МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Кафедра генетики

ОЦЕНКА КОМБИНАЦИОННОЙ СПОСОБНОСТИ НЕКОТОРЫХ ЛИНИЙ КУКУРУЗЫ ГАПЛОИДНОГО ПРОИСХОЖДЕНИЯ

АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ

студентки 4 курса 422 группы направления 06.03.01 Биология биологического факультета Шахгелдян Элады Самвеловны

Научный руководитель ст. преподаватель

*Дтб- 21.06.22*г. О. В. Гуторова

Зав. кафедрой генетики д.б.н., доцент

gel 21.06.222. О. И. Юдакова

Введение. Кукуруза одна из самых распространенных культур в мировом земледелии. Среди возделываемых растений она стоит на втором месте по валовым сборам зерна и на третьем – по посевным площадям в мире [1].

За последние 65 лет площади посева кукурузы увеличилась с 87 до 146 млн. га, валовое производство зерна возросло на 62%, а средняя урожайность в мире повысилась с12,7 до 46,9 ц/га. Расширение посевов кукурузы и повышение ее урожайности — результат селекционного прогресса. Существенную роль в росте урожайности гибридов кукурузы играет ее высокая пластичность и широкий генетический полиморфизм исходного селекционного материала [2, 3].

Успех улучшения кукурузы путем селекции в первую очередь определяется генофондом самоопыленных линий, обладающих комплексом полезных хозяйственных характеристик и свойств [4]. Выбор исходного материала, который должен соответствовать селекционным требованиям, очень важен для усиления эффекта гетерозиса при скрещивании [5].

Использование линий с высокой комбинационной способностью в качестве компонента скрещивания по основным хозяйственным характеристикам может способствовать повышению эффективности гибридизации [6, 7].

Создание коммерческих сортов и гибридов кукурузы является важной селекционно-генетической задачей. Ее успешное решение во многом зависит от уровня исследований. Знание природы генетического контроля количественных и качественных показателей важно при разработке селекционных программ для создания новых гибридов. Результаты оценки комбинационной способности позволяют проводить целенаправленный подбор компонентов скрещиваний.

Среди наиболее важных характеристик самоопыленных линий кукурузы комбинационная способность, в конечном счете, является самой важной. Практически, селекция представляет собой постоянный поиск

родительских форм с высокой комбинационной способностью. В связи с этим актуальными являются вопросы формирования и изучения исходного материала, создания линий с высокой комбинационной способностью, повышения эффективности селекционных работ.

Цель исследования — изучение комбинационной способности новых самоопыленных линий кукурузы гаплоидного происхождения, созданных на основе генетически разнообразного исходного материала для использования лучших из них в селекции высокогетерозисных гибридов. В соответствии с поставленной целью были определены следующие задачи:

- 1. Провести анализ самоопыленных линий и простых гибридов F_1 по хозяйственно-ценным параметрам.
- 2. Оценить общую и специфическую комбинационную способности линий кукурузы гаплоидного происхождения.
- 3. Определить генетические компоненты и провести анализ генетического контроля при выявлении характера наследования ряда количественных признаков.
- 4. Выделить в системе диаллельных скрещиваний перспективные селекционные комбинации.

Структура и объем работает. Работа изложена на 56 страницах машинописного текста и включает 6 разделов: введение, обзор литературы, экспериментальную часть, заключение, выводы, список использованных источников, содержащий 73 наименования.

Основное содержание работы. Полевые опыты проводились в пригороде г. Саратова на опытном поле ФГБНУ РосНИИСК «Россорго». Обработка данных осуществлялась на базе кафедры генетики Саратовского государственного университета. В качестве материала для исследования послужили 6 самоопыленных линий кукурузы и простые гибриды (30 комбинаций), полученные по полной диаллельной схеме.

Ход работы

Биометрические измерения линий включали в себя: определение высоты растения, высоты прикрепления нижнего початка, длины метелки, диаметра стебля и площади листовой поверхности растения.

Параметры – длина стебля, высота заложения початка, длина метелки, измеряли с помощью рулетки и 3-х метровой линейки. Определение диаметра стебля производились с помощью штангенциркуля.

Для определения площади листа использовали геометрический способ расчета площади листьев кукурузы, заключающийся в искусственном приближении формы листа к простейшей геометрической фигуре — четырехугольнику, треугольнику. Листовую поверхность определяли путем перемножения наибольшей ширины листа на ее длину и коэффициент. В качестве коэффициента использовали 0,75.

Полученные опытные данные были подвергнуты математической обработке с помощью компьютерных программ Agros 2.09 и Excel.

Результаты и обсуждение

Анализ данных позволил выявить значение морфометрических параметров исследуемых линий и среднегрупповые показатели их гибридов (таблица 1). При этом выявлено варьирование признаков у линий в следующих пределах: длина стебля — 129,9-186,5 см; высота заложения нижнего початка — 34,4-78,3 см; длина метелки — 31,7-52,0 см; диаметр стебля — 1,37-1,90 см; площадь листовой поверхности растения — 2122,4-3383,4 см².

Изменчивость среднегрупповых показателей гибридов колебалась в пределах: 177,2-198,5 см по длине стебля, 63,6-81,4 см по высоте прикрепления нижнего початка, 46,3-56,1 см по длине метелки, 1,81-2,10 смпо диаметру стебля, 3832,5-4161,0 см² по площади листовой поверхности растения (рисунок 1).

Таблица 1 — Морфометрические параметры гомозиготных линий кукурузы и среднегрупповые значения гибридов

Линия	Длина стебля, см		Высота заложения нижнего початка, см		Длина метелки, см		Диаметр стебля, см		Площадь листовой поверхности растения, см ²	
	P*	F*	P*	F*	P*	F*	P*	F*	P*	F*
ГЛ 1	129,9	177,2	34,4	63,6	45,9	51,8	1,46	1,81	2595,9	3922,8
ГЛ 2	163,1	181,7	53,6	70,5	48,4	53,4	1,76	2,10	3343,1	4161,0
ГЛ 3	186,5	194,0	64,9	81,4	42,5	46,3	1,90	1,87	3383,4	3996,9
ГЛ 4	160,8	182,8	78,3	76,4	31,7	48,5	1,64	1,87	2908,5	3900,0
ГЛ 5	166,7	198,5	56,7	80,0	38,0	49,3	1,37	1,94	2122,4	4108,8
ГЛ 6	172,7	177,5	52,3	67,9	52,0	56,1	1,66	1,96	2874,4	3832,5
Среднее значение	163,3	185,3	56,7	73,3	43,1	50,9	1,63	1,92	2871,3	3970,4

^{*}Примечание: Р – среднее значение линии, F – среднегрупповое значение гибридов

Наиболее высокие растения (более 180 см) выявлены в следующих комбинациях скрещиваний: ГЛ 1хГЛ 3, ГЛ 1 х ГЛ 5, ГЛ 2 х ГЛ 4, ГЛ 2 х ГЛ 6, ГЛ 3х ГЛ 2, ГЛ 3х ГЛ 4, ГЛ 3 х ГЛ 5, ГЛ 4 х ГЛ 5, ГЛ 5 х ГЛ 2, ГЛ 6 х ГЛ 6, ГЛ 6 х ГЛ 6 х

Высокое прикрепление початка установлено у линий – ГЛ 3, ГЛ 4, ГЛ 5, ГЛ 6 и у всех гибридов. Показатель высоты прикрепления початка менее 50 см не выявлен ни у одного их гибридов.

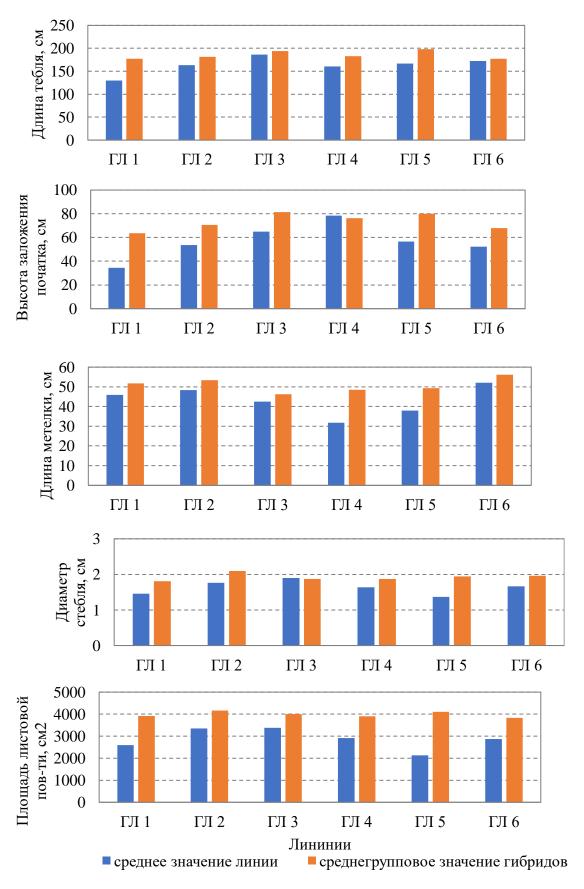


Рисунок 1 — Варьирование морфометрических параметров гаплоидных линий кукурузы и среднегрупповых значений гибридов

Таблица 2 – Эффекты ОКС и дисперсия СКС по морфометрическим показателям линий кукурузы

	Длина стебля		Высота заложения нижнего						Пло	ощадь
Линия					Длина метелки		Диаметр стебля		листовой	
									поверхности	
			початка						растения	
	ОКС	СКС	ОКС	СКС	ОКС	СКС	ОКС	СКС	ОКС	СКС
ГЛ 1	-16,3	53,9	-11,6	16,3	2,4	5,5	-0,10	0,008	-30,3	105298,7
ГЛ 2	-1,6	94,9	-1,0	42,3	2,4	22,5	0,13	0,010	149,9	234389,7
ГЛ 3	4,9	295,8	2,5	56,0	-3,2	12,7	0,04	0,007	145,9	134160,0
ГЛ 4	7,0	203,1	10,5	42,1	-3,8	6,8	-0,05	0,005	-69,7	195936,8
ГЛ 5	10,2	191,2	3,4	50,8	-2,4	10,0	-0,04	0,011	-41,2	172405,1
ГЛ 6	-4,2	292,0	-3,8	28,5	4,7	17,7	0,01	0,014	-154,6	70900,4
F	59,4*	33,9*	73,8*	19,6*	44,5*	13,0*	8,13*	5,16*	5,47*	20,81*
HCP _{0,05}	4,98		3,456		2,16		0,11		208,7	

Общая комбинационная способность (ОКС) выражает среднюю ценность линии в гибридных комбинациях с ее использованием и измеряется средним значением отклонения признака у всех ее гибридов F₁ от общего среднего по всем формам диаллельной схемы. В ходе анализа результатов оценок ОКС самоопыленных линий кукурузы по признаку «длина стебля» отметим, что высокие показатели эффектов ОКС при $HCP_{0.05} = 4,978$ имеют линии:ГЛ 3, ГЛ 4, ГЛ5 (таблица 2). При этом линия ГЛ 5 характеризуется низким значением дисперсии СКС, это указывает на то, что гибриды с участием данной линии имеют примерно одинаковую выраженность признака. Эти линии представляют несомненную практическую ценность как исходный материал для гетерозисной селекции. Высокий уровень эффекта ОКС у этих линий сочетается со значительным вкладом дисперсии СКС, из чего можно сделать вывод, что высокая ОКС данных линий – результат существования комбинаций, значительно превосходящих среднее значение и гибридов с низким значением длины стебля. Самоопыленные линии ГЛ1, ГЛ2 с низкими показателями эффекта ОКС и дисперсии СКС по признаку длины стебля не желательно использовать в селекции на повышение признака и подлежат выбраковыванию.

Различия изучаемого материала по общей И специфической комбинационной способности оказались высоко значимы заложения початка, длине метелки, диаметру стебля. Высокий эффект ОКС отмечен у линий ГЛ 3, ГЛ 4, ГЛ 5 по высоте заложения початка, линии ГЛ 1, ГЛ 2, ГЛ 6 по длине метелки, линии ГЛ 2 по диаметру стебля. Низкие показатели ОКС и дисперсии СКС линий ГЛ 1 и ГЛ 6 по высоте заложения початка указывают на то, что данные линии нежелательно использовать в селекции на повышение выраженности признака. Показатель диаметра стебля указывает на устойчивость растений к полеганию, особое внимание стоит уделить линии ГЛ 2, которая характеризуется высоким эффектом ОКС и средним значением дисперсии СКС. Показатель НСР_{0.05} по площади листовой поверхности растения не позволяет группировать линии по эффектам ОКС на высокие и низкие.

Наряду с выявлением общих закономерностей наследования хозяйственно-ценных признаков кукурузы в гибридах F_1 , необходимо знание генетических свойств линий, которое дает представление о генных взаимодействиях и позволяет более рационально построить селекционную модель для получения гибридов с заданными свойствами.

Дисперсионный анализ полной диаллельной таблицы позволяет проводить генетический анализ независимо от наличия или отсутствия реципрокных различий и определить достоверность генетических компонентов, отражающих действие аддитивных и неаддитивных эффектов генов. С этой точки зрения для получения информации об основных генетических компонентах дисперсионный анализ по Наутап, на основе данных полной диаллельной таблицы, по мнению исследователей, является наилучшим.

Дисперсионный анализ величин Wr-Vr показал, что аддитивнодоминантная модель адекватна: по длине стебля — при исключении линий ГЛ2, ГЛ 6; высоте заложения початка — ГЛ 6; площади листовой поверхности линий ГЛ 3, ГЛ 5. Эпистатических эффектов не выявлено в детерминации длины метелки и диаметра стебля.

Таблица 3 — Компоненты генетической дисперсии по морфометрическим параметрам исследуемых линий кукурузы

		Высота			Площадь
Компонент	Длина	заложения	Длина	Диаметр	листовой
Компонент	стебля	нижнего	метелки	стебля	поверхности
		початка			растения
D	512,4*	300,3*	49,8*	0,04*	70422,8
F	-282,3	-174,4	17,1	0,03	245072,3
H_1	2712,4*	737,4*	110,1*	0,13*	1660168,3*
H_2	1903,6*	596,3*	96,6*	0,11*	1440961,3*
h	3287,5*	934,4*	165,2*	0,22*	1642773,5*
Е	40,4*	28,0*	9,1*	0,03*	75669,5
m11-m10	28,80	15,43	6,5	0,24	651,8
$\sqrt{\text{H}_1/\text{D}}$	2,3	1,57	1,49	1,87	4,85
H ₂ /4H ₁	0,18	0,20	0,22	0,22	0,22
h/H ₂	1,73	1,57	1,71	2,09	1,14
r =	-0,97	-0,72	-0,32	-0,79	-0,77

отрицательная Также. опыте отмечается корреляция межлу выраженностью признака и доминированием у родительских линий: -0,97 (длина стебля), -0,72 (высота заложения початка), -0,32 (длина метелки), -0,79 (диаметр стебля), -0,77 (площадь листовой поверхности) (таблица 3). Существенно значимые показатели компонентов доминирования (H₁, H₂), по абсолютной величине превышают значения компонента характеризующего аддитивное действие генов по длине стебля, высоте заложения початка, длине метелки, диаметру стебля, площади листовой поверхности, что говорит о преобладании доминантных эффектов над аддитивными. Поскольку оценки H_1 и H_2 не равны, можно сделать вывод о неравномерном распределении доминантных и рецессивных аллелей между Доминирование родительскими линиями. ПО изучаемым параметрам направлено в сторону родительских форм с большей выраженностью признака (m11-m10>0). Исходя из того, что отношение $\sqrt{H_1/D}$ значительно больше 1, можно сделать заключение о том, что в наследовании длины стебля и высоты прикрепления початка у изучаемого набора линий преобладает сверхдоминирование, которое в разных локусах варьирует незначительно, поскольку $0.5F/\sqrt{H_1/D}$ стремится к единице, и наблюдается гетерозис $-\sqrt{H_1/D} > 1$.

Существенно влияние на проявление исследуемых признаков оказывал паратипический компонент дисперсии условий возделывания (Е). Значение отношения H₂/4H₁ меньше теоретического значения (0,25), что указывает на неравномерное распределение аллелей с положительными и отрицательными эффектами. Анализ компонентов указывает на то, что в зависимости от условий выращивания, на проявление длины стебля влияют 1-2 гена или групп генов, высоты заложения початка — 1-2, длины метелки — 1-2, диаметра стебля — 2-3, площадь листовой поверхности — 1-2.

Выводы

- 1) Проведен анализ самоопыленных линий и простых гибридов F_1 по таким хозяйственно-ценным параметрам, как высота прикрепления нижнего початка, длина метелки, диаметр стебля и площадь листовой поверхности растения.
- 2) Оценка комбинационной способности исследуемых линий по морфометрическим параметрам позволяет предположить, что линии ГП 4, ГЛ 3, ГЛ 5 возможно использовать при получении гибридов, формирующих длинный стебель и высокое расстояние от почвы до початка. Особое внимание стоит уделить линии ГЛ 2, характеризующейся высоким эффектом ОКС и средним значением дисперсии СКС по диаметру стебля, что возможно использовать в селекции на устойчивость к полеганию.
- 3) Существенно значимые показатели компонентов доминирования (H₁, H₂), по абсолютной величине превышают значения компонента D, характеризующего аддитивное действие генов по длине стебля, высоте прикрепления початка, длине метелки, диаметру стебля, площади листовой поверхности растения. Доминирование по изучаемым параметрам направлено в сторону родительских форм с большей выраженностью признака.
- 4) Рекомендуется включение в программу скрещиваний новых самоопыленных линий с высокой общей и специфической комбинационной способностью ГЛ 3, ГЛ 4, ГЛ 5.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1 Вербицкая, Н. М. Интенсификация возделывания кукурузы на зерно / Н. М. Вербицкая. – М. : ВНИИТЭИагропром, 1988. – 49 с.
- 2 Перспективная ресурсосберегающая технология производства кукурузы на зерно: Метод. рек. М. : ФГНУ «Росинформагротех», 2009. 72 с.
- 3 Анипенко, Л. Н. Оценка эффективности возделывания сельскохозяйственных культур по критерию энергозатрат: учеб.-метод. пособие / Л. Н. Антипенко // Зерноград : ФГОУ ВПО АЧГАА, 2007. 56 с.
- 4 Создание, оценка, классификация и использование самоопыленных линий скороспелой кукурузы / С. И. Мустяца [и др.] // Материалы научно-практической конференции «Институт растениеводства «Порумбень» 40 лет научной деятельности». Paskani : Кукуруза и сорго, 2014. С. 70-98.
- 5 Супрунов, А. И. Успехи в селекции кукурузы / А. И. Супрунов // Земледелие. 2014. № 3. С. 5-6.
- 6 Горбачева, А. Г. Изучение комбинационной способности новых самоопыленных линий кукурузы селекции института / А. Г. Горбачева, Е. Г. Корниенко, Орлянский Н. Н. // Материалы научно-практической конференции «Селекция, семеноводство, производство зерна кукурузы». Пятигорск, ВНИИ кукурузы, 2002. С. 45-54.

7 Combining ability analysis in complete diallel cross of waxy corn for starch pasting viscosity characteris-tics / D. Ketthaisong [et al.] // Scientia Horticulturae. – 2014. – Vol. 175. – P. 229-235.

J. Coop