МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Кафедра математического анализа

Задачи Бомбиери

АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ

студентки <u>4</u> курса <u>4</u>	<u>21 </u>	
направления 02.03.01 – Математика и компьютерные науки		
код и наименование направления		
профиль подготовки: Математические основы компьютерных наук		
механико-математического факультета		
наименование факультета, института, колледжа		
БАРАКАЕВОЙ САБИНЫ ЭДИКОВНЫ		
фамилия, имя, отчество		
Научный руководитель		
доцент, к.ф м.н.		А. М. Захаров
должность, уч. степень, уч. звание	подпись, дата	инициалы, фамилия
Заведующий кафедрой		
<u>и.о.зав.кафедрой, доцент, к.фм.н.</u>		Е. В. Разумовская
должность, уч. степень, уч. звание	подпись, дата	инициалы, фамилия

Саратов 2022

Введение. Данная дипломная работа посвящена задачи Бомбиери. Пусть S обозначает класс функций

$$f(z) = z + a_2 z^2 + a_3 z^3 + \dots + a_n z^n + \dots$$

аналитических и однолистных в единичном круге $\mathbb{D}=\{z:|z|<1\}$. Бомбиери сформулировал гипотезу о равенстве

$$\sigma_{mn} := \liminf_{a_m \to m} \frac{n - Re(a_n)}{m - Re(a_m)} \quad \mathbf{M}$$

$$B_{mn} := \min_{\theta} \frac{n sin(\theta) - sin(n\theta)}{m sin(\theta) - sin(m\theta)}$$

 $m, n \geq 2$. Полная гипотеза Бомбиери была опровергнута. В 2001 Грайнер и Ротт доказали для m=3 и m=2, что числа различны. Прохоров и Васильев (2005) использовали метод оптимального управления для получения численного значения $\sigma_{42}=0.0500...$ Точное значение $B_{42}=1/10=0.1$. Целью дипломной работы является собрать воедино все результаты известные на сегодняшнее время о гипотезе Бомбиери. Дипломная работа опирается на результаты: Прохорова, Васильева, Гордиенко, Арабузовой и др.

Основная часть работы. Одним из главных объектов исследований в геометрической теории функций комплексного переменного служит класс S, состоящий из всех голоморфных и однолистных в единичном круге $\mathbb{D}=z:|z|<1$ функций f, нормированных разложением

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n.$$

Подкласс $S(M)\subset S, M>1$ ограниченных функций $f\in S$, удовлетворяющих неравенству |f(z)|< M в $\mathbb D$. Традиционно функция Кебе

$$K(z) = \frac{z}{(1-z)^2} = \sum_{n=1}^{\infty} nz^n \in S$$

оказывается экстремальной во многих задачах на классе S. Числа Бомбиери вычисляются как

$$\sigma_{mn} = \liminf_{S \ni f \to K} \frac{n - Rea_n}{m - Rea_m}$$

в частности $\sigma_{mn} = 0$.

Гипотеза Бомбиери во всем классе S была опровергнута для n=2, m=3 и было показано, что

$$\sigma_{32} = \frac{e-1}{4e} < \frac{1}{4} = B_{32}$$

В продолжение этого вклада в работе было выявлено, что

$$\sigma_{42} = 0.050057... < B_{42} = 0.1,$$

$$\sigma_{24} = 0.969556... < B_{24} = 1,$$

$$\sigma_{34} = 0.791557... < B_{34} = 0.828427....$$

Поиск чисел Бомбиери $\sigma_{mn} > 0$ сводится к оценкам линейных функционалов на классе S

 $\sigma_{mn} = \sup\{\lambda \in \mathbb{R} : Re(a_n - \lambda a_m) \text{ локальный максимум на S с помощью } K(z)\}.$

Обозначим через S(M), M > 1 подкласс S ограниченных отображений |f(z)| < M в $\mathbb{D}, S(\infty) = S$. Аналогом функции Кебе K в классе S, является функция Пика

$$P_M(z) = MK^{-1}(K(z)N) = z + \sum_{n=2}^{\infty} p_n(M)z^n, \quad N = \frac{1}{M},$$

которая является экстремальной в оценках функционалов в S(M). Сформулируем результат.

Теорема 1 Для $1 < M \le \infty$, имеем $\sigma_{23}(M) = -4N, N = 1/M$.

Теорема 1 будет доказана позже. Знаменитое дифференциальное уравнение Левнера [9]

$$\frac{d\omega}{dt} = -\omega \frac{e^{iu} + \omega}{e^{iu} - \omega}, \quad \omega|_{t=0} = z, \quad |z| < 1, \quad t \ge 0,$$

с кусочно непрерывной по t управляющей функцией u=u(t), представляет собой компактный подкласс класса S. Сделаем замену переменных $t\to 1-e^{-t}$ и перепишем уравнение Левнера следующим образом

$$\frac{d\omega}{dt} = \frac{-\omega}{1 - t} \frac{e^{iu} + \omega}{e^{iu} - \omega}, \quad \omega|_{t=0} = z, \quad |z| < 1, \quad 0 \le t \le 1.$$
 (1)

Шеффер и Спенсер [10] использовали уравнение Левнера для класса S(M). Они представили собой компактный подкласс функций f из S(M) интегралами

$$\omega = \omega(t) = (1 - t)(z + a_2(t)z^2 + \dots), \quad f(z) = M\omega(z, 1 - N), \tag{2}$$

уравнения (1). Отныне мы будем принимать обозначение (2), включающее $M=\infty,$ если произведение в (2) рассматривается как предел при $M\to\infty.$

При выборе $u \equiv \pi$ в (1) мы получаем функцию Кебе в классе S или функцию Пика в классе S(M) из (2). Все эти функции приводят граничные точки к областям коэффициентов

$$V_3(M) := \{(a_2, Rea_3)\}, 1 \le M \le \infty$$

Каждая другая граничная точка $V_3(M)$ приводится функцией из компактного подкласса S(M), заданного в (2).

Для заданного действительного числа μ рассмотрим линейный функционал

$$L(\mu; f) := a_3 + \mu a_2$$

в S(M). Функция Кебе K(z) максимизирует ReL(0;f) в S, но функция Пика $P_M(z)$ не максимизирует ReL(0;f) в S(M), если M конечна, см., [11]. Опишем множество μ , для которого локальный максимум $ReL(\mu;f)$ в S(M) достигается функцией Пика. Этот результат будет применен для определения обобщенных чисел Бомбиери.

Обозначим $a_2(t) = x_1(t) + ix_2(t)$ и $Rea_3(t) = x_3(t)$. Подставляя (2) в (1), получаем следующие дифференциальные уравнения:

$$\dot{x}_1(t) = -2\cos u, \quad x_1(0) = 0; \quad \dot{x}_2(t) = 2\sin u, \quad x_2(0) = 0;$$

$$\dot{x}_3(t) = -4x_1\cos u - 4x_2\sin u - 2(1-t)\cos 2u, \quad x_3(0) = 0.$$
(3)

Локальная экстремальная задача $ReL(\mu;f) \to$ локальному максимуму в классе S(M) с экстремальной функцией Пика P_M эквивалентная локальной экстремальной задаче

$$\mu x_1(1-N) + x_3(1-N) \to \text{локальному максимуму}$$
 (4)

для решений системы (3) с управляющими функциями из окрестности $u \equiv \pi$. Следуя классической схеме, введем гамильтонову функцию для формулировки необходимого условия экстремума задачи (4)

$$H(t, x, \Psi, u) = -2\cos u\Psi_1 + 2\sin u\Psi_2 - (4x_1\cos u + 4x_2\sin u + 2(1-t)\cos 2u)\Psi_3,$$
(5)

где $x=(x_1,x_2,x_3)^T$ выполняется для (3) и $\Psi=(\Psi_1,\Psi_2,\Psi_3)^T$ удовлетворяет сопряженной системе с условием трансверсальности

$$\dot{\Psi}_1 = 4\cos u\Psi_3, \quad \Psi_1(1-N) = \mu,
\dot{\Psi}_2 = 4\sin u\Psi_3, \quad \Psi_2(1-N) = 0,
\Psi_3 = 0, \quad \Psi_3(1-N) = 1,$$
(6)

Оптимальная управляющая функция u^* , соответствующая экстремальной функции f^* в задаче (4), удовлетворяет принципу максимума Понтрягина

$$\max_{u} H(t, x^*, \Psi^*, u) = H(t, x^*, \Psi^*, u^*), \ 0 \le t \le 1 - N, \tag{7}$$

где (x^*, Ψ^*) решение уравнений (3) и (6) при $u = u^*$ в правой части. Это свойство максимума подразумевает, что u^* является корнем уравнения

$$H_u(t, x, \Psi, u) = 0 \tag{8}$$

для $x=x^*$ и $\Psi=\Psi^*$. Кроме того, есть еще одно необходимое условие

$$H_{uu}(t, x^*, \Psi^*, u^*) \le 0, \quad 0 \le t \le 1 - N.$$

Доказательство теоремы 1.

Лемма 1 Предположим, что управляющая функция $u \in (3)$ и (6) порождает решения x(t) и $\Psi(t)$, для которых и удовлетворяет (7), единственно с точностью до 2π -преобразования, и

$$H_{uu}(t, x, \Psi, u) < 0, \quad 0 \le t \le 1 - N.$$

Обозначим через $(x(t,\xi)\Psi(t,\xi))$ решения (3) и (6) с начальными условиями $\Psi(0,\xi)=\Psi(0)+\xi$ и $u=u(t,\xi)$ где правая сторона, удовлетворяет принципу максимума (7). Тогда при $\xi \to 0$ мы имеем асимптотическое поведение

$$||(x(1-N,\xi),\Psi(1-N,\xi)) - (x(1-N),\Psi(1-N))|| = o(1),$$

где $||\cdot||$ - евклидова векторная норма.

Лемма 2 Пусть $\mu \in D(M)$, обозначим через $(x^-(t,\xi)\Psi^-(t,\xi))$ решение системы (3) и (6) с условием предела $\Psi^-(1-N,\xi)=\Psi^0(1-N)+\xi,\, u=u^-(t,\xi)$ с правой стороны (3) и (6), удовлетворяют принципу максимума (7). Если

$$||x^{-}(1-N,\xi)-x^{0}(1-N)||=o(1)$$
 при $\xi\to 0$.

то $||\Psi^{-}(0,\xi) - \Psi^{0}(0)|| = o(1)$ при $\xi \to 0$.

Лемма 3 Предположим, что $\mu \in D(M)$ с начальными условиями из (6)

$$\Psi(0,\xi) = \Psi^0(0) + \xi, \quad \xi = \epsilon e, \quad \epsilon > 0, \quad e = (e_1, e_2, e_3)^T, \quad ||e|| = 1$$
 (11)

И

$$x(t,\xi) = x^{0}(t) + \epsilon \delta x(t) + o(\epsilon), \quad \epsilon \to 0, \tag{12}$$

Тогда $\Psi^0(1-N)$ ортогонально $\delta x(1-N)$, если $\delta x(1-N) \neq 0$.

Покажем, что вариации из (11), являются начальными значениями для Ψ_1 и Ψ_3 в (6) не меняя x(1-N).

Лемма 4 Предположим, что при условиях леммы 3 вектор $e = (e_1, E_2, e_3)^T$,

соответствует изменению Ψ^0 в (11), координата e_2 обращается в нуль. Тогда $\delta_x(1-N)=0.$

Лемма 5 Предположим, что $\mu \in D(M)$. Если P_M локальный максимум $ReL(\mu,f)$ в S(M), то $F''(0) \leq 0$. И наоборот, если F''(0) < 0, то P_M локальный максимум $ReL(\mu;f)$ в S(M).

Доказательство теоремы 1 Мы применим лемму 5 для построения аналитического процесса. Дифференцируя (8) относительно р, получаем $H_{ux}x_p + H_{uv}\Psi_p + H_{uu}u_p = 0$ что приводит нас к формуле

$$u_p = \frac{H_{ux}x_p + H_{u\Psi}\Psi_p}{H_{uu}}.$$

Результат вычисления

$$H_{uu}(t, x^0, \Psi^0, \pi) = 8N - 2\mu - 8t, \quad 0 \le t \le 1 - N.$$
 (14)

Дифференцируя (5) по соответствующим переменным при $u=\pi$, находим

$$H_{ux_1}(t, x^0, \Psi^0, \pi) = 0, \quad H_{u\Psi_1}(t, x^0, \Psi^0, \pi) = 0,$$

$$H_{ux_2}(t, x^0, \Psi^0, \pi) = 4, \quad H_{u\Psi_2}(t, x^0, \Psi^0, \pi) = -2,$$

$$H_{ux_3}(t, x^0, \Psi^0, \pi) = 0, \quad H_{u\Psi_3}(t, x^0, \Psi^0, \pi) = 0.$$
(15)

Формулы (14) и (15) позволяют рассчитать u_p как

$$u_p(t,0) = -\frac{4(x_2)_p(t,0) - 2(\Psi_2)_p(t,0)}{8N - 2\mu - 8t}$$

Дифференцируя x_2 из (3) и Ψ_2 из (6) с начальными значения из (13) относительно p при p=0, мы видим, что

$$\frac{d(x_2)_p}{dt} = -2p, \quad (x_2)_p(0,0) = 0,$$

$$\frac{d(\Psi_2)_p}{dt} = -4up, \quad (\Psi_2)_p(0,0) = 1,$$

из чего следует, что $2(x_2)_p(t,0)=(\Psi_2)_p(t,0)-1,0\leq t\leq 1-N.$ Отсюда мы делаем вывод, что

$$u_p(t,0) = [4N - \mu - 4t]^{-1}, \quad 0 \le t \le 1 - N,$$
 (16)

И

$$(x_2)_p(t,0) = \frac{1}{2}\log\frac{\mu - 4N + 4t}{\mu - 4N}.$$
 (17)

Дважды дифференцируя первое уравнение из (3) относительно р при p=0, получаем

$$\frac{d(x_1)_{pp}}{dt} = -2u_p^2(t,0) = \frac{-2}{(4N - \mu - 4t^2)^2}, \ (x_1)_{pp}(0,0) = 0,$$

ИЛИ

$$(x_1)_{pp}(t,0) = \frac{-2t}{(4N-\mu)(4N-\mu-4t)}$$
(18)

И дважды дифференцируя третье уравнение из (3) относительно р при p=0 и принимая во внимание (9), (16), (17) и (18) получаем

$$\frac{d(x_3)_{pp}}{dt} = 4(x_1)_{pp} - 4x_1 u_p^2 + 8(x_2)_p u_p + 8(1-t) u_p^2 = 4(x_1)_{pp} + 8(x_2)_p u_p + 8(1-2t) u_p^2$$

$$= \frac{-8t}{(\mu - 4N)(\mu - 4N + 4t)} - \frac{4}{\mu - 4N + 4t} \log \frac{\mu - 4N + 4t}{\mu - 4N} + \frac{8(1-2t)}{(\mu - 4N + 4t)^2}, \quad (x_3)_{pp}(0,0) = 0.$$

Интегрируя это дифференциальные уравнение, мы находим

$$(x_3)_{pp}(t,0) = \frac{2t(4+\mu-4N-4t)}{(\mu-4N)(\mu-4N+4t)} - \frac{1}{2}log\frac{\mu-4N+4t}{\mu-4N} - \frac{1}{2}log^2\frac{\mu-4N+4t}{\mu-4N}.$$
(19)

Теперь мы можем записать достаточное максимальное условие в экстремальной задаче (4) из леммы 5 F''(0) < 0, которое эквивалентно неравенству

$$(x_3)_{pp}(1-N,0) + \mu(x_1)_{pp}(1-N,0) = -\left[\frac{1}{2}log\frac{\mu - 8N + 4}{\mu - 4N}\left(1 + log\frac{\mu - 8N + 4}{\mu - 4N}\right)\right] < 0.$$

Это неравенство справедливо для всех $\mu \in D(M)$.

Поэтому выберем функцию P_M порожденных функцией управления $u \equiv \pi$ в дифференциальном уравнении Левнера (1) локально увеличивающее $R(\mu;f)$ в классе S(M), т. е. $Rea_3 + \mu Rea_2 \leq p_3(M) + \mu p_2(M)$ окрестности P_M в $S_{(M)}$ с максимально возможными числами $\mu = 4N$ и со знаком равенства для $f = P_M$. Следовательно,

$$Re(p_3(M) - a_3) \ge 4NRe(a_2 - p_2(M)) = -4NRe(p_2(M) - a_2)$$

и отсюда

$$\sigma_{23}(M) = \liminf_{S(M) \ni f \to P_M} \frac{Re(p_3(M) - a_3)}{Re(p_2(M) - a_2)} = -4N,$$

что завершает доказательство теоремы 1.

В дипломной работе также были рассмотрены числа Бомбиери с помощью языка программирования Python и была реализована проверка неравенства, где было известно, что $\sigma_{mn} = B_{mn}$, если

$$B_{mn} = \min_{\theta} \frac{n sin\theta - sin(n\theta)}{m sin\theta - sin(m\theta)}$$

с помощью алгоритма. В качестве области для исследования гипотезы Бомбиери рассмотрим $0,5 \leq \frac{n}{m} \leq 0,8194, m \leq 81$. В такой области содержится 1080 пар m,n. Обозначим

$$f(x) = \frac{n \sin x - \sin(nx)}{m \sin x - \sin(mx)}.$$

Поиск B_{mn} состоит из нескольких шагов:

1. разбиваем $[0,\pi]$ на отрезки. Выбор $[0,\pi]$ обусловлен тем, что f(x) является 2π -периодической и четной. Количество отрезков, на которое требуется разбить, задается с помощью переменной N;

2. находим корни числителя производной f(x): для каждого, полученного в результате разбиения на шаге 1, отрезка [c,d] применяем метод деления отрезка пополам;

3. находим значение функций f(x) в этих точках. Если $x < \epsilon = 1e-15$, то поиск f(x) в этой точке осуществляется по формуле: $\frac{n^3-n}{m^3-m}$.

4. завершаем работу поиском минимального значения из тех, что получили в шаге 3.

В результате проведенного численного эксперимента показано, что $\sigma_{mn} < B_{mn} \ \text{для} \ m, n \ \text{из области} \ 0, 5 \leq \frac{n}{m} \leq 0, 8194, m \leq 81. \text{Таким образом,}$ гипотеза Бомбиери опровергнута для 1080 пар m, n.

Заключение. В данной работе рассмотрены задачи Бомбиери используя материалы опубликованных работ Прохорова Д.В, Гордиенко В.Г, Арабузовой Д.А. Гипотеза Бомбиери опровергнута для 1080 пар m и n. Полностью задача остается нерешенной.

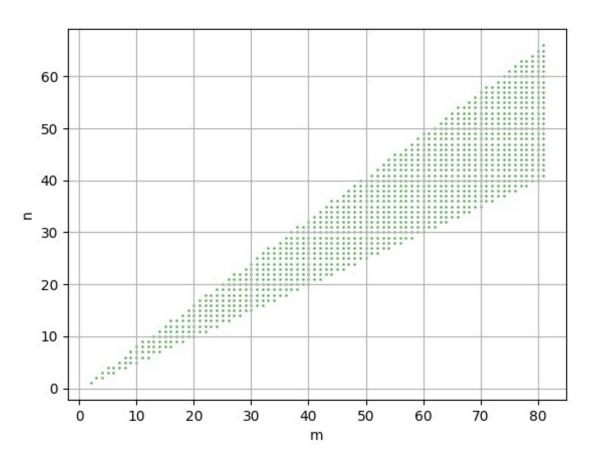


Рисунок 1