МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н. Г. ЧЕРНЫШЕВСКОГО»

Кафедра технологий программирования

СЕГМЕНТИРОВАНИЕ ВОЛЮМЕТРИЧЕСКИХ ИЗОБРАЖЕНИЙ КОРОНАРНЫХ АРТЕРИЙ, ПОЛУЧЕННЫХ С ПОМОЩЬЮ ОПТИЧЕСКОЙ КОГЕРЕНТНОЙ ТОМОГРАФИИ С ПРИМЕНЕНИЕМ НЕЙРОННЫХ СЕТЕЙ

АВТОРЕФЕРАТ МАГИСТЕРСКОЙ РАБОТЫ

студента 2 курса 273 группы		
направления 02.04.03 — Матема	атическое обеспечение	и администрирование
информационных систем		
факультета КНиИТ		
Ранецкого Владимира Русланов	вича	
Научный руководитель		
к. фм. н., доцент		Г.Г.Наркайтис
Заведующий кафедрой		
к. фм. н., доцент		И. А. Батраева

СОДЕРЖАНИЕ

BE	ЗЕДЕ	НИЕ	3
1	Опт	ическая когерентная томография	5
2	Ней	ронные сети	6
	2.1	Программные библиотеки для обучения нейронных сетей	6
3	Сег	ментация	7
	3.1	Сверточные нейронные сети	7
	3.2	Объекты сегментации	7
4	При	ложение сегментации	8
	4.1	Хранение снимков	8
	4.2	Ручная сегментация	8
	4.3	Экспорт	8
	4.4	Обучение и тестирование	8
5	Apx	итектуры сегментации	9
	5.1	Результаты обучения	9
6	Изм	енение формы входных данных1	0
	6.1	Архитектуры сегментирования с применением трехмерных опе-	
		раций1	0
7	Резу	льтаты обучения трехмерных моделей1	. 1
3A	КЛЮ	<mark>ОЧЕНИЕ</mark> 1	. 2
CI	ТИСС	ОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	3

ВВЕДЕНИЕ

Доктора и исследователи в области медицины на протяжении всей истории пытаются находить и совершенствовать методы лечения людей. Одной из сторон этого сложного процесса является поиск и применение различных технологий, помогающих обследовать пациентов, с целью выявления отклонений от нормы. На ранних этапах развития медицины единственным способом обследовать органы человека — было его вскрытие. Однако подобное вмешательство — это всегда огромный стресс для любого организма, поэтому было необходимо найти малоинвазивные методы обследования, которые позволили бы существенно сократить время обследования, а также негативные эффекты от вмешательства.

Одним из новых способов обследования является оптическая когерентная томография (далее ОКТ), позволяющая получать детализированные снимки в областях офтальмологии и коронарного вмешательства. Данная технология сравнительно молода, но уже прошла немалый путь совершенствования и часто применятся при проведении различных медицинских процедурах, помогая спасать жизни людей. Также, за счет полной неинвазивности данного метода в офтальмологии, исследователям в этой области теперь требуется меньшее количество животных для проведения различных процедур, что делает такие исследования более гуманными.

Начиная свой путь в офтальмологии, оптическая когерентная томография позже нашла применения в области сердечных заболеваний. Новые поколения оборудования для ее проведения дают преимущество перед технологиями, применяемыми ранее, такими как, внутрисосудистое ультразвуковое исследование. Сегодня исследования и работа по улучшению данной технологии не остановились, напротив, можно сказать, что они только набирают обороты. Все это говорит о том, что оптическая когерентная томография является крайне перспективным направлением научных изысканий.

Всегда интересно наблюдать за пересечением передовых методов в различных областях науки, нередко применение наработок одной области позволяет добиться улучшений в другой. Оптическая когерентная томография позволяет получать графические изображения, а это означает, что в данной области может оказаться полезным применение методов и результатов исследований в области компьютерного зрения.

Компьютерное зрение считается передовой областью для различных приложений. Во многом благодаря, доступности и популярности машинного обучения. Сегодня искусственные нейронные сети и машинное обучения применяются повсеместно, и количество исследователей только растет. Уже существуют различные модели нейронных сетей, дающие достаточно хорошие результаты, для работы в коммерческом сегменте, однако не все проблемы данной области еще решены, что делает данную область перспективной.

Кроме того, с уверенностью можно сказать, что данная тема актуальна для многих исследователей, так как работы по автоматической сегментации тех или иных объектов на снимках ОКТ только начинают появляться. Среди популярных тем: поиск сужений артерий [1]; определение контуров бляшек и фиброзных тканей [2]; или определение различных структур на стенках артерии [3].

Целью выпускной квалификационной работы магистра является разработка приложения, позволяющего сегментировать автоматически различные объекты на снимках коронарных артерий, полученных с помощью оптической когерентной томографии в том числе при обработке так называемых волуметрических данных, т.е. 3D изображений коронарных артерий.

Для реализации данной цели необходимо решить следующие задачи:

- изучить общие сведения оптической когерентной томографии, рассмотреть историю ее развития и текущее состояние;
- рассмотреть компьютерное зрение, а также сведения о машинном обучении и его применении при сегментации изображений;
- ознакомиться с существующими программными библиотеками для создания и обучения моделей нейронных сетей;
- реализовать приложение для сегментации, хранения снимков ОКТ, а также экспорта этих снимков для создания обучающей выборки;
- реализовать механизмы импорта обученных моделей нейронных сетей и их тестирования;
- выбор наиболее эффективных и популярных архитектур для сегментации изображений;
- обучение выбранных архитектур для сегментации объектов снимков ОКТ;
- сравнение точности и эффективности с помощью реализованного приложения.

1 Оптическая когерентная томография

Сердцем ОКТ является интерферометр Майкельсона, с помощью его более совершенной версии, в аппаратах для проведения подобной томографии и определяются характеристики тканей. Принцип его действия основывается на интерференции света.

ОКТ является еще одним способом создания томографической визуализации, наряду с такими широко используемыми методами, как компьютерная томография [4], магнитно-резонансная томография и ультразвуковая визуализация. Каждый из этих методов измеряет различные физические свойства и имеет разрешение и диапазон проникновения, которые оказываются полезными для конкретных приложений. С помощью ОКТ можно выполнять неинвазивную визуализацию поперечного сечения внутренних структур биологических тканей путем измерения их оптических отражений [5].

Коронарная ангиография – это стандартный инвазивный метод визуализации для диагностики ишемической болезни сердца и для проведения интервенционных коронарных процедур. Изображение формируется с помощью обратного рассеяния излучаемого ближнего инфракрасного света, создавая изображения поперечного сечения коронарного сосуда. Примеры двух полученных с помощью ОКТ снимков можно увидеть на рисунке 1.

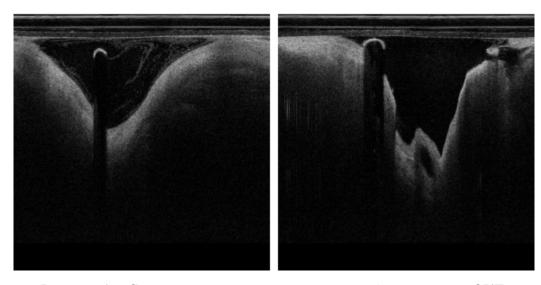


Рисунок 1 – Снимки артерии свиньи, полученный с помощью ОКТ.

2 Нейронные сети

Нейронную сеть можно рассматривать как отлично распараллеленный и распределенный обработчик данных, который имеет склонность к накоплению эмпирических знаний и делает их доступными для использования [6].

Нейрон – основная единица обработки информации, являющаяся фундаментом для проектирования большого семейства нейронных сетей.

Пионерами в области создания нейронных сетей были Маккалок и Питтс, которые исследовали сети для распознавания изображений, подверженных различным трансформациям, например сдвигам или поворотам [7].

В процессе развития нейронных сетей появились сети с несколькими слоями нейронов, которые стали называться многослойными. В многослойных нейронных сетях выходы каждого предыдущего слоя являются входами для каждого следующего слоя (кроме последнего).

2.1 Программные библиотеки для обучения нейронных сетей

Сегодня библиотеки обучения нейронных сетей позволяют быстро прототипировать необходимые архитектуры сетей и удобно их обучать. Среди самых известных библиотек можно выделить: caffe, tensorflow и pytorch.

Основным структурным блоком библиотек машинного обучения является тензор. Понятие тензора не отличается от его определения в линейной алгебре. Фактически, тензор – объект, линейно преобразующий элементы одного линейного пространства, в элементы другого. В рамках библиотек, тензорами называют многомерные массивы, которые имеют дополнительный функционал, позволяющий им работать с гпу.

Также библиотеки обучения нейронных сетей предлагают интерфейсы для удобной реализации и использования различных структурных элементов обучения, например, функций потерь и различных метрик, загрузчиков данных.

Наконец, подобные библиотеки содержат уже готовые реализации различных слоев нейронных сетей, метрик, функций активации и потерь, а также различных оптимизаторов, делающих их использование очень удобным.

3 Сегментация

Под сегментацией понимают процесс выделения областей объектов на изображениях. В рамках работы рассматривается сегментация, основанная на применении сверточных нейронных сетей. При обучении нейронных сетей для предсказания масок используется контролируемое обучение, которое предполагает использование ожидаемых результатов (эталонных данных).

3.1 Сверточные нейронные сети

Основной идеей сверточных сетей является создание таких слоев, признаками в которых могут служить ядра свертки. Обучение происходит по тому же принципу, что и обучение перцептронов: алгоритм обратного распространения применятся к ядрам свертки.

3.2 Объекты сегментации

Гайдвайр – направляющая, жесткая и управляемая конструкция, направление которой можно менять из-вне, чтобы направить катетер в нужное место. Люмен – контур внутренней поверхности артерии, который первым встречает свет лазера, все что находится за этой границей является тканью сосуда, все что находится перед этой границей - его внутренность. Точки стента – точки поперечного среза стента на снимке ОКТ.

На рисунке 2 гайдвайр выделен желтым, люмен – голубым, а точки стента – красным.

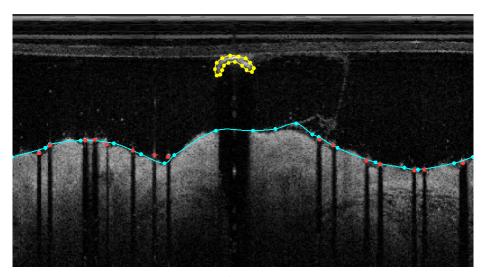


Рисунок 2 – Объекты сегментации

4 Приложение сегментации

Итоговое приложение выпускной квалификационной работы магистра реализовано на языке программирования C++ с использованием фреймворка Qt [8].

4.1 Хранение снимков

В качестве хранилища было решено использовать обычную директорию. В этой директории находятся подпапки в каждой из которых хранятся изображения в формате tiff. Для сохранения дополнительных данных для каждого файла изображения рядом создается XML файл с нужной информацией.

4.2 Ручная сегментация

Ручное сегментирование снимков ОКТ реализовано стало главной функцией программы. После открытия изображения становятся доступны кнопки выбора типов элементов для сегментирования: «Catheter», «GuideWire», «Shadow», «Stent», «Metal Stent», «BioStent». Можно выбрать любой элемент и начать расставлять точки на сцене, которые соединяются кривыми.

4.3 Экспорт

В окне настроек экспорта можно задать размер итоговых изображений обучающей выборки, выбрать элементы, которые будут добавлены на эталонные изображения масок, выбрать цвета фон маски и цвета каждого типа объекта.

4.4 Обучение и тестирование

Также как и со снимками хранилище представляет собой директорию в файловой системе, в которой хранятся файлы обученных моделей с весами. В приложение были реализованы диалоги импорта и изменения этих параметров. Также был создан диалог проверки загруженных моделей.

5 Архитектуры сегментации

Были рассмотрены следующие архитектуры: U-Net [9], U-Net++ [10], FPN [11] и DeepLabV3+ [12]. Все эти архитектуры построены по принципу кодер-декодер, т.е. имеют «восходящий» и «нисходящий» пути выделения признаков и их интерпретации соответственно.

Данный подход позволяет использовать их в качестве контейнера и заменять кодер любой другой моделью со сверточными слоями для комбинации положительных эффектов различных подходов. После презентации архитектуры DeepLab в сообществе прочно закрепился термин backbone, которым ее разработчики назвали кодер. Сегодня можно найти немало публикаций, в которых исследуются кодер-декодер архитектуры с заменой кодера на различные backbone, например, ResNet, DenseNet и др.

В качестве backbone архитектур были рассмотрены: ResNet [13], ResNeXt [14] и DenseNet [15]. Все они имеют дополнительные связи данных между сверточными слоями, построенные тем или иным способом для облегчения обучения и повышения точности.

5.1 Результаты обучения

Все обученные конфигурации различных моделей справились с задачей. Удалось получить маски сегментации для всех трех типов объектов. Обученные модели были загружены в разработанное ранее приложение для анализа.

Сегментация люмена и гайдвайера оказалась на столько хорошей, что позволяет осуществлять выбор моделей для увеличения скорости или точности. С сегментацией точек стента все модели определяют форму правильно, однако дают ложноположительные или ложноотрицательные точки на различных снимках.

6 Изменение формы входных данных

Для решения проблемы ложноположительных или ложноотрицательных точек стентов было решено использовать трехмерные операции нейронных сетей для выделения пространственных признаков изображений не только по ширине и высоте.

6.1 Архитектуры сегментирования с применением трехмерных операций

Главной проблемой трехмерных архитектур является ограничения современного аппаратного обеспечения. Современные устройства позволяют обрабатывать достаточно большие массивы данных, однако при добавлении еще одного измерения в подающийся на вход тензор, картина существенно меняется.

Среди трехмерных архитектур были рассмотрены: U-Net [16], V-Net [17] и DenseVoxelNet [18].

Обучение всех моделей проходило на обучающей выборке, состоящей из около 12 тысяч изображений. Тестовая выборка, для оценки результатов состоит из чуть более полу сотни изображений, не участвующих в обучающей выборке. Каждое изображение имеет пару — маску, сегментированную вручную. Все изображения имеют ширину и высоту, равными 256 пикселей.

7 Результаты обучения трехмерных моделей

После завершения обучения удалось получить все маски сегментации. Обученные модели были загружены в разработанное ранее приложение для анализа.

С помощью механизмов подсчета статистики были подсчитаны: метрика IoU и средняя скорость распознавания одного изображения. На рисунке 3 изображено окно статистики разработанного приложения.

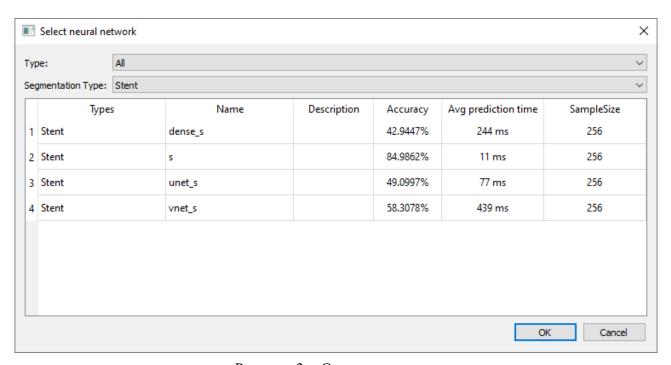


Рисунок 3 – Окно статистики

После загрузки моделей, для каждой из них был запущен тест на записи, которая не использовалась при обучении. Данная запись состоит из 270 кадров, размера 256 на 256 пикселей.

К сожалению использование трехмерных сверток не оправдало себя. После подсчета статистики все три модели показали худший по сравнению с двумерными моделями результат.

ЗАКЛЮЧЕНИЕ

ОКТ и машинное обучение являются передовыми проблемами в своих областях. Их актуальность и популярность продолжает расти. Существующее на сегодняшний день программное и аппаратное обеспечение уже показывает хорошие результаты, однако не лишено проблем, которые еще предстоит решить. А исследований на стыке двух этих областей достаточно мало, что делает их еще более интересными.

В ходе выполнения данной научно-исследовательской работы была изучена общая информация о технологиях ОКТ и машинного обучения. Также были рассмотрены программные библиотеки для обучения нейронных сетей.

Были рассмотрены применение ОКТ при коронарном вмешательстве, а также использование нейронных сетей для сегментации изображений.

Было реализовано приложение для ручной сегментации снимков, их хранения и проверки с помощью обученных моделей. Было проверенно множество архитектур нейронных сетей для выполнения сегментации изображений, сравнены результаты их скорости и точности.

Таким образом все поставленные задачи были выполнены, цель работы достигнута.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1 Optimized computer-aided segmentation and three-dimensional reconstruction using intracoronary optical coherence tomography / L. Athanasiou, F. R. Nezami, M. Z. Galon, A. C. Lopes, P. A. Lemos, J. M. de la Torre Hernandez, E. Ben-Assa, E. R. Edelman // *IEEE Journal of Biomedical and Health Informatics*. jul 2018. Vol. 22, no. 4. Pp. 1168–1176.
- 2 A machine learning-based method for intracoronary OCT segmentation and vulnerable coronary plaque cap thickness quantification / X. Guo, D. Tang, D. Molony, C. Yang, H. Samady, J. Zheng, G. S. Mintz et al. // *International Journal of Computational Methods*. mar 2019. Vol. 16, no. 03. P. 1842008.
- 3 *Athanasiou, L. S.* A deep learning approach to classify atherosclerosis using intracoronary optical coherence tomography // Medical Imaging 2019: Computer-Aided Diagnosis / Ed. by H. K. Hahn, K. Mori. SPIE, mar 2019.
- 4 *Hounsfield, G. N.* Computerized transverse axial scanning (tomography): Part 1. description of system / G. N. Hounsfield // *The British journal of radiology*. dec 1973. Vol. 46, no. 552. Pp. 1016–1022.
- 5 *Huang, D.* Optical coherence tomography / D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee // *Science (New York, N.Y.).* nov 1991. Vol. 254, no. 5035. Pp. 1178–1181.
- 6 *Haykin, S.* Neural networks and learning machines / S. Haykin. 3 edition. New York: Prentice Hall, 2009.
- 7 *McCulloch, W. S.* A logical calculus of the ideas immanent in nervous activity / W. S. McCulloch, W. Pitts // *Bulletin of Mathematical Biology*. 1990. Vol. 52, no. 1-2. Pp. 99–115.
- 8 Qt | Cross-platform software development for embedded and desktop [Электронный ресурс]. URL: https://www.qt.io/ (Дата обращения 05.05.2022). Загл. с экр. Яз. англ.
- 9 U-Net: Convolutional Networks for Biomedical Image Segmentation [Электронный ресурс]. 2015. URL: https://arxiv.org/pdf/1505. 04597v1.pdf (Дата обращения 25.05.2021). Загл. с экр. Яз. англ.

- 10 UNet++: A Nested U-Net Architecture for Medical Image Segmentation [Электронный ресурс]. URL: https://arxiv.org/pdf/1807.10165v1. pdf (Дата обращения 25.05.2021). Загл. с экр. Яз. англ.
- 11 FPN Explained | Papers With Code [Электронный ресурс]. URL: https://paperswithcode.com/method/fpn (Дата обращения 05.05.2022). Загл. с экр. Яз. англ.
- 12 Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation [Электронный ресурс]. URL: https://arxiv.org/pdf/1802.02611v3.pdf (Дата обращения 05.05.2022). Загл. с экр. Яз. англ.
- 13 Deep Residual Learning for Image Recognition [Электронный ресурс]. URL: https://arxiv.org/pdf/1512.03385v1.pdf (Дата обращения 05.05.2022). Загл. с экр. Яз. англ.
- 14 Aggregated Residual Transformations for Deep Neural Networks [Электронный ресурс]. URL: https://arxiv.org/pdf/1611.05431v2. pdf (Дата обращения 05.05.2022). Загл. с экр. Яз. англ.
- 15 Densely Connected Convolutional Networks [Электронный ресурс]. URL: https://arxiv.org/pdf/1608.06993v5.pdf (Дата обращения 25.05.2021). Загл. с экр. Яз. англ.
- 16 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation [Электронный ресурс]. URL: https://arxiv.org/pdf/1606.06650v1. pdf (Дата обращения 05.05.2022). Загл. с экр. Яз. англ.
- V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation [Электронный ресурс]. URL: https://arxiv.org/pdf/1606.04797v1.pdf (Дата обращения 05.05.2022). Загл. с экр. Яз. англ.
- 18 Automatic 3D Cardiovascular MR Segmentation with Densely-Connected Volumetric ConvNets [Электронный ресурс]. URL: https://arxiv.org/pdf/1708.00573v1.pdf (Дата обращения 05.05.2022). Загл. с экр. Яз. англ.