МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Балашовский институт (филиал)

Кафедра математики, информатики, физики

ПРИМЕНЕНИЕ СРЕДСТВ НАГЛЯДНОСТИ В ИЗУЧЕНИИ АЛГЕБРЫ В КУРСЕ ОСНОВНОЙ ШКОЛЫ

АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ

студента 5 курса 152 группы направления подготовки 44.03.05 «Педагогическое образование (с двумя профилями подготовки)», профили «Математика и физика», факультета математики и естественных наук Велиева Сердара Пирназаровича

Научный руководитель	
кандидат педагогических наук,	
доцент	Е.В. Сухорукова
(подпись, дата)	
Зав. кафедрой математики, информатики, физики	
кандидат педагогических наук,	
доцент	Е. В. Сухорукова
(подпись, дата)	

ВВЕДЕНИЕ

Актуальность исследования. Современное образование шагнуло далеко вперед В плане использования средств наглядности общеобразовательном учреждении. Хотя математика как таковая очень гибка, всегда целесообразна ДЛЯ НО не применения электронных образовательных ресурсов, в нее все активнее внедряются такие ресурсы. Они могут представлять собой и презентации, и ролики, и многие другие виды ЭОР. Однако здесь возникает проблема: не каждый подобный ресурс обучении курса алгебры. Отсюда возникает основная пригоден в проблематика работы: пригодность электронных образовательных ресурсов и особенности их внедрения в курс алгебры.

Проблемой использования электронных образовательных ресурсов занимались многие педагоги: О.И. Бахтина, В.П. Беспалько, Н. В. Борисова, Б. С. Гершунский, И. В. Гребенев, В. И. Загвязинский, И. Г. Захарова, Ю. Г. Молоков, А. В. Молокова, Е. С. Полат, Г. К. Селевко и другие.

Цель исследования — исследовать применение средств наглядности в изучение алгебры в курсе основной школы.

В соответствии с целью были сформулированы задачи исследования:

- 1. Сформировать понятие электронных образовательных ресурсов и классифицировать их по различным признакам.
- 2. Показать требования к электронным образовательным ресурсам.
- 3. Отразить место средств наглядности в системе подготовки к общему государственному экзамену по математике для блока практикоориентированных задач.

Объект исследования – методика обучения математики.

Предмет исследования — особенности применения электронных образовательных ресурсов при изучении алгебры на примере темы «Квадратичная функция».

Практическая значимость разработана в связи с необходимостью расширения знания по данной теме, а также может быть полезна для

разработки дидактических материалов для подготовки к основному государственному экзамену.

Работа состоит из введения, двух глав, заключения, списка использованных источников и двух приложений.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

В первой главе «Основные характеристики электронных образовательных ресурсов» раскрыто понятие электронных образовательных ресурсов, приведена их классификация, а также требования к этим ресурсам.

В классическом понимании электронный ресурс определяется как любая информация, для воспроизведения которой нужны электронные устройства. В таком случае отсутствуют указания как на тип воспроизводимой информации, так и на её структуру.

Цифровые образовательные ресурсы — фотографии, видеофрагменты, модели объектов и явлений, звукозаписи, текстовые документы и иные материалы, которые могут применяться для организации и проведения учебного процесса [30].

К главным инновационным качествам ЭОР относят:

- 1. Обеспечение всех компонентов образовательного процесса: получение информации, практические занятия и аттестация.
- 2. Интерактивность, обеспечивающая большое расширение возможностей самостоятельной учебной работы за счет применения активнодеятельностных форм обучения.
 - 3. Возможность более полноценного обучения вне аудитории [8].

Эффективность использования электронных образовательных ресурсов в учебном процессе обеспечивается наличием следующих возможностей: мультимедийность, моделирование, интерактивность.

Существует ряд преимуществ использования ЭОР перед медиатекой (библиотекой компакт-дисков):

- при использовании ЭОР отсутствует необходимость обеспечения медиатеки определенным количеством учебных СD-дисков с ограниченным числом экземпляров. Все основные электронные учебные материалы, сконцентрированные в централизованных фондах, можно будет привлекать по мере необходимости.
- электронное издание на CD, как и любое тиражное издание, не имеет возможности постоянного обновления информации. Централизация образовательных ресурсов позволяет своевременно их дополнять и обновлять.
- при использовании ЭОР открываются очень важные возможности непосредственной связи с пользователями электронных учебных материалов.
 Обратная связь с пользователями это возможность оперативной обработки издателем запросов, замечаний и предложений учителей и учеников.

Поскольку электронные образовательные ресурсы многочисленны и имеют множественную характеристику, то их можно классифицировать по нескольким основаниям:

- по цели создания;
- по природе основной информации;
- по наличию печатного эквивалента;
- по технологии распространения;
- по функции в учебном процессе;
- по характеру взаимодействия пользователя и ЭОР.

По цели создания электронные образовательные ресурсы подразделяются на:

- педагогические информационные ресурсы, разработанные специально для целей учебного процесса;
- культурные информационные ресурсы, существующие независимо от учебного процесса.

По природе основной информации электронные образовательные ресурсы подразделяются на:

- текстовые ресурсы, содержащие преимущественно текстовую информацию, представленную в форме, допускающей посимвольную обработку;
- звуковые ресурсы, содержащие цифровое представление
 звуковой информации в форме, допускающей ее прослушивание;
- программные продукты как самостоятельные, отчуждаемые произведения, представляющие собой программы на языке программирования или в виде исполняемого кода;
- мультимедийные ресурсы, в которых информация различной природы присутствует равноправно и взаимосвязано для решения определенных разработчиком задач;
- изобразительные ресурсы, содержащие преимущественно электронные образцы объектов, рассматриваемых как целостные графические сущности, представленные в форме, допускающей просмотр и печатное воспроизведение, но не допускающей посимвольную обработку.

По наличию печатного эквивалента электронные образовательные ресурсы бывают следующих типов:

- ресурсы, представляющие собой электронные аналоги печатного ресурса;
- самостоятельные ресурсы, воспроизведение которых на печатных носителях ведет к потере их свойств.

По технологии распространения электронные образовательные ресурсы подразделяются на:

- локальные, предназначенные для локального использования,
 выпускающиеся в виде определенного количества идентичных экземпляров
 (тиража) на переносимых машиночитаемых носителях;
- сетевые, доступные потенциально неограниченному кругу пользователей через телекоммуникационные сети;
- комбинированного распространения, которые могут использоваться как в качестве локальных, так и в качестве сетевых.

По характеру взаимодействия пользователя с электронным образовательным ресурсом последние могут быть:

- детерминированными, параметры, содержание и способ взаимодействия с которыми определены разработчиком и не могут быть изменяемы пользователем;
- интерактивными, параметры, содержание и способ взаимодействия с которыми прямо или косвенно устанавливаются пользователем в соответствии с его интересами, целью, уровнем подготовки и т. п. на основе информации и с помощью алгоритмов, определенных разработчиком.

По функции в учебном процессе содержанием электронного образовательного ресурса может являться:

- предъявление учебной информации, в том числе демонстрация объектов, явлений и процессов;
 - информационно-справочное обеспечение всех видов занятий;
 - моделирование объектов, явлений и процессов;
- расширение самостоятельной учебной работы за счет использования активно-деятельностных форм обучения;
 - тренаж навыков и умений различного характера решение задач;
 - контроль и оценка знаний учащихся [31].

признаку ЭОР делятся функциональному АТКП на типов: программно-методические, учебно-методические, обучающие, вспомогательные, а также компьютерные системы и базы данных текстов [8]. Программно-методические ЭОР включают в себя учебные планы и программы, учебно-методические – методические указания, руководства, которые материалы методике преподавания учебной содержат ПО дисциплины, изучения курса, обучающие – учебники, учебные пособия, тексты лекций, конспекты лекций, вспомогательные – компьютерные практикумы, сборники задач и упражнений, книги для чтения. Последняя группа классификации включает ту группу ЭОР, которая дана как признак.

По наличию печатного эквивалента ЭОР выделяют два типа: электронный аналог печатного учебного издания и самостоятельное электронное средство учебного назначения [3]. Первая группа ЭОР воспроизводит соответствующее печатное издание, а вторая — электронное издание без печатных аналогов.

По формату ЭОР делятся на пять типов: текстовые, графические, звуковые, программные и мультимедийные [30].

По технологии распространения ЭОР делятся на три типа: локальные, сетевые и комбинированные [8].

По характеру взаимодействия с пользователем электронные образовательные ресурсы делятся на два типа: детерминированные и недетерминированные [30].

Электронные образовательные ресурсы должны соответствовать системе дидактических, методических, психологических, эргономических и эстетических требований.

Нужно показать главные традиционные дидактические требования к ЭОР:

- 1) научность обучения с использованием ЭОР говорит о достаточной глубине, корректности и научной достоверности изложения структуры учебного материала, предоставляемый ЭОР при учете последних научных достижений;
- 2) доступность обучения, осуществляемое через ЭОР, означает необходимость определения степени теоретической сложности и глубины изучения учебного материала по возрастным и индивидуальным особенностям учеников;
- 3) обеспечение проблемности обучения. В случае столкновения учеником с учебной проблемной ситуацией, требующей решения, мыслительная активность обучающегося увеличивается. Уровень выполнения данного дидактического требования с помощью ЭОР может

быть значительно выше, чем в случае использования обычных учебников и пособий;

- 4) обеспечение наглядности обучения с применением ЭОР говорит о том, что необходимо учитывать чувственное восприятие изучаемых объектов, их макетов или моделей и их личное наблюдение учениками. Восприятие нового учебного материала идет через активизацию не только зрения, но и слуха, что позволяет определить конкретный эмоциональный фон, который повышает эффективность усвоения преподносимого материала;
- 5) обеспечение сознательности, самостоятельности обучения ЭОР обеспечение применением предполагает ИХ средствами ДЛЯ самостоятельных действий по извлечению учебной информации при правильном понимании конкретных целей и задач учебной деятельности. Активизация такой деятельности может обеспечить самостоятельное управление ситуацией на экране, выбора режима учебной деятельности, вариативности действий при принятии самостоятельного решения; создания учебной позитивных стимулов, побуждающих К деятельности И повышающих мотивацию обучения;
- 6) систематичность и последовательность обучения при использовании ЭОР говорит об обеспечении последовательного усвоения обучающимися конкретной системы знаний в изучаемой предметной области. Необходимо формирование знаний, умений и навыков в определенной системе, строго логическом порядке и с поиском применения в жизни;
- 7) прочность усвоения знаний при использовании ЭОР. Это достигается через самоконтроль и самокоррекцию, обеспечение контроля на основе обратной связи, с анализом ошибок по результатам обучения и оценкой итогов учебной деятельности, тестирование, констатирующее продвижение в учении;
- 8) единство образовательных и развивающих функций обучения в ЭОР [3, 31].

Во второй главе «Применение электронных образовательных ресурсов при подготовке к ОГЭ по математике» раскрыты основные аспекты использования ЭОР в системе подготовки к ОГЭ, в частности для решения практико-ориентированных задач, рассмотрены способы применения онлайнсервисов для подготовки, а также приведен пример занятия на тему «Практико-ориентированные задачи. ОСАГО».

При подготовке обучающихся к основному государственному экзамены перед учителем могут возникнуть следующие проблемы:

- отсутствие разработанного тематического планирования,
 ориентированного на отработку учебных задач, необходимых для сдачи итоговой аттестации;
- отсутствие четких критериев оценивания учащихся, совпадающих с требованиями оценивания результатов итоговой аттестации;
- недостаточность контрольно-измерительных материалов по отдельным учебным задачам в рамках учебных дисциплин.

Решить данные проблемы в достаточной степени помогут электронные образовательные ресурсы (ЭОР).

ЭОР — это образовательный ресурс, представленный в электронноцифровой форме и включающий в себя структуру, предметное содержание и метаданные о них. Электронный образовательный ресурс может включать в себя данные, информацию, программное обеспечение, необходимое для его использования в процессе обучения [14].

Использование учителем в своей работе электронных образовательных ресурсов имеет множество достоинств:

- значительно повышается качество учебного процесса;
- увеличивается степень усваивания знаний школьниками,
 повышает их интерес к учебе;
- освобождение учителя от рутинной работы, оставляя время на работу с одаренными или отстающими детьми;

- интерактивные средства обучения предоставляют уникальную возможность школьникам для самостоятельной творческой и исследовательской деятельности;
- обучающиеся получают возможность самостоятельно получать знания;
- информационные технологии не только облегчают доступ к информации и открывают возможности вариативности учебной деятельности, ее индивидуализации и дифференциации, но и позволяют по новому организовать подготовку старшеклассников к сдаче ОГЭ;
 - ЭОР может использоваться на всех этапах обучения.

Основной целью занятий по математике с обучающимися 9 классов является не только закрепление, обобщение, углубление знаний, но и обучение применять их на практике, подготовка учеников к новой форме сдачи выпускного экзамена.

Главной задачей учителя при проведении таких занятий становится обеспечение качественной подготовки обучающихся к итоговой аттестации.

В ходе развития современного образования на первое место выходит самостоятельная работа, грамотно организованная учителем. Правильно организовать такую работу учителю помогают современные ЭОР.

Интернет-ресурсы для подготовки к итоговой аттестации можно условно разделить на четыре группы:

- 1. Нормативная база (федеральные порталы).
- 2. On-line тестирование, диагностические и тренировочные работы.
- 3. Олимпиады и конкурсы.
- 4. Общественные средства массовой информации с открытым доступом [5].

Онлайн-тестирование, а также диагностические и тренировочные работы представлены на множествах электронных образовательных ресурсах. К ним относятся: Решу ЕГЭ, сайт Александра Александровича Ларина, система СтатГрад, открытый банк заданий ФИПИ и другие.

Практико-ориентированные задачи в ОГЭ представляют собой блок из пяти связанных друг с другом задач. Всего представлено 11 видов задач. Это задачи про дачный участок, задачи про зонт, задачи о земледелии в горных районах, задачи о мобильном интернете и тарифе, задачи о теплице, задачи про шины, задачи про форматы листов бумаги, задачи про план квартиры, задачи про печь, задачи про ОСАГО а также задачи про карту деревень [23].

Для подготовки к экзаменам на помощь приходят различные онлайнсервисы с широким спектром различных типовых заданий и упражнений. В рамках данного исследования были созданы различные дидактические средства в следующих сервисах: Удоба, learningapps.org и CORE.

ЭОР могут стать отличным подспорьем при подготовке к основному государственному экзамену. К примеру, презентации можно использовать для целого курса по подготовке к экзамену.

В рамках подготовки к экзамену можно воспользоваться программой элективного курса. Пример такого курса приведён в данной работе.

ЗАКЛЮЧЕНИЕ

Применение электронных образовательных ресурсов должно быть не вместо объяснений учителя, а вместе с ними, поскольку визуальное усвоение информации является наиболее оптимальным, но объяснения учителя решают вопросы, которые возникают учеников при таком усвоении.

Цель исследования, а именно исследовать применение средств наглядности в изучение алгебры в курсе основной школы была выполнена благодаря следующему:

Было сформировано понятие электронных образовательных ресурсов и проведена их классификация по различным признакам. ЭОР — совокупность программных средств, информационных, технических, нормативных и методических материалов, полнотекстовых электронных изданий. По трудности исполнения ЭОР делятся на простые, гипертекстовые, видео- или

звуковые и мультимедиа. Также имеет место быть дополнительным классификациям, которые так или иначе пересекаются с основной.

Показаны требования к электронным образовательным ресурсам. Комплексное соблюдение дидактических, методических, психологических, эргономических и эстетических требований в случае разработки ЭОР влечет за собой их успешное создание и реализацию в обучении.

Отражено место средств наглядности в системе подготовки к общему государственному экзамену по математике для блока практикоориентированных задач.

Объект и предмет исследования были исследованы полностью.

В результате исследования было расширено представление об электронных образовательных ресурсах, рассмотрены способы их использования для подготовки к ОГЭ.

Материалы данной работы можно использовать для проведения занятий по подготовке к ОГЭ.


СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Блинова, Е. И. Информационно-коммуникационные технологии в работе учителя : науч.-метод. пособие [Текст] / Е. И. Блинова, Р. Я. Симонян ; под ред. Р. Я. Симонян. Челябинск Верхний Уфалей: СИМАРС, 2007. 58 с.
- 2. Видеоролик на тему: «Все типы заданий №1-5 на ОГЭ по математике 2021» [Электронный ресурс]. URL: https://youtu.be/B54Z-Yh2y3k (дата обращения: 18.04.2021).
- 3. Витухновская, А.А. Электронные образовательные ресурсы в информационной образовательной среде школы [Текст]: монография / А.А. Витухновская, Т.С. Марченко. Петрозаводск: Издательство ПетрГУ, 2016. 122 с.
- 4. Вебинар на тему «Блок заданий с прикладным содержанием (задания 1-5) [Электронный ресурс]. URL: https://youtu.be/FErO4ACnSfE (дата обращения: 9.05.2021).
- 5. Вяткина, И.С. Цифровые образовательные ресурсы в преподавании математики // Актуальные проблемы обучения математике и информатике в высшей и средней школе: материалы Всеросс. науч.-практической конф. Новосибирск: ООО «Немо-Пресс», 2011. №3. С. 14-17
- 6. Гусак, Е.Н. Методы и приемы использования информационных технологий на уроках естественно-математического цикла. Материалы XVII Международной конференции «Применение новых технологий в образовании» [Текст] / Е.Н. Гусак. М.: Тровант, 2016. 134 с.
- 7. ЗАО «Новый диск». Графики функций $y = x^2$ и $y = -x^2$: анимационный ролик [Электронный ресурс] / ЗАО «Новый диск». URL: http://school-collection.edu.ru/catalog/res/30735bb9-09aa-4118-a652-05bdc7f9f21f/? (дата обращения: 19.04.2021).

- 8. Зенкина, С.В. Электронные образовательные ресурсы в составе информационно-образовательной среды [Текст]: учеб. пособие / С.В. Зенкина, Т.Н. Суворова, М.В. Николаев. М.: Радуга-ПРЕСС, 2015. 99 с.
- 9. Ильин, В.А. Электронные образовательные ресурсы. Виды, структуры, технологии [Текст] / В.А. Ильин // Программные продукты, системы и алгоритмы. 2014. N 2.
- Исупова Н. И. Методические особенности применения электронных образовательных ресурсов. Сборник научных трудов Sworld [Текст] / Н.И. Исупов // Т. 23. 2012. № 4. С. 92–95.
- 11. Ишмакова, И.Е. Тест «7 класс. Формулы сокращенного умножения, разложение многочленов на множители» [Электронный ресурс]. URL: https://metaschool.ru/pub/test/index.php?testId=161 (дата обращения: 16.12.2020).
- 12. Каталог заданий для ОГЭ-2020 по математике на платформе «Яндекс. Репетитор» [Электронный ресурс]. URL: https://yandex.ru/tutor/subject/?subject_id=16 (дата обращения: 19.04.2021).
- 13. Кочагина, М.Н. Использование электронных образовательных ресурсов в работе учителя математики [Текст]: учеб.-метод. пособие / М.Н. Кочагина. М.: МГПУ, 2013. 127 с.
- 14. Кузнецова М.В. Использование ЭОР в процессе обучения в основной школе [Текст] / М.В. Кузнецова. М.: Академия АйТи, 2011. 207 с.
- 15. ОГЭ 2021, математика: задания, ответы, решения. Обучающая система «Решу ЕГЭ» [Электронный ресурс] . URL: https://oge.sdamgia.ru/ (дата обращения: 6.05.2021)
- 16. Открытый банк заданий ОГЭ по математике [Электронный ресурс]. URL: http://mathege.ru (дата обращения: 19.05.2021).
- 17. Полат Е.С. Новые педагогические и информационные технологии в системе образования [Текст] / Е.С. Полат М.: Академия, 2008. 186 с.

- 18. Платформа для онлайн обучения CORE [Электронный ресурс]. URL: https://coreapp.ai/ (дата обращения: 15.05.2021).
- 19. Презентация на тему «Практико-ориентированные задания» [Электронный ресурс]. URL: https://slide-share.ru/ogeh-2021praktiko-orientirovannie-zadaniyaotkritij-bank-zadanij-fipi-589746 (дата обращения: 6.04.2021).
- 20. Презентация на тему «Приёмы решения практикоориентированных задач нового типа ОГЭ» [Электронный ресурс]. — URL: https://dege.ru/gia-po-matematike/59097-priemy-resheniya-praktikoorientirovannyh-zadach-novogo-tipa-oge.html (дата обращения: 5.04.2021).
- 21. Презентация на тему «Решение заданий ОГЭ. Задачи 1-5» [Электронный ресурс]. URL: http://phpV5zEhA_zadaniya-s-1--5-shiny-kotly-osago (дата обращения: 20.05.2021).
- 22. Презентация на тему «Решение неравенств и систем неравенств с одной переменной» [Электронный ресурс]. URL: https://pptcloud.ru/matematika/reshenie-neravenstv-i-sistem-neravenstv-s-odnoy-peremennoy (дата обращения: 15.12.2020).
- 23. Роберт, И.В. Информационные и коммуникационные технологии в образовании [Текст]: учебное пособие / И.В. Роберт М.: Дрофа, 2008. 312 с.
- 24. Сайт Александра Александровича Ларина [Электронный ресурс]. URL: http://alexlarin.net/ (дата обращения: 19.05.2021).
- Сервис бесплатного 25. конструктора И хостинг открытых интерактивных образовательных Удоба электронных ресурсов https://udoba.org/user/4797/library [Электронный ресурс]. – URL: (дата обращения: 14.05.2021).
- 26. Сервис для создания мультимедийных интерактивных упражнений learningapps [Электронный ресурс]. URL: https://learningapps.org/ (дата обращения: 13.05.2021).

- 27. Система для подготовки к ЕГЭ и ОГЭ СтатГрад [Электронный ресурс]. URL: https://www.statgrad.org (дата обращения: 20.05.2021).
- 28. Суворова Т. Н. Дидактические функции, возможности и свойства электронных образовательных ресурсов [Текст] / / Т.Н. Суворова // Стандарты и мониторинг в образовании. 2014. № 2. С. 27—35
- 29. Суворова Т. Н. Использование дидактических возможностей электронных ресурсов для повышения качества образования [Текст] / / Т.Н. Суворова // Информатика и образование. 2014. № 6. С. 43—48.
- 30. Суворова, Т.Н. Подготовка педагогов к проектированию и применению электронных образовательных ресурсов [Текст] / Т.Н. Суворова. Киров: ВятГУ, 2018. 117 с.
- 31. Трайнев, В.А. Электронно-образовательные ресурсы в развитии информационного общества (обобщение и практика) [Текст]: монография / В.А. Трайнев. М.: Дашков и К°, 2015. 255 с.
- 32. Учи.ру интерактивная образовательная онлайн-платформа [Электронный ресурс]. URL: https://uchi.ru/ (дата обращения: 17.12.2020).
- 33. ФГБНУ «ФИПИ» [Электронный ресурс] . URL: https://fipi.ru/ (дата обращения: 2.05.2021).

