позволяющего управлять комплексом.

Для достижения цели были поставлены следующие задачи:

- Обзор и анализ характеристик и особенностей работы светодиодов, подходящих для реализации поставленной цели;
- изучение способов работы со звуковыми потоками;
- обзор и анализ характеристик платформ, подходящих для реализации поставленной цели;
- обзор средств для разработки пользовательских интерфейсов;
- обзор и анализ протоколов связи, подходящих для реализации поставленной цели;
- изучение особенностей работы с одноплатными компьютерами Raspberry Pi;
- разработка комплекса, позволяющего управлять адресными светодиодными лентами с помощью звука;
- разработка веб-приложения для управления программно-аппаратным комплексом;
- тестирование разработанного программно-аппаратного комплекса для управления светодиодными лентами при помощи веб приложения.

Бакалаврская работа состоит из списка обозначений и сокращений, введения, двух разделов, заключения, списка использованных источников и четырёх приложений. Общий объём работы — 70 страниц, из них 44 страницы — основное содержание, включая 36 рисунков и 4 таблицы, список использованных источников информации — 23 наименований.

КРАТКОЕ СОДЕРЖАНИЕ РАБОТЫ

Первый раздел «Обзор используемых технологий» посвящён обзору характеристик светодиода WS2812b, особенностей записи и обработки звука в системах Linux, обзор и анализ средств и способов разработки пользовательских интерфейсов, а также протоколов, используемых для обеспечения клиент-серверного взаимодействия.

Светодиод WS2812b является одним из широко используемых типов адресных светодиодов. Он представляет из себя светодиод, состоящий из контроллера и RGB чипа, интегрированных в светодиод SMD 5050, обработчик цифровых сигналов и контроллер восстановления и усиления сигнала [1]. Для передачи информации в ленте светодиодов используется линейное кодирование NRZ. При этом цвет каждого из светодиодов кодируется 24 битами информации, где первые 8 бит соответствуют зелёной составляющей цвета, следующие 8 бит – красной, а последние – синей.

Для обработки звука в Linux-системах применяются лва вида звуковых подсистем: ALSA и OSS. ALSA предоставляет функциональность аудио драйвера и цифрового интерфейса музыкальных инструментов в Linux, а также тесно связана с ядром Linux [2]. Для записи и воспроизведения звука в Linux-системах, использующих ALSA в качестве звуковой подсистемы, используют утилиты arecord и aplay. Arecord и aplay являются утилитами для командной строки и предназначены для записи и воспроизведения звука соответственно. Эти утилиты поддерживают несколько форматов входных и файлов, несколько форматов данных, разное количество каналов, частоту дискретизации и другие параметры [3,4].

Для разработки пользовательских интерфейсов существует множество библиотек и фреймворков: React, Angular, Vue и другие. Наиболее популярным из них является библиотека React [5].

React является JavaScript-библиотекой для создания пользовательских интерфейсов. С помощью React можно разрабатывать одностраничные приложения используя JSX для шаблонов. Также в качестве разработки можно выбрать язык TypeScript. Основной концепцией React является разбиение элементов приложения на компоненты [6]. Компоненты React представляет из себя участки кода, соответствующие части веб-страницы приложения. По умолчанию точкой входа React приложения является контейнер div с идентификатором Root. В

этом контейнере содержится всё веб приложение, представляющее из себя композицию компонентов или JSX элементов, состоящих из одного или нескольких компонентов или JSX-элементов. Данные в компоненте хранятся в виде «пропсов». Эти «пропсы» можно использовать для передачи динамически изменяемых параметров от родительских компонентов дочерним [6].

В библиотеке React нет встроенной поддержки маршрутизации страниц. Для предоставления веб-приложению этой возможности необходимо использовать сторонние библиотеки. Наиболее популярной из таких библиотек является ReactRouter. Эта библиотека предоставляет компоненты, позволяющие добавить в веб приложение компоненты трёх видов: маршрутизаторы, маршруты и элементы навигации [7]. Маршрутизация веб-приложения позволяет пользователю видеть, в каком месте приложения он находится в данный момент времени, и облегчить процесс использования приложения.

При сложной логике приложения становится сложно управлять параметрами приложения, используемыми в нескольких компонентах. Для решения этой проблемы в React-приложениях используются два подхода: использование Redux (или другого менеджера состояний), или использование встроенной в React технологии React Context. Использование Redux необходимо, когда невозможно эффективно управлять состоянием, используя лишь возможности React. Так как для небольших приложений можно передавать данные во все необходимые компоненты без потерь в эффективности и увеличения сложности логики приложения, применение Redux необходимо лишь для более сложных приложений. В простых приложениях более предпочтительно использование React Context. Эта технология позволяет использовать динамически изменяемые параметры приложения в нескольких компонентах, в том числе и на разных уровнях вложенности [6]. При этом необходимо создание контекста с используемыми параметрами, использование компонента, предоставляющего использование параметров контекста всем дочерним компонентам, а также компонента, создающего подписку на контекст, для каждого компонента, в котором необходимо использование контекста.

Для стилизации пользовательских интерфейсов применяется каскадные таблицы стилей, или CSS. С помощью CSS можно изменить внешний вид элементов и их отображение на странице. Для выстраивания элементов на странице наиболее часто используются модели раскладки flex и grid. Основное различие

этих моделей раскладки заключается в том, что в модели flex элементы позиционируются в одном направлении, то есть, либо в строке, либо в столбце, в то время как grid позволяет позиционировать в двух направлениях: элементы можно позиционировать и в строке, и в столбце [8]. Одной и той же раскладки элементов на странице можно добиться используя как flex модель, так и grid. Различие будет состоять только в количестве дополнительных стилей и использованных контейнерах.

Для облегчения разработки стилей компонентов веб-приложений можно использовать CSS-модули. CSS модули используют подход при котором HTML разметка задаётся в JavaScript файле и стилизация применяется только к компоненту, заданному в этом JS файле. Такой подход гарантирует, что все стили одного компонента: находятся в одном месте и применяются исключительно к этому компоненту и никакому другому.

Для обеспечения взаимодействия типа «клиент-сервер» необходимо использовать один из протоколов передачи данных. Основным протоколом передачи данных во Всемирной паутине является НТТР [9]. При клиент-серверном взаимодействии по протоколу НТТР, только клиент может быть инициатором запроса, а сервер – инициатором ответа. Протокол WebSocket предоставляет возможность как клиенту, так и серверу отправлять сообщения, не основываясь на истории предыдущих запросов. При этом WebSocket обладает следующими особенностями: протокол двунаправленный (и клиент, и сервер могут независимо обмениваться сообщениями), коммуникация полнодуплексная (обмен сообщениями происходит независимо и одновременно), а также используется лишь одно ТСР соединение [9]. При этом, для установки связи по протоколу WebSocket, необходимо установить сначала НТТР соединение, которое затем будет закрыто и использоваться только один ТСР канал.

Во втором разделе «Разработка программно-аппаратного комплекса» описывается процесс разработки серверной и клиентской составляющих программно-аппаратного комплекса, а также тестирования разработанного комплекса.

Разработка серверной составляющей комплекса включает в себя разработку программ, предоставляющих:

- Возможность управления светодиодной лентой.
- Возможность записи и обработки звука.

 Программного интерфейса (API) для управления комплексом с помощью веб-приложения.

Для реализации поставленной задачи была выбрана платформа Raspberry Pi. Ввиду своей распространённости и доступности, была выбрана модель Raspberry Pi 3 model B. Операционная система RPI располагается на внешней microSD-карте, на которую можно записать один из дистрибутивов Linux. Официально можно установить одну из следующих операционных систем [10]: Raspberry Pi OS, Ubuntu, Manjaro, RISC OS. Для разработки был выбран дистрибутив Manjaro ввиду наличия у аналогов критических недостатков.

Для управления лентой светодиодов WS2812b необходимо использование широтно-импульсной модуляции. Для этого можно использовать использовать расположенные на плате Raspberry Pi GPIO контакты. При этом для программной генерации ШИМ можно использовать все контакты GPIO, а для аппаратной – только контакты GPIO12, GPIO13, GPIO18, GPIO19. Недостатком программной генерации ШИМ является большие затраты аппаратных ресурсов на генерацию и кодирование импульсов. Для генерации ШИМ был выбран контакт GPIO18, а для заземления ленты был выбран контакт 6 GPIO.

Был составлен макет программно-аппаратного комплекса, и, согласно макету, была собрана и протестирована работоспособность системы.

В качестве основного языка разработки серверной составляющей комплекса был выбран язык JavaScript. Для взаимодействия с операционной системой используется среда выполнения JS – NodeJS (Node).

Для управления адресными светодиодными лентами с помощью языка программирования Node, наибольшей популярностью обладают 3 пакета: node-pixel, rpi-ws281x и rpi-ws281x-native. При разработке был использован пакет rpi-ws281x-native ввиду более подробной документации и использования при выполнении нативных привязок GPIO. При работе с этим пакетом необходимо указание количества светодиодов в ленте, и порт GPIO, к которому подключена лента. Данные о ленте хранятся в виде массива чисел, где каждому элементу массива соответствует определённый светодиод. Обращение к светодиодам происходит по индексам. Для отображения необходимого состояния ленты используется метод render(), для очистки ленты – reset(), а для завершения работы с лентой – finalize().

Был разработан модуль, позволяющий управлять светодиодной лентой.

При этом был реализован эффект, при котором новые цвета на ленте исходят из центра ленты в стороны.

Для записи и воспроизведения звука используются утилиты arecord и aplay. Для запуска этих утилит из основного процесса сервера комплекса, необходимо создание дочерних процессов, управляемых из основного процесса. Для этого в Node используется модуль «child_process». При этом существует несколько методов для запуска дочерних процессов: exec, execFile, fork и spawn. Для запуска процессов, выполняющих команды aplay и arecord, был использован метод spawn.

Для преобразования полученного звукового потока в световой, был разработан и реализован модуль обработки звука.

Для предоставления программного интерфейса управления комплексом был выбран протокол WebSocket. Для создания WebSocket-сервера, необходимо создать HTTP сервер, а затем установить WebSocket соединение. Для создания HTTP-сервера используется стандартная библиотека Node http. Затем, для создания самого WebSocket-сервера, необходимо использовать библиотеку, предоставляющую возможность установления WebSocket соединения. В качестве такой библиотеки была выбрана библиотека «websocket».

Был разработан модуль, предоставляющий АРІ, с помощью которого можно удалённо управлять состоянием программно-аппаратного комплекса.

При разработке клиентской составляющей комплекса использовалась библиотека React. Для создания React-приложения использовалась утилита «create-react-app» с настроенной поддержкой TypeScript. Затем была улучшена структуризация приложения для оптимизации разработки и сборки приложения и реализовано веб-приложение с использованием технологий ReactRouter, React Context и CSS-модулей.

В результате разработки веб-приложения был реализован сайт, с помощью которого можно взаимодействовать с комплексом управления светодиодными лентами.

Для тестирования разработанного программно-аппаратного комплекса использовалось разработанное веб-приложение.

Была проверена достоверность предоставляемой API информации о состоянии комплекса, а также возможность удалённого изменения состояния комплекса с помощью веб-приложения. Во всех тестах изменение поведения комплекса было ожидаемым и корректным, что показывает эффективность и работоспособность разработанного программно-аппаратного комплекса.

ЗАКЛЮЧЕНИЕ

Проекты, связанные с концепцией «умный дом», являются одними из наиболее молодых и популярных направлений разработки. Одну из важнейших ролей в таких проектах является создание и использование искусственных источников света.

В ходе выполнения выпускной квалификационной работы был разработан программно-аппаратный комплекс для управления светодиодными лентами с помощью звука, а также веб-приложение для управления комплексом. Впоследствии разработанный программно-аппаратный комплекс был протестирован при помощи разработанного веб-приложения. В ходе тестов комплекс показал свою эффективность и корректность.

Преимуществом данной разработки является возможность управления всем программно-аппаратным комплексом используя веб-приложение. Есть возможность управления состояниями светодиодной ленты и микрофона, а также их параметрами: яркостью свечения светодиодов, скоростью эффекта бегущих из центра огней, нижней границей звучания и максимальным процентом зашумлённости.

Также был произведён анализ предметной области, получены знания о способах записи, обработки и воспроизведения звуковых потоков, способы модуляции сигналов, изучены особенности работы с одноплатными компьютерами Raspberry Pi, изучены способы клиент-серверного взаимодействия, а также средства для разработки пользовательских интерфейсов.

Таким образом, цель и задачи выпускной квалификационной работы были выполнены.

Основные источники информации:

- 1 Worldsemi [Электронный ресурс]. URL: http://www.world-semi.com/Certifications/WS2812B.html (Дата обращения 02.05.21). Загл. с экрана Яз. Англ.
- 2 ALSA project [Электронный ресурс]. URL: https://www.alsa-project.org/wiki/Main_Page (Дата обращения 02.05.21). Загл. с экрана Яз. Англ.

- 3 die.net [Электронный ресурс]. // https://www.die.net/ arecord URL: https://linux.die.net/man/1/arecord (Дата обращения 03.05.21). Загл. с экрана Яз. Англ.
- 4 die.net [Электронный ресурс]. // https://www.die.net/ aplay URL: https://linux.die.net/man/1/aplay (Дата обращения 03.05.21). Загл. с экрана Яз. Англ.
- 5 State of JS [Электронный ресурс]. URL: https://stateofjs.com/ (Дата обращения 20.02.21). Загл. с экрана Яз. англ.
- 6 React [Электронный ресурс]. URL: https://reactjs.org/ (Дата обращения 21.02.21). Загл. с экрана Яз. англ.
- 7 REACT ROUTER [Электронный ресурс]. URL: https://reactrouter.com/ (Дата обращения 24.02.21). Загл. с экрана Яз. англ.
- 8 MDN Web Docs [Электронный ресурс]. URL: https://developer.mozilla.org/ru/docs/ (Дата обращения 02.03.21). Загл. с экрана Яз. рус.
- 9 Medium [Электронный ресурс]. // https://medium.com/ HTTP and Websockets: Understanding the capabilities of today's web communication technologies URL: https://github.com/css-modules/css-modules (Дата обращения 07.03.21). Загл. с экрана Яз. англ.
- 10 Raspberry Pi [Электронный ресурс]. URL: https://www.raspberrypi.org/help/ (Дата обращения 04.05.21). Загл. с экрана Яз. Англ.