МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н. Г. ЧЕРНЫШЕВСКОГО»

Кафедра дискретной математики и информационных технологий

ИССЛЕДОВАНИЕ АНОМАЛЬНЫХ ЗНАЧЕНИЙ

АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ

студента 4 курса 421 группы направления 09.03.01 — Информатика и вычислительная техника факультета КНиИТ Королева Ивана Дмитриевича

Научный руководитель	
профессор, д. э. н.	 Л.В. Кальянов
Заведующий кафедрой	
доцент, к. фм. н.	 Л. Б. Тяпаев

ВВЕДЕНИЕ

Процесс обнаружения аномалий относится к проблеме поиска закономерностей (паттернов) в данных, которые не соответствуют ожидаемому поведению. Эти несоответствующие шаблоны часто называют аномалиями, выбросами, несогласованными наблюдениями, исключениями, особенностями или загрязнителями в различных областях применения. Из них аномалии и выбросы - это два термина, которые наиболее часто используются в контексте обнаружения аномалий; иногда взаимозаменяемо. Обнаружение аномалий находит широкое применение в самых разных приложениях, таких как обнаружение мошенничества с кредитными картами, страхование или здравоохранение, обнаружение вторжений для кибербезопасности, обнаружение сбоев в критически важных системах безопасности и военное наблюдение за действиями противника.

Важность обнаружения аномалий обусловлена тем фактом, что аномалии в данных преобразуются в важную (и часто критическую) полезную информацию в широком спектре областей применения. Например, аномальная схема движения в компьютерной сети может означать, что взломанный компьютер отправляет конфиденциальные данные в неавторизованное место назначения. Аномальное изображение МРТ может указывать на наличие злокачественных опухолей. Аномалии в данных транзакций по кредитной карте могут указывать на кражу кредитной карты или личных данных, или аномальные показания датчика космического корабля могут указывать на неисправность какого-либо компонента космического корабля.

Целью бакалаврской работы является исследование аномальных значений в данных, применяя различные алгоритмы и определяя их эффективность.

Для достижения цели работы необходимо выполнить следующие задачи:

- изучить функционал и использование модулей Scrapy, Pandas, NumPy;
- создать набор данных;
- изучить типы аномалий значений;
- изучить режимы обнаружения аномальных значений;
- изучить алгоритмы для определения аномальных значений;
- в программе RapidMiner построить процессы для выбранных алгоритмов;
- рассмотреть различные подходы для бинарной классификации данных;

- провести сравнительный анализ эффективности процессы с помощью ROC-анализа;
- определить наилучший процесс для обнаружения аномальных данных.

В данной работе исследуемым объектом является статистика продаж автомобилей в странах европейского и СНГ регионов. Данные собраны с сайта carsalesbase.com [1]. Аномальные значения в наборе данных являются точечными, а для их обнаружения применен подход «обнаружения аномалий без обучения».

Бакалаврская работа состоит из введения, трех разделов, заключения, списка использованных источников и трех приложений.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

- 1. Понятие аномальных значений и методы их обнаружения. На сегодняшний день не существует общепринятой классификации аномальных явлений в наборах данных [2]. Наиболее часто в работах отечественных и зарубежных ученых встречается классификация, в рамках которой выделены три типа аномалий:
 - Точечные аномалии;
 - Контекстные аномалии;
 - Коллективные аномалии.

Для обнаружения аномалий используются три режима, в зависимости от взаимодействия с метками данных. Они используются для явного указания на то, является ли конкретный экземпляр данных нормальным или аномальным. Разметка зачастую производится специалистами вручную, из-за этого процесс разметки данных требует больших ресурсных затрат [3].

В зависимости от доступных меток, методы обнаружения аномалий могут быть использованы в одном из трех режимов:

- обнаружение аномалий с полным обучением;
- обнаружение аномалий с частичным обучением;
- обнаружение аномалий без обучения.

В данной работе было использовано три следующих алгоритма: k-NN Global Anomaly Score [4], Local Outlier Factor (LOF) [5], Histogram-based Outlier Score (HBOS) [6]. Первые два алгоритма относятся к методам, основанным на плотности, последний алгоритм относится к статистическим методам.

- **2. Автоматизация процессов сбора данных и их предварительной обработки**. Перед построением процессов с использованием выбранных алгоритмов в программе RapidMiner, с помощью инструментов Python был создан и предварительно обработан набор данных. В ходе разработки были :
 - с помощью модулей Python разработать краулер для извлечения данных с сайта, содержащего необходимые данные, с целью сформировать набор данных, который будет использован в дальнейшем;
 - рассмотреть пример работы процесса, определяющий аномальные значения в программе RapidMiner;
 - построить процессы с использованием выбранных алгоритмов;
 - произвести анализ эффективности процессов с помощью ROC-анализа.

Для создания краулера использовался фреймворк Scrapy [7], [8] для Python. Установка производилась с помощью Anaconda [9]. Внутри краулера определены две функции:

- извлечение ссылок, введущих на каждую из представленных на сайте стран с помощью заданного регулярного выражения [10], и рекурсивный переход по полученным ссылкам;
- извлечение необходимых данных из таблиц, содержащихся на странице каждой страны и запись их в отдельный файл.

Предварительная обработка данных, включающая в себя подсчет изменений уровня продаж в процентном соотношении, нормализацию данных и объединение данных о продажах для каждой страны в единый .csv файл производилось с помощью модулей Pandas [11], os [12], glob [14].

Подсчет изменений уровня продаж для каждой страны с помощью Python. Такой подход обусловлен тем, что сразу в общем файле подсчет напрямую (например в Excel) производится некорректно: значения берутся из предыдущей ячейки, так, в запись не в начале набора данных, являющуюся начальной для очередной страны, попадает значение, вычисленное по последней записи предыдущей страны, что приводит к искажению набора данных.

Вручную убирать значения из подобных ячеек некорректно из-за нерациональности, так как при большем объеме данных этот процесс займет намного больше времени.

Целью нормализации является преобразование объектов выборки к единому масштабу. Данная операция повышает производительность и устойчивость модели к обучению [13]. В программе Rapidminer [15], в которой будет построен процесс для анализа, есть оператор нормализации данных. Однако, если применить его на общий набор данных, то данные не будут равномерно распределены. В связи с этим, нормализация производилась отдельно для данных в рамках каждой страны с помощью Python.

На примере набора данных для России в таблице 1 показаны ненормализованные и нормализованные данные (выделено normalized).

Таблица 1 – выполненная нормализация данных

	year	sales	sales (normalized)	change	change (normalized)
1	2005	1806625.0	0.251144	NaN	NaN
2	2006	1886824.0	0.304358	0.044392	0.619376
3	2007	2582682.0	0.766075	0.368799	0.991285
4	2008	2907857.0	0.981835	0.125906	0.712827
5	2009	1465922.0	0.025080	-0.495875	0.000000
6	2010	1914323.0	0.322604	0.305883	0.919157
7	2011	2634875.0	0.800706	0.376400	1.000000
8	2012	2935233.0	1.000000	0.113993	0.699170
9	2013	2777547.0	0.895372	-0.053722	0.506897
10	2014	2491394.0	0.705503	-0.103024	0.450376
11	2015	1603253.0	0.116203	-0.356484	0.159803
12	2016	1428123.0	0.000000	-0.109234	0.443256
13	2017	1599718.0	0.113857	0.120154	0.706233
14	2018	1800351.0	0.246981	0.125418	0.712267
15	2019	1754297.0	0.216423	-0.025581	0.539158
16	2020	1598369.0	0.112962	-0.088883	0.466586

3. Разработка информационной технологии анализа аномальных значений средствами RapidMiner. В ходе построения процессов с использованием выбранных алгоритмов, в программе RapidMiner выполнялись операции:

- генерации идентификаторов для повышения качества анализа полученных результатов;
- отсеивания пустых экземпляров данных;
- записи обработанного алгоритмами набора данных в новые файлы формата .csv для последующей классификации и анализа эффективности каждого из алгоритмов.

В качестве демонстрации работы в среде RapidMiner, на рисунке 1 показан построенный процесс с примененным алгоритмом k-NN Global Anomaly Score. Дальнейшая работа сопряжена с изучением данных, полученных в результате выполнения процесса. Все алгоритмы, использованные в работе, были установлены с расширением Anomaly Detection [16]

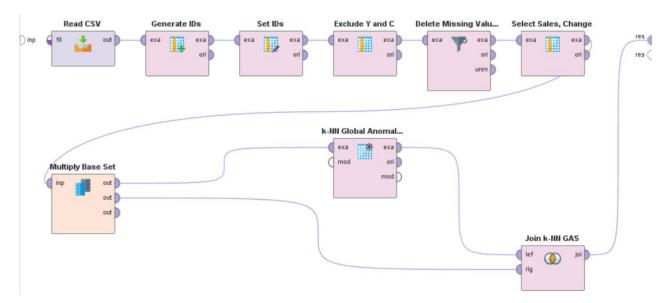


Рисунок 1 – общий вид построенного процесса

Вкладка данных, полученных в результате работы алгоритма k-NN Global Anomaly Score показана на рисунке 2.

	Open in	Turbo Prep	Auto Model]	
Data	Row No.	id	outlier \downarrow	sales	change
	817	sweden_2020	0.184	0.657	0.025
Σ	630	norway_2018	0.176	0.897	0.141
tistics	711	serbia_2008	0.175	0.687	0.068
	211	denmark_2020	0.164	0.811	0.137
<u></u>	457	kazakhstan	0.161	0.984	0.208
lizations	527	luxembourg	0.154	0.636	0.072
	15	albania_2020	0.149	0.846	0.167
mu.	620	norway_2008	0.145	0.540	0
4	649	poland_2020	0.144	0.602	0.063
tations	153	cyprus_2009	0.139	0.524	0.003
	92	bosnia_2007	0.133	1	1
	272	georgia_2006	0.133	1	1
	560	moldova_2008	0.133	1	1
	710	serbia_2007	0.133	1	1
	631	norway_2019	0.132	0.844	0.196
	610	norway_1998	0.129	0.610	0.124
	680	romania_2007	0.129	1	0.988
	208	denmark_2017	0.128	0.974	0.259

Рисунок 2 – данные, полученные при работе алгоритма k-NN Global Anomaly Score

Вкладка статистики, полученной в результате работы алгоритма k-NN Global Anomaly Score показана на рисунке 3.

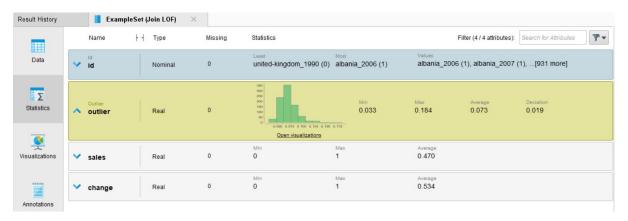


Рисунок 3 – статистика для процесса

Визуализация представлена на рисунке 4.

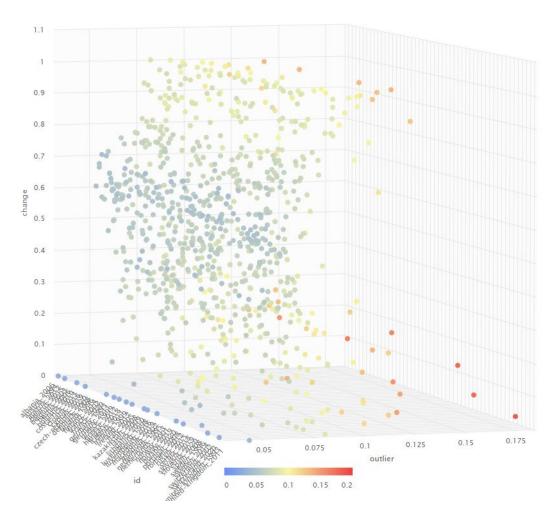


Рисунок 4 – визуализация данных

Для применения остальных алгоритмов требуется только замена оператора, отвечающего за алгоритм. Настройки визуализации также идентичны.

В таблице 2 показано сравнение результатов работы алгоритмов. Полужирным шрифтом выделены значения, совпадающие между алгоритмами.

Таблица 2 – сопоставление аномальных данных, выявленных алгоритмами алгоритмами

k-NN	LOF	HBOS
Швеция, 2020	Великобритания, 2016	Люксембург, 2020
Норвегия, 2018	Португалия, 1992	Бельгия, 2006
Сербия, 2008	Хорватия, 2008	Испания, 2008
Дания, 2020	Германия, 1991	Швеция, 2001
Казахстан, 2014	Норвегия, 2018	Австрия, 1992
Люксембург, 2020	Ирландия, 2000	Хорватия, 2020
Албания, 2020	Сербия, 2008	Сербия, 2008
Норвегия, 2008	Швеция, 2020	Финляндия, 2011
Польша, 2020	Литва, 2019	Исландия, 2003
Кипр, 2009	Венгрия, 2005	Великобритания, 2012

Бинарная классификация (разметка данных) необходима для того, чтобы определить эффективность той или иной модели с помощью ROC-анализа. Разметка данных осуществлялась с помощью визуальной оценки полученных результатов, а также с помощью межквартильного размаха [17], реализованного с помощью модуля numpy [18] для Python.

ROC-анализ представляет собой графический метод оценки качества работы бинарного классификатора. Два класса содержат показания с положительными и отрицательными исходами. В основе метода лежит построение ROC-кривой (ROC – receiver operating characteristic — рабочая характеристика приёмника) [19]. Ключевым параметром для оценки в ROC-анализе является значение площади под ROC-кривой [20].

Оценка эффективности, произведенная только на созданном с помощью краулера наборе данных, показала, что наилучшими являются процессы с использованием алгоритмов k-NN Global Anomaly Score и Local Outlier Factor (LOF) и визуальной оценки для решения задачи бинарной классификации, так как подход, примененный для процесса с алгоритмом Histogram-Based Outlier Score требовал дополнительных операция вне программы RapidMiner.

ЗАКЛЮЧЕНИЕ

В рамках бакалаврской работы была поставлена цель построения процессов для определения аномальных данных с помощью различных алгоритмов. Для достижения цели данной работы был проведен анализ предметной области, и выполнены следующие задачи:

- получены навыки по использованию функционала модулей языка Python: Scrapy, Pandas, NumPy и др.;
- создан набор данных;
- изучены типы аномалий значений;
- изучены режимы обнаружения аномальных значений;
- изучены алгоритмы для определения аномальных значений;
- в программе RapidMiner построены процессы для выбранных алгоритмов;
- рассмотрены различные подходы для бинарной классификации данных;
- проведен сравнительный анализ эффективности процессов с помощью ROC-анализа;
- на доступных данных был определен наилучший из исследуемых процессов для обнаружения аномальных данных.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1 Total Market Car Sales by Country [Электронный ресурс]. URL: //https://carsalesbase.com/total-market-sales-country/europe-car-sales-data/ (дата обращения 03.05.2021) Загл. с экрана Яз. англ.
- 2 RapidMiner. Data Mining Use Cases and Business Analytics Applications University of Minnesota, 2014, Яз. англ.
- 3 Anomaly Detection: A Survey, Varun Chandola, Arindam Banerjee, Vipin Kumar ACM Computing Surveys, 2007, Загл. с экрана Яз. англ
- 4 Nearest-Neighbor and Clustering based Anomaly Detection Algorithms for RapidMiner, Mennatallah Amer and Markus Goldstein University of Minnesota, German University in Cairo, Egypt, Яз. англ.
- 5 LOF: Identifying Density-Based Local Outliers Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, Jorg Sander, Institute for Computer Science, University of Munich, 2000, Яз. англ.
- 6 Histogram-based Outlier Score (HBOS): A fast Unsupervised Anomaly Detection Algorithm Markus Goldstein, Andreas Dengel, German Research Center for Artificial Intelligence (DFKI), 2012, Яз. англ.
- 7 Scrapy | A Fast and Powerful Scraping and Web Crawling Framework [Электронный ресурс]. URL: //https://scrapy.org/ (дата обращения 03.05.2021) Загл. с экрана Яз. англ
- 8 parser Access Python parse trees [Электронный ресурс]. URL: //https://docs.python.org/3/library/parser.html (дата обращения 03.05.2021) Загл. с экрана Яз. англ
- 9 Anaconda Framework [Электронный ресурс]. URL: //https://www.anaconda.com/ (дата обращения 03.05.2021) Загл. с экрана Яз. англ
- 10 Regular Expression HOWTO [Электронный ресурс] URL: //https://docs.python.org/3/howto/regex.html (дата обращения 04.05.2021) Загл. с экрана Яз. рус
- 11 pandas Python Data Analysis Library [Электронный ресурс]. URL: //https://pandas.pydata.org/ (дата обращения 06.05.2021) Загл. с экрана Яз. англ

- 12 os Miscellaneous operating system interfaces [Электронный ресурс]. URL: //https://docs.python.org/3/library/os.html (дата обращения 06.05.2021) Загл. с экрана Яз. рус
- 13 Normalization [Электронный ресурс]. URL: //https://developers.google.com/machine-learning/data-prep/transform/normalization (дата обращения 04.05.2021) Загл. с экрана Яз. англ
- 14 Glob() function [Электронный ресурс]. URL: //https://www.geeksforgeeks.org/how-to-use-glob-function-to-find-files-recursively-in-python/ (дата обращения 01.05.2021) Загл. с экрана Яз. англ
- 15 RapidMiner [Электронный ресурс]. URL: //https://rapidminer.com/ (дата обращения 01.05.2021) Загл. с экрана Яз. англ
- 16 Anomaly Detection [Электронный ресурс]. URL: //https://marketplace.rapidminer.com/UpdateServer/faces/product-details.xhtml?productId=rmx-anomalydetection (дата обращения 06.05.2021) Загл. с экрана Яз. англ
- 17 Outliers: Finding Them in Data, Formula, Examples [Электронный ресурс]. URL: //https://www.statisticshowto.com/statistics-basics/find-outliers/ (дата обращения 06.05.2021) Загл. с экрана Яз. англ
- 18 numpy.percentile [Электронный pecypc]. URL: //https://numpy.org/doc/stable/reference/generated/numpy.percentile.html/ (дата обращения 06.05.2021) Загл. с экрана Яз. англ.
- 19 Unsupervised anomaly detection and access control on network traffic Dimakogiannis, M.M, Eindhoven University of Technology, 2017, Яз. англ.
- 20 Classification: ROC Curve and AUC [Электронный ресурс]. URL: //https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc (дата обращения 06.05.2021) Загл. с экрана Яз. англ.