МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г.ЧЕРНЫШЕВСКОГО»

Кафедра нелинейной физики

Особенности поведения средней по ансамблю скорости в системах биллиардного типа с осциллирующими границами

АВТОРЕФЕРАТ МАГИСТЕРСКОЙ РАБОТЫ

Студента 2 курса 2211 группы направления (специальности) 03.04.01 «ПРИКЛАДНЫЕ МАТЕМАТИКА И ФИЗИКА»

Институт физики

Любченко Дмитрий Олегович

Научный руководитель к.ф.-м.н., доцент _____

08.0622

А.В. Савин

подпись, дата

_ 11.D. Cubi

Заведующий кафедрой к.ф.-м.н., доцент

подпись, дата

Е.Н. Бегинин

Саратов 2022 год

МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г.ЧЕРНЫШЕВСКОГО»

Кафедра нелинейной физики

Особенности поведения средней по ансамблю скорости в системах биллиардного типа с осциллирующими границами

АВТОРЕФЕРАТ МАГИСТЕРСКОЙ РАБОТЫ

Студента 2 курса 2211 группы направления (специальности) 03.04.01 «ПРИКЛАДНЫЕ МАТЕМАТИКА И ФИЗИКА»

Институт физики

Любченко Дмитрий Олегович

Научный руководитель		
к.фм.н., доцент		А.В. Савин
-	подпись, дата	

Заведующий кафедрой		
к.фм.н., доцент		Е.Н. Бегинин
-	подпись, дата	

Саратов 2022 год

Введение

Как известно, реальному процессу соответствует динамическая система, когда процесс описывается уравнениями, по которым, зная начальные условия, можно однозначно определить состояние системы в любой последующий момент времени [1]. Некоторые динамические системы описываются простыми уравнениями, и, казалось бы, их поведение достаточно тривиально. Однако существуют системы, в которых при небольшом изменении начальных условий наш прогноз будет существенно меняться. В таком случае говорят о наличие динамического хаоса в системе. Это связано с тем, что хаотические траектории неустойчивы по Ляпунову [2], то есть если мы запустим две траектории со слабо-отличающимися начальными условиями, то со временем они будут удаляться друг от друга. Однако они устойчивы по Лагранжу, в смысле траектории сосредоточены в конечной области фазового пространства. Именно поэтому исследование динамических систем и хаоса в них важно и интересно не только с фундаментальной, но и с прикладной точки зрения.

Механизмы возникновения хаоса [3] более или менее понятны, в то время сам хаос в системах может приводить к нетривиальным эффектам. Если рассмотреть бильярдную систему, то в них могут встречаться хаотические траектории [4, 5]. Такие бильярды могут быть использованы для моделирования перемешивания в системе упругих шариков [6] или демонстрации броуновского движения в газе Лоренца [7]. А если задать границам гармонические колебания, то частица в нем начнет ускоряться [8]. Такая особенность бильярда была объяснения использована для возникновения быстрых космических лучей Энрико Ферми [9], в честь которого и прозвали эффект.

Относительно недавно в работах [10, 11] был обнаружен интересный эффект в бильярде типа «стадион» с осциллирующими границами. При исследовании средней по ансамблю скорости частиц в этой системе он обнаружил, что в случае слабой кривизны границы, малые колебания

2

границы приводят к тому, что в системе появляется критическое значение начальной скорости, ниже которой средняя скорость начинает падать. Если начальная скорость больше критической, то частицы в среднем ускоряются. Данное явление назвали эффектом демоном Максвелла в бильярде.

В данной работе исследуется система Теннисона-Либермана-Лихтенберга [12] с добавлением осцилляций границе. Система Теннисона-Либермана-Лихтенберга состоит из частицы, которая двигается между ровной и гофрированной стенками. Эта модель является типичным примером консервативной системы с двумя степенями свободы. В ней наблюдается как регулярная динамика, так и хаотическая.

Целями настоящей работы являются:

- пронаблюдать различные эффекты в системе Теннисона-Либермана-Лихтенберга, к которым приводит добавление осцилляций границе;
- 2. получить новую систему путём приближений уравнений модели Теннисона-Либермана-Лихтенберга с осциллирующими границами;
- 3. пронаблюдать аналогичные эффекты в более простой системе;
- 4. исследовать другие эффекты, к которым приводят приближения.

Основное содержание работы

В работе была рассмотрена система, в которой частица двигается между двумя границами, абсолютно упруго ударяется о них. Одна граница фиксированная и задаётся следующим уравнением:

$$y_1 = 0. \tag{1}$$

Другая граница гофрированная и может гармонически колебаться. Её уравнение:

$$y_2 = F(x,t) = b\cos kx + a\cos wt + h,$$
(2)

где a – амплитуда колебаний, b – амплитуда гофрировки, h – среднее расстояние между стенками.

Рис. 1. Иллюстрация движения частицы между стенками. x_n – координата *n*-го соударения с верхней стенкой; α_n – угол между нормалью к верхней стенки и направлением скорости v_n в момент *n*-го удара; v_n – скорость частицы после *n*-го удара о верхнюю стенку; t_{0n} – время с момента начала движения до момента *n*-го удара о верхнюю стенку.

Для данной модели не трудно получить выражения переменных для следующего удара v_{n+1} , α_{n+1} , x_{n+1} , t_{0n+1} через предыдущие значения v_n , α_n , x_n , t_{0n} в случае слабой гофрировки и амплитуды колебаний. Выражения формируют четырёхмерное отображение:

$$v_{n+1} = \sqrt{v_{n+1_x}^2 + v_{n+1_y}^2};$$

$$\alpha_{n+1} = \arctan \frac{v_{n+1_x}}{v_{n+1_y}};$$

$$x_{n+1} = x_n + 2h \frac{v_{n+1_x}}{v_{n+1_y}};$$

$$t_{0n+1} = t_{0n} + \frac{2h}{v_{n+1_y}}.$$

(3)

Здесь: $v_{n+1_x} = v_n \sin(\alpha_n + 2\gamma) - 2\gamma u$, $v_{n+1_y} = v_n \cos(\alpha_n + 2\gamma) - 2u$, $u = -aw \sin w t_{0n}$, $\gamma = -kb \sin kx_n$. Число параметров можно уменьшить с помощью следующей замены переменных:

$$\varphi_{n} = kx_{n};$$

$$\psi_{n} = wt_{0n};$$

$$\Omega_{n_{x,y}} = \frac{v_{n_{x,y}}}{2hw};$$

$$A = 2hk;$$

$$B = \frac{a}{h};$$

$$C = bk.$$

(4)

В результате получается четырёхмерное отображения с тремя параметрами:

$$\Omega_{n+1} = \sqrt{\Omega_{n+1_x}^2 + \Omega_{n+1_y}^2};$$

$$\alpha_{n+1} = \arctan\left[\frac{\Omega_{n_x}}{\Omega_{n_y}}\right];$$

$$\varphi_{n+1} = \varphi_n + A\frac{\Omega_{n_x}}{\Omega_{n_y}};$$

$$\psi_{n+1} = \psi_n + \frac{1}{\Omega_{n_y}},$$
(5)

где: $\Omega_{n+1_x} = \Omega_n \sin(\alpha_n + 2\gamma) - 2\gamma u$, $\Omega_{n+1_y} = \Omega_n \cos(\alpha_n + 2\gamma) - 2u$, $\gamma = -C \sin \varphi_n$, $u = -B \sin \psi_n$, Ω_n – безразмерная скорость, φ_n – безразмерная координата, ψ_n – безразмерное время, A – безразмерное расстояние между стенками, B – безразмерная амплитуда колебаний, C – безразмерная амплитуда гофрировки.

Рассмотрим предельный случай, когда амплитуда колебаний равна нулю (B = 0). В такой ситуации u = 0, а скорость не меняется со временем. Тогда система (5) перейдёт в двумерное отображение:

$$\alpha_{n+1} = \alpha_n - 2C \sin \varphi_n$$

$$\varphi_{n+1} = \varphi_n + A \tan \alpha_{n+1}$$
(13)

Данная система хорошо известна, как система Теннисона-Либермана-Лихтенберга [12]. Фазовое пространство такой системы является двумерное пространство – плоскость. Его структура типична для неинтегрируемых гамильтоновых систем с двумя степенями свободы: наблюдаются регулярные траектории, которые строго отгороженные от хаотической области. Для дальнейшего исследования предполагается выбрать следующие значения параметров A = 2 и C = 0.05, которые хорошо попадают под определения слабой гофрировки ($C \ll A$).

Известно [8]. что если бильярд с фиксированными граница демонстрирует хаотическую динамику, то такого бильярда V с осциллирующими границами будет наблюдаться ускорение Ферми. Значит, чтобы наблюдать ускорение Ферми, нужно рассматривать хаотические траектории при фиксированной границе. Рассмотрим следующую область $\psi_0 \in [1; 4]$ и $\alpha_0 \in [0.35\pi; 0.4\pi]$, и начальных условий: $\varphi_0 \in [0; 3]$, сконструируем ансамбль из 4410 с различными начальными значениями φ_0 , ψ_0 и α_0 , выбранными в виде кубической решётки из этой области и одинаковой начальной скоростью Ω_0 для каждой системы в ансамбле. Преимущественное траекторий ансамбля будет количество такого хаотичным, средний старший показатель Ляпунова $\bar{\Lambda} = 0.98$. Но если мы зададим колебания границы B = 0.01, то все траектории из этой области становятся хаотичными $\bar{\Lambda} = 1.23$.

Для того чтобы обнаружить эффект, продемонстрированный в работах [10, 11], нужно задать слабые колебания границы. Зависимость средней скорости по ансамблю, описанного выше, от числа итераций представлено на рис. 2 при разных значениях амплитуды B. При B = 0.01 (рис. 2a) и B = 0.03 (рис. 2b), Видно, что траектории, начальное значение которых ниже критического значения, стремятся к предельной скорости. У

траекторий, начальное значение скорости которых выше, наблюдается ускорение Ферми. Вообще говоря, предельная скорость не является постоянной величиной, она постоянно растёт с числом итерации. Однако этот рост очень слабый и измерим с флуктуациями средней скорости около предельной. Таким образом, предельная скорость является квази-постоянной. Разница между рис. 2а и рис. 2b состоит в величине предельной и критической начальных скоростей, и также в росте скорости при таких же начальных скоростях, у которых значение выше критического. При B = 0.05 (рис. 2с) наблюдается похожая ситуация, однако предельная скорость ощутимо растёт с числом итераций. В этом случае предельная скорость нельзя считать постоянной, и считается, что при таких параметрах эффекта бильярдного демона Максвелла нет. Переход от рис. 2b и рис. 2c даёт качественное представление о том, как исчезает эффект.

Рис. 2. Зависимость средней по ансамблю скорости Ω от числа итераций системы (5) с различными начальными $\varphi_0, \psi_0, \alpha_0$, выбранными в виде кубической решётки в хаотической области при параметрах: A = 2, C = 0.05 и B = 0.01(a); B = 0.03 (b); B = 0.05 (c); начальные скорости Ω_0 , выбраны в диапазоне от 0.5 до 2.3 с шагом 0.2.

Для того, чтобы получить более простую систему, в которой возникает аналогичный эффект предлагается сделать две аппроксимации:

1. Скоростное приближение

Распишем выражение для скорости Ω_{n+1} :

$$\Omega_{n+1} = \sqrt{\Omega_{n+1_x}^{2} + \Omega_{n+1_y}^{2}} = \sqrt{(\Omega_n \sin(\alpha_n + 2\gamma) - 2\gamma u)^2 + (\Omega_n \cos(\alpha_n + 2\gamma) - 2u)^2}; (6)$$

C учетом того, что B, C $\ll 1$, то γ , u $\ll 1$

$$\sqrt{(\Omega_n \sin(\alpha_n + 2\gamma))^2 + (\Omega_n \cos(\alpha_n + 2\gamma) - 2u)^2} = \sqrt{\Omega_n^2 - 4u\Omega_n \cos(\alpha_n + 2\gamma)}; \quad (7)$$

Считая, что при реализации эффекта, предельная скорость много больше амплитуды колебания границы, то $u \leq B \ll \Omega_n$:

$$\Omega_n \sqrt{1 - 4\frac{u}{\Omega_n} \cos(\alpha_n + 2\gamma)} = \Omega_n - 2u\cos(\alpha_n + 2\gamma); \tag{8}$$

2. Координатное приближение

Так как $u = -B \sin \psi_n$, то максимальное её значение u = B. Эффект бильярдного демона Максвелла проявляется в случае слабой кривизны и малых колебаний, то есть B, C \ll 1, поэтому будем считать, что:

$$\frac{\Omega_{n_x}}{\Omega_{n_y}} \approx \tan(\alpha_n + 2\gamma). \tag{9}$$

Использую данные приближения система (5) переходит в систему (10):

$$\alpha_{n+1} = \alpha_n - 2C \sin \varphi_n;$$

$$\varphi_{n+1} = \varphi_n + A \tan(\alpha_{n+1});$$

$$\Omega_{n+1} = \Omega_n + 2B \sin \psi_n \cos(\alpha_{n+1});$$

$$\psi_{n+1} = \psi_n + \frac{1}{\Omega_n \cos(\alpha_{n+1}) + 2B \sin \psi_n}.$$
(10)

Отображение получилось достаточно интересным. Оно распалось на ведущую систему, которая является системой Теннисона-Либермана-Лихтенберга и ведомую систему, на которую действует система Теннисона-Либермана-Лихтенберга.

Рис. 3. Зависимость средней по ансамблю скорости от числа итераций отображения (10) с различными начальными $\varphi_0, \psi_0, \alpha_0$, выбранными в хаотической области. Параметры A = 2, C = 0.05, B = 0.02. Цвет кривой зависит от начальной скорости: красные – начальная скорость больше нуля, синие – меньше нуля.

Для того чтобы обнаружить похожий эффект, описанный ранее, проделаем схожие манипуляции. Построим зависимость средней по ранее представленному ансамблю скорости от числа итераций при малой амплитуде колебаний. На рис. 3 наблюдается эффект бильярдного демона Максвелла. И он отличается от исходной системы. В данной системе есть две предельной скорости, на рис. 3 одна имеет значение 0.12, вторая нулевая. К ненулевой предельной скорости стремятся частицы, скорость которых меньше граничной, но совсем медленные ансамбли частиц стремятся к нулевой предельной скорости. Если начальная скорость выше граничной, то частицы ускоряются.

Исследование якобиана и старшего показателя Ляпунова при фиксированных параметрах и различных начальных условиях демонстрирует различные режимы динамики (рис. 4, траектория 1 демонстрирует хаотическую динамику, траектории 2 и 3 демонстрируют диссипативную регулярную динамику, у траектории 4 и 5 наблюдается режим ускорения с

9

консервативным якобианом и нулевым старшим показателем Ляпунова). Обсуждения возможности такого поведения были в работах по смешенной динамике [15]. В некоторых областях начальных условий наблюдаются удивительно большие якобианы (рис. 4, траектория 1). Это связано с тем, что в хаотическом режиме могут появляться полёты Леви [16], когда в бильярде удар происходит почти по касательной и следующий удар происходит через большой промежуток времени. Из-за этого производные очень велики, что не позволяет корректно рассчитать якобиан. Также в приближенной системе (10) присутствуют аттракторы с малой скоростью (рис. 4, траектории 1, 2 и 3), из-за чего наблюдаются предельные скорости. При большой скорости в некоторых случаях появляются ускоряющиеся траектории (рис.4, траектории 4 и 5). Если предположить, что исходная система (5) является возмущением приближенной системы (10), то это может быть первопричиной появления в системе предельной скорости.

Рис. 4. Фазовая проекция ведомой системы (10) при параметрах A = 2, B = 0.02, C = 0.05 и начальных значениях $\Omega_0 = 1.0, \psi_0 = 0$ 1. $\alpha_0 = 0.05\pi, \varphi_0 = 0$; 2. $\alpha_0 = 0.33\pi, \varphi_0 = 0$; 3. $\alpha_0 = 0.41\pi, \varphi_0 = 0$; 4. $\alpha_0 = 0.382\pi, \varphi_0 = -0.6$; 5. $\alpha_0 = 0.41\pi, \varphi_0 = -1.8$.

Заключение

Таким образом, в данной работе была рассмотрена система, которая является модифицированной моделью Теннисона-Либермана-Лихтенберга. В ходе исследования средней по ансамблю скорости было выявлено, что в системе может появляться эффект типа демона Максвелла в бильярде, из-за которого в системе появляется критическое значение начальной скорости, и если начальная скорость ниже этого значения, то скорость стремится к предельному значению, иначе скорость начинает неограниченно расти. Предельная скорость на самом деле является квази-постоянной и может сильно нарастать со временем. В такой ситуации считается, что эффекта в системе нет.

Было получено более простое отображение, в котором проявляется эффекты, которые наблюдаются в исходной системе. Исследование якобиана и старшего Ляпуновского показателя при одних и тех же параметрах выявило сосуществование нескольких динамических режимов при разных начальных условиях. Были обнаружены области начальных условий, в которых могут возникать полёты Леви. Интересный и то, что при малой скорости мы наблюдаем аттракторы с малой скоростью, из-за чего наблюдаются предельные скорости. А при большой скорости возникают режимы неограниченного роста скорости.

11

Список использованной литературы

- 1. Д.И. Трубецков «Введение в синергетику. Хаос и структуры». М.: URSS, 2018.
- 2. Г. Шустер «Детерменированный хаос». М.:Мир, 1988, 250 с.
- 3. Кузнецов С.П. Динамический хаос. М.: Физматлит, 2006. 356 с.
- 4. Ya.G. Sinai, Russian Math. Surv. 25, 137 (1970)
- 5. Биркгоф Д. Динамические системы. Ижевск: Изд. дом "Удм. ун-т", 1999.
- 6. Крылов Н.С. Работы по обоснованию статистической физики (М.-Л.: Изд-во А Н СССР, 1950)
- 7. Бунимович Л. А., в сб. Итоги науки и техники (Динамические 86 системы, Т. 2, Сер. Современные проблемы математики. Фундаментальные направления) (М.: ВИНИТИ, 1985)
- Лоскутов А.Ю., Рябов А.Б., Акиншин Л.Г. // ЖЭТФ. 1999. Т. 116. С. 1781.
- Fermi E. On the origin of the cosmic radiation // Phys. Rev. 1949. Vol. 75. P. 1169.
- 10.А.Ю. Лоскутов, А.Б. Рябов. Системы бильярдного типа и ускорение Ферми. // Изв. вузов «ПНД», т. 16, № 5, 2008.
- 11. Лоскутов А.Ю. Динамический хаос. Системы классической механики. // Успехи физических наук, 2007, т.177, №9, 27 с.
- 12.А. Лихтенберг, М. Либерман «Регулярная и стохастическая динамика». М.:Мир, 1984, 529 с.
- 13.Д.И. Трубецков «Введение в синергетику. Колебания и волны». М.: URSS, 2012.
- 14.André L.P. Livorati, Alexander Loskutov, Edson D. Leonel. A peculiar Maxwell's Demon observed in a time-dependent stadium-like billiard. // Physica A v. 391, i. 20, 2012
- 15.С. В. Гонченко, Д. В. Тураев О трех типах динамики и понятии аттрактора. // Труды МИАН, т. 297, с. 133–157, 2017
- 16.Заславский Г. М. Физика хаоса в гамильтоновых системах. // Институт компьютерных исследований, 2004