МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Кафедра оптики и биофотоники

Исследование оптических и кинетических свойств коллагеновых материалов при диффузии молекул просветеляющих агентов.

АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ

студентки 4 курса 4082 группы направления 12.03.04 «Биотехнические системы и технологии»

Института физики

Ацигейда Софья Владимировна

Научный руководитель

зав.каф., д. ф.-м. наук, чл.-корр.РАН, профессор

Тучин В.В.

Зав. кафедрой

<u>д. ф.-м. наук,</u> <u>чл.-корр.РАН, профессор</u>

Тучин В.В.

Введение. Настоящая бакалаврская работа посвящена изучению коллагеновых материалов и исследованию их свойств при оптическом просветлении.

Данная тема представляет высокую значимость, поскольку возрастает интерес к использованию коллагеновых материалов в разных областях медицины и при калибровке оборудования, из-за возможности моделирования распространения света, приводит к расширению методов разработки и изготовления коллагеновых фантомов. Для этого необходимо изучить свойства коллагена: на биохимическом уровне, структурном и наиболее важные - оптические и кинетические свойства при воздействии на них оптическими просветляющими агнетами (ОПА). Для этого также можно использовать ОКТ [1], которая позволяет получить изображения внутренней структуры биологической ткани с высоким разрешением.

Актуальность работы заключается в оценке влияния ОПА на эффективность иммерсионного просветления, на изменение геометрических параметров и на оптическую глубину зондирования. Полученные данные необходимы для более полного описания взаимодействия ОПА с коллагеновыми материалами.

Целью бакалаврской работы является исследование оптических и кинетических свойств коллагеновых материалов при диффузии молекул просветляющих агентов.

Задачами выполняемой работы являются:

- 1. Исследовать кинетику оптического просветления коллагеновых материалов, т.е. оптических фантомов, под действием биосовместимого гиперосмотического иммерсионного агента различных концентраций.
- 2. Изучить геометрические изменения образцов коллагеновых материалов при оптическом просветлении *in vitro*.
- 3. Исследовать оптическое просветление коллагеновых материалов *in vitro* под действием биосовместимого гиперосмотического иммерсионного агента. Определить коэффициенты диффузии иммерсионного агента различных

концентраций в коллагеновых материалах.

4. Провести ОКТ-мониторинг проникновения биосовместимого гиперосмотического иммерсионного агента в коллагеновые материалы *in vitro* при оптическом просветлении.

Материалами исследования коллагеновые материалы предоставленные Институтом регенеративной медицины Сеченовского университета.

Благодарности: Автор выражает благодарность научному руководителю В.В. Тучину за постановку задач, помощь при анализе результатов и полезные обсуждения, Д.К. Тучину, А.Н. Башкатову и Э.А.Генину за ценные рекомендации.

Структура и объём работы. Бакалаврская работа состоит из введения, 2 разделов, заключения и списка используемых источников, включающего 144 наименования. Работа изложена на 69 листах машинописного текста, содержит 30 рисунков и 6 таблиц.

Основное содержание работы. Во введении обоснована актуальность темы исследования, сформулированы цели и задачи работы, показана научная новизна и практическая значимость результатов.

Первый раздел состоит из девяти подразделов. Первый подраздел посвящён описанию строения молекул коллагена. Коллагеновые волокна состоят из вытянутых белковых молекул (фибрилл) коллагена - тропоколлагена, который образуется из трех полипептидных цепей одного размера, складывающихся в который спираль. Коллаген, является основным компонентом соединительных тканей, образуется из цепей и спиралей молекул фибрилл, связанных через основания Шиффа [2,3]. Диаметр коллагеновых волокон составляет 40-150 нм [4,5], волокна формируют пучки, состоящие из 20-30 фибрилл, диаметр такого пучка составляет 0.5-2 мкм. Волокна, образованные такими параллельными пучками фибрилл, могут достигать 30 мкм в диаметре. Пучки фибрилл, связанные между собой отдельными волокнами или пучками фибрилл, объединяются в коллагеновый пучок, средний диаметр которого составляет 100-200 мкм.

Второй подраздел посвящён областям применения коллагеновых материалов. Коллаген обладает высоко упорядоченной структурой, химической и термической стабильностью, может быть выделен в виде растворов или нерастворимых волокон, благодаря этим свойствам коллаген широко используется в фармацевтике и медицине. Например, коллагеновые пленки, пластыри и губки для покрытия ожогов, пролежней, коллагеновые гели для регулируемой подачи лекарственных средств, а также, в роли временной замены кожной и костной ткани.

Третий подраздел посвящён понятию иммуногенность [6], так как при использовании коллагеновых материалов необходимо знать почему возникает неблагоприятная иммунная реакция и какой из типов коллагена является самым подходящим для имплантации.

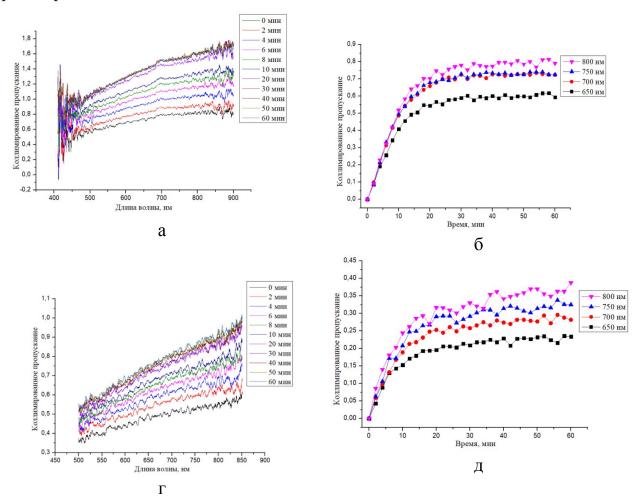
Четвертый подраздел посвящён источникам извлечения коллагена [7,8]. По своей природе они очень разнообразны и отличаются свойствами коллагена [9], но должны отвечать критериям соответствия: иммунологические, физические размеры скаффолда и доступность.

Пятый подраздел посвящён понятиям биодеградации и децеллюризации. Биодеградация биоматериалов на основе коллагена в тканевой инженерии потенциально может привести к восстановлению структуры и функциональности тканей [10]. Методы создания биоматериалов на основе коллагена могут привести с образованию ацеллюлярных коллагеновых матриксов. Децеллюризация - процедура обработки тканей, при которой разрушаются клеточные элементы, но ВКМ остается максимально сохранен, ибо он служит тканевым каркасом для соматических клеток и бывает трех видов: физические, химические и ферментативные.

Шестой подраздел посвящён методам сшивания коллагеновых материалов. Физические сшивки основаны на облучении ультрафиолетовыми длинами волн (УФ) или тепловыми источниками, чтобы индуцировать полимеризацию коллагенового каркаса, формирующие биоматериалы более подходящие для применений с нагрузкой. Химические сшивки проводятся с

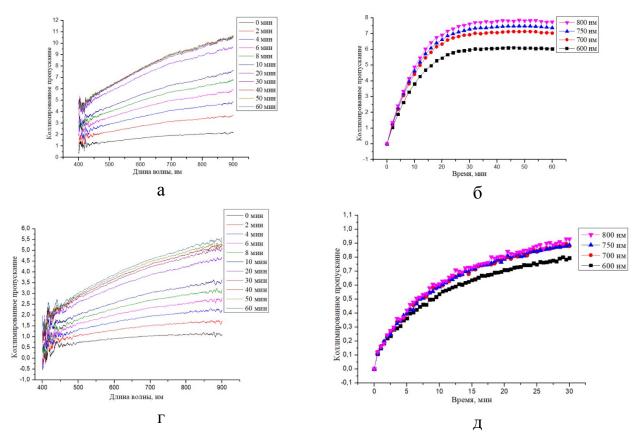
помощью различных классов органических соединений благодаря химическим связям, преимуществом данного метода является одноэтапность процесса подготовки биоматериала. Ферментативные сшивающие агенты используются для повышения прочности и ферментативной устойчивости биоматериалов.

Седьмой подраздел посвящён видам рассеяния в оптических фантомах. Они различаются по способу рассеивания света внутри материала. Фантомы делятся на два типа в зависимости от способа рассеивания света внутри материала. К ним относятся внутреннее рассеяние и рассеяние индуцированное наночастицами или микрочастицами [11,12]. В фантомах на основе наночастицили микрочастиц получение эквивалента коэффициента рассеяния контролируется размером, формой, концентрацией и типом наночастиц,


подраздел Восьмой посвящён теории оптического просветления иммерсионными агентами. Процесс взаимодействия иммерсионного агента с биологической тканью имеет сложный характер. С одной стороны, ОПА может вызвать осмотическую дегидратацию биоткани, уход межтканевой жидкости из межтканевого и внутриклеточного пространства, с другой стороны, агент диффундирует в биоткань, частично замещая внутритканевую жидкость и цитоплазму, взаимодействуя со структурными компонентами ткани [13]. Эти процессы влекут за собой согласование показателей преломления рассеивающих компонентов ткани (волокон, клеточных органелл) и их окружающей среды и изменение упаковки тканевых структур [13]. Таким образом, применение ОПА приводит к снижению коэффициента рассеяния биоткани и увеличению фактора анизотропии за счет лучшего согласования показателей преломления и упаковки компонентов ткани, отсюда следует увеличение глубины проникновения света в биоткань [13], она становится более прозрачной.

В девятом подразделе описывается принцип работы оптического когерентного томографа (ОКТ). Оптическая когерентная томография — метод получения изображения внутренней структуры биотканей с высоким разрешением (разрешение по глубине до 2.5 мкм и поперечное разрешение до 10 мкм) и относительно большой глубиной зондирования (до 2 мм в биологических

тканях). Метод основан на регистрации интерференционной составляющей оптического сигнала ближнего инфракрасного (ИК) спектрального диапазона, формируемого при смешении частично когерентного зондирующего излучения, рассеянного объектом, с опорным частично когерентным пучком [14].

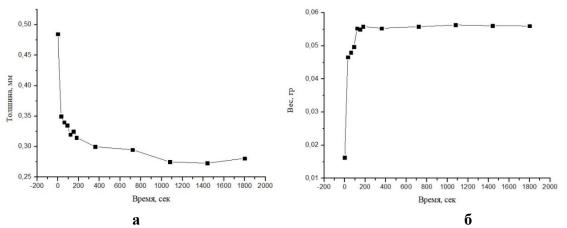

Второй раздел состоит из двух подразделов, которые рассказывает об описании методов и результатов исследования. Первый подраздел посвящён описанию исследования диффузии гиперосмотического иммерсионного агента в коллагеновых материалах *in vitro*. Для определения параметров кинетики изменения геометрических параметров коллагеновых материалов проникновении в их структуру оптических просветляющих агентов, определения коэффициентов диффузии ОПА в коллагеновые материалы, определения наилучшей концентрации ОПА для получения наибольшей проницаемости для каждого вида исследуемого коллагенового материала. Подготовленные сухие образцы размером около 1х1 см помещались в чашку Петри, заполненную физиологическим раствором, на 30 минут, чтобы образцы по своим свойствам приблизились к "живой" ткани. Следующий этап - закрепление образца на специальной пластине, помещение в кювету с подготовленным раствором глюкозы, запуск последовательной записи спектров коллимированного пропускания в диапазоне 400-900 нм, с помощью многоканального спектрометра USB4000-Vis-NIR (Ocean Optics, США), с интервалом съемки 2 минуты на протяжении 60 минут. Для каждой концентрации раствора глюкозы было протестировано от 3 до 5 образцов "ПЕР не сшитого" и "СПИЛАК". Далее полученные данные обрабатывались в математическом пакете Origin (OriginLab Corporation) для оценки изменения коллимированного пропускания образца *in* vitro, определения времени диффузии (т), коэффициентов диффузии (D) и проницаемости (Р). На рисунке 1 представлены характерные спектры коллимированного пропускания для образца «Пер не сшитый», опущенного в 20% и 32% водных растворов глюкозы, которые оказали самые высокие и самые низкие коэффициенты диффузии и проницаемости: $D = (0.283 \pm 0.123) \times 10^{-6} \text{ cm}^2/\text{c}$, $P = (71.4\pm7.465)x10^{-6}$ см/с, $\tau = 8.05\pm1.17$ мин. для 20% раствора и

 $D = (0.18\pm0.127)$ х 10^{-6} см 2 /с, $P = (61.25\pm10.8)$ х 10^{-6} см/с, $\tau = 7.6\pm0.8$ мин. для 32% раствора.

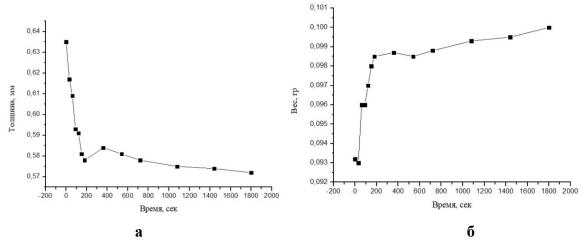
Рисунок 1 - Характерные спектры коллимированного пропускания и изменение коллимированного пропускания для образца «Пер не сшитый», опущенного в 20% (а,б) и 32% (в,г) водные растворы глюкозы.

На рисунке 1 представлены характерные спектры коллимированного пропускания для образца «СПИЛАК», опущенного в 50% и 40% водных растворов глюкозы, которые оказали самые высокие и самые низкие коэффициенты диффузии и проницаемости: $D = (1,58\pm0,406) \times 10^{-6} \text{ cm}^2/\text{c}$, $P = (254,5\pm17,03) \times 10^{-6} \text{ cm/c}$, $\tau = 8,8\pm1,3$ мин. для 50% раствора и $D = (0,82\pm0,116) \times 10^{-6} \text{ cm}^2/\text{c}$, $P = (108\pm22,642) \times 10^{-6} \text{ cm/c}$, $\tau = 11,8\pm2,2$ мин. для 40% раствора.

Рисунок 2 - Характерные спектры коллимированного пропускания и изменение коллимированного пропускания для образца «СПИЛАК», опущенного в 50% (а,б) и 40% (в,г) водные растворы глюкозы.


Было определено влияние физиологического раствора за то время, что образцы проводили в нем. В таблице 1 указаны средние значения коэффициентов диффузии и проницаемости физиологического раствора в образцы «СПИЛАК» и «ПЕР не сшитый», время диффузии ОПА в образцы.

Образец	D, см²/с	Р, см/с	τ, мин
"ПЕР не сшитый"	$(0,22\pm0,05)$ x 10^{-6}	$(55,55\pm33,8)$ x10 ⁻⁶	11,8±50,8
"СПИЛАК"	$(1,41\pm0,05)$ x 10^{-6}	$(176,6\pm27,4)$ x 10^{-6}	7,5±0,9


Таблица 1. Средние значения коэффициентов диффузии и проницаемости физиологического раствора в образцы «СПИЛАК» и «ПЕР не сшитый», время диффузии ОПА в образцы.

Проведены исследования изменения геометрических параметров биологических тканей при оптическом просветлении, с помощью цифрового двухточечного микрометра FUJISAN (Китай), с точностью измерения 0,001 мм

и электронных весов SCIENTECH (SA210, США) с точностью 1 мг. В нашем случае образцы помещаются в чашку Петри, заполненную физиологическим раствором. Измерения проводились четко каждые 30 сек в период интенсивного воздействия, который длился 3 мин, далее через каждые 5 минут. На рис. 3 и 4 представлены зависимости изменения толщины и всех образцов "ПЕР не сшитый" и "СПИЛАК" от времени воздействия на них физиологического раствора.

Рисунок 3. а. Зависимость изменения толщины образца "ПЕР не сшитый" от времени воздействия физ. раствора; **б.** Зависимость изменения веса образцов "ПЕР не сшитый" от времени воздействия физ. раствора.

Рисунок 4. а. Зависимость изменения толщины образца "СПИЛАК" от времени воздействия физ. раствора; **б.** Зависимость изменения веса образцов "СПИЛАК" от времени воздействия физ. раствора.

Вес, абсолютно всех образцов, независимо от вида увеличивался, по сравнению с первоначальным весом сухого образца после пребывания в физиологическом растворе "ПЕР не сшитый" примерно в 4,3 раза, "СПИЛАК" в

5,2 раз, после растворов глюкозы "ПЕР не сшитый" в 5,4 раз, "СПИЛАК" в 7.4 раз, средние значения веса образцов приведены в таблице 2. Это показывает, что данные коллагеновые материалы являются пористыми.

	Вес сухого, г	Вес после физ. р-ра, г	Вес после p-pa глюкозы, г
"ПЕР не сшитый"	0,014±0,001	0,06±0,005	0,075±0,003
"СПИЛАК"	0,016±0,001	0,083±0,007	0,119±0,009

Таблица 2. Средние значения веса образцов: до эксперимента, после влияния физиологического раствора, после воздействия раствором глюкозы.

Что касается изменения толщины при воздействии водными растворами глюкозы различных концентраций, то в таблице 3 представлены результаты измерений средних значений каждого образца при воздействии растворами. Видно, что после того как образцы помещались в водный раствор глюкозы, после пребывания в физиологическом, толщины всех образцов увеличивались в разной степени, но не достигая первоначальных значений. Увеличение толщины, т.е. набухание, связано с тем что менялся рН растворов, окружающих образцы, а это явление уже было зафиксировано и проверено на разных биологических тканях [107,142].

	Толщина сухого, мм	Толщина после физ.р-ра, мм	Толщина после р-ра глюкозы, мм
"ПЕР не сшитый"	0,449±0,143	0,282±0,061	0,386±0,079
"СПИЛАК"	0,78±0,137	0,575±0,158	0,728±0,009

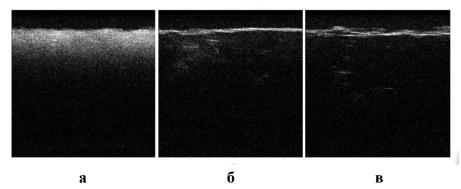
Таблица 3. Средние значения толщины образцов: до эксперимента, после влияния физиологического раствора, после воздействия раствором глюкозы.

Средние значения площади образцов для сравнения сухого образца и образцов, помещенных в различные оптические просветляющие агенты, представлены в таблице 4.

	"ПЕР не сшитый", S, мм ²	"СПИЛАК", S, мм ²
Сухой образец	45,7±2,4	45,5±2,6
После физ. ра-ра	45,6±2,4	42,8±2,5
После 10 % р-ра глюкозы	47,7±5,9	39,3±9,4
После 20 % р-ра глюкозы	45,3±1,3	44,9±6,2
После 32 % р-ра глюкозы	51,6±3,1	51,6±2,7
После 40 % р-ра глюкозы	47,1±5,3	44,8±8,8
После 50 % р-ра глюкозы	44,4±4,2	40,1±5,2

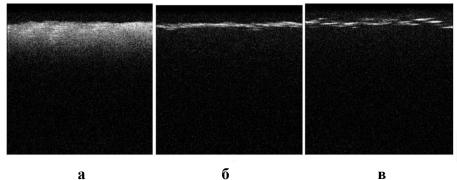
Таблица 4. Средние значения площади образцов, до, после влияния физиологического раствора и после ОПА.

Средняя площадь образца "ПЕР не сшитый" в сухом виде составляла $45,736\pm2,407$ мм2, после воздействия физиологическим раствором площадь увеличивалась в среднем на 8,3%. Средняя площадь образцов после воздействия физиологического раствора и раствора глюкозы по сравнению со средней площадью образцов в сухом виде увеличивалась в среднем на 4,29%.


Средняя площадь образца "СПИЛАК" в сухом виде составляла 45,508±2,611мм2, после воздействия физиологическим раствором площадь увеличивалась в среднем на 7,925%. Средняя площадь образцов после воздействия физиологического раствора и раствора глюкозы по сравнению со средней площадью образцов в сухом виде уменьшалась в среднем на 2,66%.

В конце первого подраздела делается вывод: различные концентрации водного раствора глюкозы по-разному влияют на оптические свойства коллагеновых материалов. Для каждого вида коллагеновых материалов были выделены концентрации водного раствора глюкозы, которые имели большую скорость диффузии и оказывали большее влияние при оптическом просветлении.

В ходе экспериментов были построены графики зависимостей веса, толщины и коллимированного пропускания образцов, во время иммерсии в них физиологического раствора и водных растворов глюкозы разных концентраций.


Второй подраздел посвящён ОКТ-мониторингу диффузии иммерсионных агентов в коллагеновые материалы, исследование проводилось с системы THORLABS Spectral Radar System OCP930SR 022 ОСТ. В данном подразделе описывается серия экспериментов по наблюдению просветляющего эффекта. В предыдущем разделе определены концентрации водных растворов глюкозы, которые являются более предпочтительными для оптического просветления каждого образца для наглядного изучения ОКТ-изображения снимались до эксперимента, когда образцы были в сухом виде, после воздействия физиологическим раствором, после воздействия раствором глюкозы.

На рисунке 5 представлены типичные ОКТ изображения для образца "СПИЛАК" до эксперимента (а), после воздействия физиологического раствора (б) и после воздействия 32% водным раствором глюкозы (в).

Рисунок 5. Типичные ОКТ изображение образца "СПИЛАК": **а.** до эксперимента; **б.** после воздействия физиологического раствора, **в.** после воздействия 32% водного раствора глюкозы.

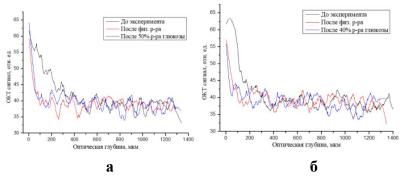
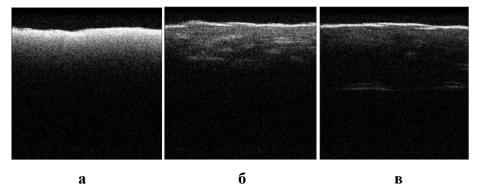
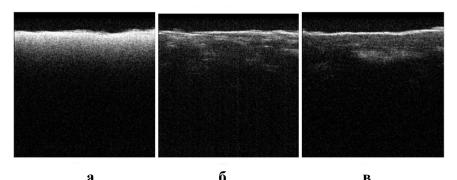

На рисунке 6 представлены типичные ОКТ изображения для образца "СПИЛАК" до эксперимента (а), после воздействия физиологического раствора (б) и после воздействия 40% водным раствором глюкозы (в).

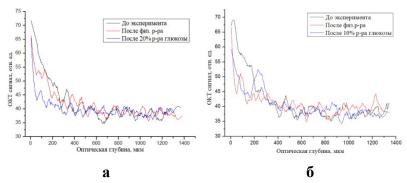
Рисунок 6. Типичные ОКТ изображение образца "СПИЛАК": **а.** до


эксперимента; **б.** после воздействия физиологического раствора, **в.** после воздействия 40% водного раствора глюкозы.

По наклону усредненных А-сканов, представленных на рисунке 7, видно, что 32% водный раствор глюкозы оказал большее влияние на образец, чем 40% водный раствор, что также видно на снятых ОКТ изображениях.


Рисунок 7. Зависимость ОКТ сигнала от глубины для образца "СПИЛАК" **а.** воздействие 32% раствора глюкозы, **б.** воздействие 40% раствора глюкозы.

На рисунке 8 представлены ОКТ изображения для образца "ПЕР не сшитый" до эксперимента (а), после воздействия физиологического раствора (б) и после воздействия 20% водным раствором глюкозы.


Рисунок 8. Типичные ОКТ изображение образца "ПЕР не сшитый": **а.** до эксперимента; **б.** после воздействия физиологического раствора, **в.** после воздействия 20% водного раствора глюкозы.

На рисунке 9 представлены ОКТ изображения для образца "ПЕР не сшитый" до эксперимента (а), после воздействия физиологического раствора (б) и после воздействия 10% водным раствором глюкозы.

Рисунок 9. Типичные ОКТ изображение образца "ПЕР не сшитый": **а.** до эксперимента; **б.** после воздействия физиологического раствора, **в.** после воздействия 10% водного раствора глюкозы.

После анализа А-сканов, изображенных на рисунке 10, мы убедились, что 20% водный раствор глюкозы лучше просветляет образец "СПИЛАК", чем 10% водный раствор.

Рисунок 10. Зависимость ОКТ сигнала от глубины для образца "ПЕР не сшитый" **а.** воздействие 20% раствора глюкозы, **б.** воздействие 10% раствора глюкозы.

Также были рассчитаны показатели преломления для каждого из образцов, для образцов "ПЕР не сшитый" показатель преломления равен n=1,45, а для образцов "СПИЛАК" n=1.46, полученные показатели преломления близки к показателю преломления коллагеновых волокон n=1.47[14].

Второй подраздел заканчивается выводом. Таким образом, в ходе экспериментов, было продемонстрировано влияние ОПА на образцы коллагеновых материалов, в частности, по спаду ОКТ сигнала прекрасно видно, как водные растворы разных концентраций по разному влияют на образцы.

По представленным результатам определены показатели преломления для каждого из исследуемых образцов, полученные значения оказались схожи с уже

известным показателем преломления коллагеновых волокон.

В заключении подводятся итоги дипломной работы, изгаляются его основные результаты. В ходе бакалаврской работы были проведены серии экспериментов по оптическому просветлению коллагеновых материалов *in vitro* с использованием водных растворов глюкозы разной концентрации в роли оптического просветляющего агента.

Показано, как применение физиологического раствора и 10%, 20%, 30%, 40%, 50% водных растворов глюкозы влияет на оптические свойства коллагеновых материалов.

Измерены зависимости толщины, веса и площади, объема, коллагеновых материалов in vivo во время воздействия на них физиологического раствора и водных растворов глюкозы, имеющих разные концентрации. Определены концентрации, являющиеся наиболее предпочтительными при оптическом просветлении для каждого образца. Была зафиксирована зависимость концентрации водного раствора глюкозы и времени диффузии.

С помощью исследований на оптическом когерентном томографе было подтверждено, что каждый из используемых просветляющих агентов оказывал влияние на оптические свойства коллагеновых материалов. Вычислены коэффициенты преломления для используемых коллагеновых материалов.

Список использованных источников

- 1. Еричев, В.П. Оптическая когерентная томография сетчатки и зрительного нерва в диагностике болезни Альцгеймера / В.П. Еричев, Л.А. Панюшкина, А.В. Фомин. // Глаукома. Журнал НИИ ГБ РАМН.— 2013.— С. 1:5-10.
- 2. Березов, Т.Т. Биологическая химия /Коровкин Б.Ф. // М.: Медицина. 1998. 704 с.
- 3. Страйер, Л., Биохимия. В 3-х т. Т.3, Москва: «Мир», 1985.- 400 с.
- 4. Кожа (строение, функция, общая патология и терапия) / А.М. Чернуха, Е.П. Фролова, М.: Медицина, 1982.

- 5. Linares, H.A. et al. The histiotypic organization of the hypertrophic scar in humans // Journal of Investigative Dermatology. 1972. V.59, №4. P.323–331.
- 6. Crumpton, M. The molecular basis of antigenicity and immunogenicity. In Protein Antigens // Academic Press: New York. 1974.— p. 1–78.
- 7. Wood, A. et al. Biochemical properties of alligator (Alligator mississippiensis) bone collagen // Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology. − 2008. − T. 151. − №. 3. − P. 246-249.
- 8. Exposito, J.Y. et al. Short chain collagens in sponges are encoded by a family of closely related genes. // Journal of Biological Chemistry. − 1991. − T. 266. − №. 32. − P. 21923-21928.
- 9. Yang, C. et al. The application of recombinant human collagen in tissue engineering // BioDrugs. 2004. T. 18. P. 103–119.
- 10. Yannas, I. V. et al. Wound tissue can utilize a polymeric template to synthesize a functional extension of skin // Science. –1982. T. 215. P. 174–176.
- Delfino, I. Optical Characterization of Homogeneous and Heterogeneous Intralipid-Based Samples // M. Lepore; R. Esposito. / Applied Sciences. – 2020. – T. 10. – P. 6234.
- 12. Ruiz, C. C. et al. Thermodynamic and Structural Studies of Triton X-100 Micelles in Ethylene Glycol–Water Mixed Solvents // Langmuir. 2001. T. 17. P. 6831–6840.
- 13. Тучин В.В. Лазеры и волоконная оптика в биомедицинских исследованиях // Москва: ФИЗМАТЛИТ. 2010. C 488.
- 14. Тучин В.В. Оптика биологических тканей: методы рассеяния света в медицинской диагностике // М.: Физматлит. 2011. 812 с.