
МИНОБРНАУКИ РОССИИ
Федеральное государственное бюджетное образовательное учреждение

высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ
ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ИМЕНИ Н.Г.ЧЕРНЫШЕВСКОГО»

Кафедра математической кибернетики и компьютерных наук

БИБЛИОТЕКА ДЛЯ СОЗДАНИЯ КОМПИЛЯТОРОВ

АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ

студента 4 курса 451 группы
направления 09.03.04—Программная инженерия
факультета КНиИТ
Дунаева Павла Дмитриевича

Научный руководитель
зав. к. техн. пр., к. ф.-м. н., доцент И.А. Батраева

Заведующий кафедрой
к. ф.-м. н., доцент С. В.Миронов

Саратов 2022

СОДЕРЖАНИЕ

ВВЕДЕНИЕ . 3
1 Теоретическая часть . 4

1.1 Лексический анализ . 4
1.2 Синтаксический анализ . 5
1.3 Семантический анализ . 6
1.4 Генерация целевого кода . 7

2 Практическая часть . 8
2.1 Обзор библиотеки CompileLib . 8
2.2 Синтаксический анализ . 8
2.3 Семантическая сеть . 10
2.4 Backend компилятора: язык EmbeddedLanguage . 11
2.5 Процесс компиляции кода на языке EmbeddedLanguage 13
2.6 Пример компилятора . 14

ЗАКЛЮЧЕНИЕ . 15
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ . 16

ВВЕДЕНИЕ

Разработка компилятора представляет собой сложную задачу, требующей
знаний в различных областях научного знания, а также написания большого
количества сложного кода. Сегодня разработчик может воспользоваться помо-
щью различных инструментов, упрощающих разработку трансляторов, начиная
с генераторов синтаксических анализаторов и заканчивая библиотеками кодо-
генерации. Эти инструменты имеют различное применение: одни представляют
собой сложныефреймворки, обладающие большимфункционалом и требующие
зачастую тонкой настройки, что делает их привлекательными, когда речь идёт о
серьёзной промышленной разработке, ориентированной на рынок и предусмат-
ривающей долгосрочную поддержку. Другие библиотеки предоставляют неболь-
шой функционал, ориентированный прежде всего на реализацию трансляторов
предметно-ориентированных языков, роль которых обычно не выходит за рам-
ки одного проекта. Синтаксический анализ и кодогенерация реализуется всегда
разными инструментами, что, с одной стороны, даёт разработчику возможность
более гибкого проектирования архитектуры компилятора, но, с другой стороны,
может отталкивать новичков, желающих попробовать свои силы в разработке
собственного компилятора.

Таким образом, существует потребность в инструменте, подходящем для
первых опытов в разработке компилятора. Подобные средства могут при этом
пригодиться и профессионалам, если есть необходимость быстрого создания
прототипа компилятора. Такой инструмент может не обладать большой гибко-
стью настройки, но должен быть простым в использовании и покрывать так или
иначе все компоненты компилятора.

Целью данной работы является создание простой библиотеки для созда-
ния компилятора, включающей в себя средства для упрощения синтаксического
анализа, семантического анализа и кодогенерации. В ходе работы были постав-
лены следующие задачи:
— изучить теорию генерации синтаксических анализаторов;
— исследовать возможности автоматизации семантического анализа;
— изучить принципы генерации целевого кода;
— реализовать на основе полученных знаний библиотеку для создания ком-

пилятора под язык программирования C#.

3

1 Теоретическая часть
1.1 Лексический анализ
Одним из способов задания лексики языка являются регулярные выра-

жения. Регулярное выражение над алфавитом Σ представляет собой формулу,
атомарными частями которой служат 𝑎 ∈ Σ — символы алфавита, представля-
ющие множества из одного символа {𝑎} — и 𝜖 — пустая строка — и в которой
допустим ряд теоретико-множественных операций. Регулярное выражение 𝑟 за-
даёт язык 𝐿(𝑟), который может быть представлен этой формулой. [1]

Регулярное выражение может быть преобразовано в распознаватель свя-
занной с ним лексемы — недетерминированный конечный автомат (НКА). [2]
В ходе работы была разработана своя модификация НКА — НКА с промежу-
точным алфавитом.

НКА с промежуточным алфавитом называется семёрка

𝑀 = (𝑄,𝑈,Σ, 𝛾, 𝛿, 𝑞0, 𝐹),

где
— 𝑄— конечное множество состояний автомата;
— 𝑈 — конечное множество, называемое промежуточным алфавитом;
— Σ — конечное множество, входной алфавит;
— 𝛾 — отображение Σ → 𝒫(𝑈), называемое функцией конвертации, оно

неоднозначно переводит входной алфавит в промежуточный;
— 𝛿—отображение𝑄×𝑈 → 𝑄∪{∅} (подразумевается, что ∅ /∈ 𝑄), называ-

емое функцией переходов, оно однозначно изменяет состояние автомата
в зависимости от предыдущего состояния и символа промежуточного ал-
фавита, переход в ∅ означает, что для данной комбинации аргументов
функция не определена;

— 𝑞0 — начальное состояние автомата;
— 𝐹 — множество конечных состояний автомата.

Автомат работает следующим образом: когда на вход поступает очеред-
ной символ 𝜎 ∈ Σ, он преобразуется в один из символов 𝑢 ∈ 𝛾(𝜎), состояние
автомата 𝑞𝑖 изменяется на 𝑞𝑖+1 = 𝛿(𝑞𝑖, 𝑢). Автомат принимает строку 𝑠 тогда и
только тогда, когда, будучи запущенным в состоянии 𝑞0 и полностью прочитав
строку 𝑠, автомат может перейти в одно из конечных состояний.

4

Каждому такому автомату соответствует обычный НКА
𝑀 ′ = (𝑄,Σ, 𝛿′, 𝑞0, 𝐹), где 𝛿′(𝑞, 𝜎) =

⋃︀
𝑢∈𝛾(𝜎)

{𝛿(𝑞, 𝑢)}).

Использование проиежуточного алфавита позволяет существенно сокра-
тить количество хранимых переходов.

Для преобразования регулярного выражения в обычный НКА существует
рекурсивный алгоритм. [2] Он может быть легко адаптирован для задачи полу-
чения НКА с промежуточным алфавитом из регулярного выражения, что было
сделано в ходе работы.

Разбиение входной последовательности символов на лексемы может осу-
ществляться различными способами. В работе используется следующий: опре-
деляется наибольший префикс входной последовательности, который является
корректной лексемой, определяется её тип (если возможно выявить несколь-
ко типов, берётся тип с наибольшим приоритетом), данная лексема отделяется
от исходной строки, оставшаяся строка обрабатывается циклически таким же
образом до тех пор, пока строка не станет пустой или не будет возможности
выделить непустую корректную лексему.

Таким образом, в качестве способа задания лексики языков были выбраны
регулярные выражения, а в качестве распознователя, в который они преобразу-
ются, используется собственная модификация недетерминированного конечно-
го автомата — НКА с промежуточным алфавитом.

1.2 Синтаксический анализ
Синтаксис языка программирования может быть задан с помощью фор-

мальной грамматики. Грамматикой называется четвёрка 𝐺 = (𝑁,Σ, 𝑃, 𝑆), где
𝑁 — конечное множество нетерминальных символов, Σ (Σ ∩𝑁 = ∅) — множе-
ство терминальных символов, P — конечное множество правил (продукций) —
конструкций вида 𝛼 → 𝛽, где 𝛼 ∈ (𝑁 ∪ Σ)*𝑁(𝑁 ∪ Σ)* и 𝛽 ∈ (𝑁 ∪ Σ)*, 𝑆 ∈ 𝑁

— начальный символ грамматики. Если все правила 𝑃 имеют вид 𝐴 → 𝛽, где
𝐴 ∈ 𝑁 , то грамматика называется контекстно-свободной. Грамматика рекур-
сивно задаёт язык следующим образом. Строка называется выводимой, если
она удовлетворяет следующим правилам:

1. 𝑆 — выводимая цепочка;
2. Если 𝛼𝛽𝛾 — выводимая цепочка, и (𝛽 → 𝛿) ∈ 𝑃 , то 𝛼𝛿𝛾 — выводимая

цепочка.

5

Грамматика𝐺 задаёт язык𝐿(𝐺), состоящий из множества цепочек 𝑠 ∈ Σ*,
выводимых 𝐺. [2]

Пусть синтаксис языка задан таким способом. Одной из разновидно-
стей синтаксического анализа является анализ «перенос/свёртка» (далее ПС-
анализ). Он применяется для работы только с языками, заданными контекстно-
свободными грамматиками. Анализаторы, построенные по данному принципу,
имеют стек для хранения символов грамматики. Входная последовательность
читается слева направо. Изначально стек пуст, ни один из символов входной по-
следовательности не прочитан. В процессе сканирования анализатор ноль или
более раз переносит символы из входной последовательности в стек, пока не
будет готов выполнить свёртку — замену 𝑛 верхних символов стека𝑋1, . . . , 𝑋𝑛

на один другой символ 𝑌 , если существует продукция 𝑌 → 𝑋1, . . . , 𝑋𝑛. Кро-
ме переноса и свёртки, анализатор может принять строку (успешно завершить
синтаксический анализ) или остановить анализ с ошибкой, возможно запустив
некоторую процедуру восстановления после ошибки. [1]

Главная проблема ПС-анализа заключается в том, чтобы определить, что
необходимо делать в каждый конкретный момент времени: перенос, свёртку,
завершение анализа или сигнал об ошибке. Одним из возможных решений
является использование LR-анализаторов, принимающих решение с помощью
автомата в качестве управляющей структуры данных. LR-анализаторы имеют
множество разновидностей, в работе используется LR(1)-анализатор.

Таким образом, в качестве способа задания синтаксиса языков были вы-
браны грамматики, а в качестве анализатора используются LR(1)-автоматы.

1.3 Семантический анализ
Семантический анализатор использует построенные в ходе синтаксиче-

ского анализа структуры данных для проверки исходной программы на семан-
тическую (смысловую) согласованность с определением языка. Он также соби-
рает информацию о типах и сохраняет её для последующего использования в
процессе генерации промежуточного кода. [1]

Объекты, встречающиеся в коде, такие как переменные, функции, классы
и т. д., может быть удобно организовать в семантическую сеть. Семантическая
сеть—это граф, дуги которого представляют собой различного рода отношения
между вершинами, представляющими объекты сети. [3] В качестве отношений
можно выбрать, например, вложенность объектов (например, это отношение

6

между классом и его методами, отношение между локальной областью види-
мости и локальной переменной), наследование классов и т. п.. С помощью по-
иска по семантической сети могут быть решены, например, задачи связывания
встреченного идентификатора с конкретным объектом (переменной, парамет-
ром, полем и т.д., тем более если в одной и той же области видимости могут быть
доступны без учёта перекрытия друг друга объекты с одинаковыми именами).

Таким образом, в качестве вспомогательного инструмента для семанти-
ческого анализа пользователю может быть предложена модель семантической
сети с возможностью поиска по ней необходимых объектов.

1.4 Генерация целевого кода
Прежде, чем сгенерировать целевой код, компилятор обычно строит неко-

торое внутреннее представление программы в виде промежуточного кода, над
которым перед трансляцией в целевой обычно производятся дополнительные
действия, такие как, например, оптимизация. [4] Компилятор может поддер-
живать несколько различных промежуточных кодов, отличающихся уровнями
абстракции, переводя код программы из одного промежуточного представле-
ния в другое. Одним из возможных промежуточных представлений является
трёхадресный код, в котором каждая операция представляется в виде четвёр-
ки <операция, источник1, источник2, приёмник> или тройки <операция,

источник, приёмник>. [5]
В качестве целевого кода для модуля библиотеки, отвечающего за кодоге-

нерацию, был выбран машинный код процессоров архитектуры AMD64. Архи-
тектура поддерживает регистры — специальные ячейки сверхбыстрой памяти
— и стек как отдельно выделенную часть оперативной памяти. [6]

В качестве формата исполняемого файла был выбран формат Portable
Executable, который используется в ОС семейства Windows. Файл данного фор-
мата начинается с нескольких заголовков (старый MS-DOS EXE-заголовок, ос-
новные заголовки). [7] Далее идут заголовки секций и содержимое секций. [8]

Таким образом, в качестве целевого кода для клиентских компиляторов
был выбран машинный код архитектуры AMD64, помещаемый в исполняемый
файл формата Portable Executable.

7

2 Практическая часть
2.1 Обзор библиотеки CompileLib
Библиотека имеет три модуля, представленных следующими простран-

ствами имён:
1. CompileLib.Parsing содержит классы и атрибуты, необходимые для

синтаксического анализа;
2. CompileLib.Semantics даёт доступ к вспомогательным классам для се-

мантического анализа;
3. CompileLib.EmbeddedLanguage содержит классы, с помощью которых

образован встроенный язык EmbeddedLanguage, используемый в качестве
промежуточного кода, в который может компилироваться исходный код и
который затем компилируется библиотекой в целевой машинный код.
Все три пространства имён находятся в одной DLL, однако каждый из

модулей может быть использован независимо от другого.

2.2 Синтаксический анализ
Описываемые классы принадлежат пространству имён

CompileLib.Parsing .
Синтаксический анализ осуществляется с помощьюкласса ParsingEngine .

Этот класс содержит два метода, которые анализируют входную последователь-
ность символов в виде строки или текстового файла.

Объект ParsingEngine является представлением уже готового синтак-
сического анализатора. Для того чтобы сконструировать синтаксический ана-
лизатор, используется класс ParsingEngineBuilder .

Объект класса ParsingEngineBuilder создаётся конструктором без па-
раметров, а затем достраивается методами, задающими лексику и синтаксис
языка. Для этого класс имеет методы добавления описаний лексем и продук-
ций.

Лексика языка задаётся с помощьюметода AddToken , которыйпринимает
на вход имя лексемы и регулярное выражение, её описывающее.

Регулярные выражения практически полностью соответствуют стандарту
POSIX. [9] В целях удобства была добавлена возможность определять собствен-
ные классы символов.

Метод AddProductions принимает класс, который содержит описание

8

продукций грамматики и методы, их обрабатывающие. Каждой продукции со-
ответствует ровно один метод-обработчик. Из класса отбираются методы, кото-
рые определяются как обработчики продукций. Метод считается обработчиком
только тогда, когда он удовлетворяет определённому ряду критериев.

Разметка обработчиков осуществляется с помощью атрибутов — специ-
альной конструкцией языка C#, позволяющей снабдить элементы кода допол-
нительной информацией. [10] Атрибут SetTag , которым обязательно должен
быть помечен обработчик, задаёт имя нетерминала, находящегося в левой части
прикреплённой к методу продукции. Каждый параметр метода, кроме, возмож-
но, последнего, соответствует символу из правой части продукции. Порядок
параметров совпадает с порядком соответствующих символов правой части
продукции. Каждый параметр, кроме, возможно, последнего, должен быть по-
мечен ровно одним атрибутом, задающим символ грамматики, и не более чем
одним атрибутом, задающим повторение символов. Символ грамматики может
быть задан именем нетерминала или ключевым словом. В качестве атрибутов
повторения допускаются атрибут, который делает включение символа в продук-
цию необязательным, и атрибут, который допускает повторение символа про-
извольное количество раз. Атрибуты повторения могут охватывать несколько
символов одновременно, для этого существует атрибут продления предыдущего
атрибута повторения.

Тип параметра метода выбирается в зависимости от символа, которому
этот параметр соответствует. Если символ является терминальным, то тип па-
раметра должен быть string или Token —класс для описания лексемы, кото-
рый содержит свойства для имени типа, самой лексемы, её позиции — строки и
столбца. Тип параметра, соответствующего нетерминальному символу, должен
быть выбран таким образом, чтобы возвращаемое значение всех методов, опи-
сывающих продукции, в левой части которых находится данный символ, могло
быть передано в качестве параметра с таким типом, здесь речь идёт в основном
о простом совпадении этих типов и о наследовании классов.

Последнийпараметрметода обработчикаможет иметь отличное от осталь-
ных назначение. Если последний параметр помечен атрибутом ErrorHandler ,
то он может быть использован для восстановления анализатора после ошибок.

Собственно сборка синтаксического анализатора запускается вызовомме-
тода Create , который принимает единственное значение — имя стартового

9

символа грамматики, метод возвращает экземпляр класса ParsingEngine .
В процессе построения синтаксического анализатора может выясниться,

что по данной грамматике невозможно построить LR(1)-автомат. Тогда метод
Create выбрасывает исключение типа ParsingConflictException , в котором
подробно описывается неоднозначность.

Таким образом, синтаксис языка задаётся с помощью класса
ParsingEngineBuilder и собственных классов пользователя, в которых он
описывает синтаксис языка в виде грамматик с помощью атрибутов — специ-
альной конструкции языка C#, которыми размечаются обработчики соответ-
ствующих продукций.

2.3 Семантическая сеть
Описываемые классы принадлежат пространству имён

CompileLib.Semantics .
Объекты семантической сети представляются в виде экземпляров клас-

са CodeObject . Объекты всегда имеют собственное имя и имя типа объекта
(например, "поле" или "класс"). Объекты могут иметь атрибуты. Каждый ат-
рибут характеризуется названием и, возможно, значением (строкового типа).
Атрибут может не иметь значения, тогда становится важен факт его наличия
или отсутствия. Объекты могут иметь отношения с другими объектами. Каж-
дый объект владеет множеством пар <имя отношения, ссылка на объект>. В
классе предусмотрены методы для чтения и записи атрибутов и отношений.

Класса SemanticNetwork используется для сложного поиска по семан-
тической сети.

Основным инструментом поиска по сети является самостоятельно разра-
ботанный язык SearchLang. Основными объектами этого языка являются пра-
вила поиска. Каждое правило имеет имя, набор параметров и тело. Тело правила
определяет принцип поиска по сети, параметры — что именно ищется (напри-
мер, в качестве параметра может быть передано имя объекта или значение его
атрибута). Правило можно рассматривать как функцию, возвращающую множе-
ство найденных объектов.

Поиск всегда имеет отправную точку (ОТ) — объект, из которого запус-
кается поиск.

Тело правила состоит из одного выражения, которое описывает поиск.
Атомарными выражениями являются множества связанных с ОТ объектов, ото-

10

бранных по некоторым критериям (в частности: имени, типу, атрибуту, име-
ни отношения), и вызовы правил. Атомарные выражения связаны бинарными
операциями, среди которых есть две теоретико-множественных операции —
пересечение и объединение, а также некоторые дополнительные операции, сре-
ди которых, в частности, выделяется операция X . Y , которая для каждого
элемента множества 𝑋 применяет правило 𝑌 и объединяет результаты, что
позволяет организовывать глубокий рекурсивный поиск.

Конструктор класса SemanticNetwork принимает на вход строку-скрипт,
содержащую правила поиска. Метод Search принимает на вход ОТ, имя прави-
ла поиска и параметры, передаваемые в правило и возвращает список найденных
объектов.

Фактически класс SemanticNetwork содержит код правил в виде аб-
страктного синтаксического дерева, который затем интерпретируется.

Таким образом, для облегчения семантического анализа пользователю
предлагаются классы, обеспечивающие построение семантической сети и поиск
по ней, который осуществляется с помощью встроенного языка SearchLang.

2.4 Backend компилятора: язык EmbeddedLanguage
Язык EmbeddedLanguage служит для генерации компилятором целевого

кода. Это процедурный язык программирования. Язык реализован поверх C#,
т. е. представлен в виде библиотечных средств, о которых пойдёт речь в этом
разделе.

Описываемые классы принадлежат пространству имён
CompileLib.EmbeddedLanguage .

Ключевым классом языка является ELCompiler . С его помощью можно
определять функции, глобальные и локальные переменные, константы, инициа-
лизированные данные.

Язык EmbeddedLanguage имеет статическую типизацию. Все типы явля-
ются экземплярами класса ELType . Типы делятся на атомарные типы, типы
указателей и структуры.

Среди атомарных типов есть типы для знаковых и беззнаковых целых
чисел, для чисел с плавающей точкой и тип Void , играющий такую жу роль,
как и его аналог в языке Си. Экземпляры типов сохранены в статических read-
only полях класса ELType .

11

Структуры определяются с помощью класса ELStructType — наслед-
ника ELType . Класс имеет конструктор, в который передаются выравнивание
полей (аналог прагмы pack в компиляторах Си) и типы полей.

Перед генерацией кода необходимо создать экземпляркласса ELCompiler .
Далее будем считать, что данный экземпляр записан в переменную compiler .

Функцияопределяется вызовомметода compiler.CreateFunction . Пер-
вый параметр функции — возвращаемый тип, остальные (переменное количе-
ство) — типы параметров функции. Метод возвращает объект ELFunction ,
который в дальнейшем можно использовать для вызова функции.

Кроме определения собственных функций, можно импортировать функ-
ции из DLL. Для этого существует метод compiler.ImportFunction , который
принимает на вход имя DLL, название функции, возвращаемый тип и типы па-
раметров. Возвращаемый объект также имеет тип ELFunction и доступен для
вызова.

Для того чтобы начать или продолжить записывать тело функции f ,
необходимо вызвать метод f.Open() . Помимо объявленных пользователем
и импортированных функций всегда существует ещё одна неявно объявлен-
ная функция — точка входа, которая не возвращает значения и не прини-
мает параметры. Для записи этой функции нужно воспользоваться методом
compiler.OpenEntryPoint() .

Глобальные переменные можно объявить с помощью вызова метода
compiler.AddGlobalVariable , указав тип переменной. Практически анало-
гично определяются локальные переменные для записываемой в настоящий
момент функции — вызовом compiler.AddLocalVariable . Оба метода воз-
вращают объект типа ELVariable .

Доступ к параметрам функции f можно получить с помощью вызова
метода f.GetParameter , указав индекс параметра в 0-индексации. Параметр
также имеет тип ELVariable .

Все выражения имеют тип ELExpression . В качестве выражений допуска-
ются: глобальные и локальные переменные, целочисленные и вещественнознач-
ные константы, предопределённые массивы, различные унарные и бинарные
операции, приведение типов, разыменовывание и индексация указателей, вызо-
вы функций.

Результат каждого выражения сохраняется в отдельную локальную пере-

12

менную, т. е. может быть использован многократно, будучи вычисляемым только
один раз (на линейном участке кода).

Некоторые выражения являются экземплярами класса ELMemoryCell ,
представляя ячейки памяти. Над ними можно проводить дополнительные опе-
рации: чтение и запись значений, получение ссылки на ячейку и получение
ячейки-поля структуры.

Помимо выражений, в языке предусмотрены конструкции управления по-
током выражений. Для этого в языке предусмотрены операторы возврата из
функции, а также операторы условного и безусловного перехода, для работы
которых должны быть определены метки.

Собственно экземпляр класса ELCompiler может быть получен двумя
способами. Первый — получение его с помощью конструктора класса без па-
раметров — позволяет строить целевой код «с чистого листа». Второй — с
помощью класса ELCompilerBuilder — позволяет определить ряд полезных
функций, таких как функции для динамического выделения и освобождения
памяти, чтения и записи в консоль, которые можно использовать в целевом
коде.

Компиляция кода запускается вызовом compiler.BuildAndSave , един-
ственный параметр метода — имя файла, в который будет записан целевой код.

Такимобразом, в качестве инструмента кодогенерациипользователюпредо-
ставляется язык EmbeddedLanguage, встроенный в C# с помощью синтаксиче-
ских средств языка-хоста.

2.5 Процесс компиляции кода на языке EmbeddedLanguage
Всякий раз, когда строится какое-то новое выражение, неважно с помощью

какого метода или какой перегруженной операции, компилятор языка во внут-
реннем логе сохраняет запись о том, какое выражение с какими параметрами
было построено, происходит проверка типов.

После вызова метода BuildAndSave лог компилятора преобразуется в
промежуточный трёхадресный код QuasiAsm .

Промежуточный код QuasiAsm затем переводится непосредственно в це-
левой код — машинный код архитектуры AMD64. Прежде, чем приступить
непосредственно к генерации целевого кода, оптимизируется размер простран-
ства, выделяемого под локальные переменные. Таким образом, множество ло-
кальных переменных отображается на множество используемых программой

13

ячеек памяти.
После этого начинается непосредственная сборка целевого кода. Сборка

происходит в два прохода. Во время первого прохода код генерируется частич-
но незаполненным. Часть адресов, указываемых в командах, не заполняется,
поскольку на этапе генерации кода адреса объектов, такие как адреса функций,
инициализрованных данных и место для адреса загрузки библиотечных функ-
ций ещё не определены. Вместо заполнения этих адресов составляется таблица,
в которой указываются позиции для вставки и описание объектов, чьи адреса
нужно вставить. На основе таблицы сами адреса генерируются уже во время
второго прохода классом-сборщиком исполняемого файла, так как только на
этом этапе становятся возможным вычислить адреса всех объектов.

Таким образом, сборка целевого кода проходит несколько этапов: сначала
код на EmbeddedLanguage преобразуется во внутренний трёхадресный код, ко-
торый затем преобразуется в целевой код, проходя стадию оптимизации, на ко-
торой для каждой функции уменьшается используемое стековое пространство
за счёт отождествления локальных переменных, имеющих непересекающееся
время жизни.

2.6 Пример компилятора
С помощью разработанной библиотеки за короткое время был создан ком-

пилятор Си-подобного объектно-ориентированного языка, использующего все
её модули. С помощью средств модуля CompileLib.Parsing были описаны
лексика, синтаксис языка, поведение компилятора при синтаксическом анализе
исходного кода, в том числе при возникновении ошибок, при этом за счёт от-
сутствия необходимости реализовывать разбор исходного кода самостоятель-
но, было сэкономлено много времени, включая время на отладку алгоритма
разбора. С помощью средств модуля CompileLib.Semantics была построена
семантическая сеть из объектов исходного кода, по которой, в частности, приме-
няется поиск объектов в локальной области видимости, реализованный на языке
SearchLang, код на котором позволил лаконично описать параметры поиска. С
помощью языка EmbeddedLanguage была реализована генерация целевого кода,
которая за счёт высокоуровневых средств EmbeddedLanguage позволила пол-
ностью абстрагироваться от целевой архитектуры. Реализованный компилятор
успешно транслирует исходный код в машинный.

14

ЗАКЛЮЧЕНИЕ

Таким образом, в ходе работы были решены следующие задачи:
— изучены LR(1)-автоматы как средство синтаксического анализа и способ

их генерации на основе описания грамматики языка;
— автоматизирован поиск в семантических сетях, элементами которых яв-

ляются элементы исходного кода;
— исследована структура исполняемого файла формата Portable Executable

и изучены возможности его генерации;
— реализована библиотека CompileLib для языка C#, которая существен-

но упрощает синтаксический анализ, семантический анализ и генерацию
целевого кода, что было показано на примере разработанного в качестве
примера компилятора.

15

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1 Ахо, А. Компиляторы: принципы, технологии и инструментарий / А. Ахо,
М. Лам, Р. Сети, Дж. Ульман.— Москва: Вильямс, 2008.

2 Ахо, А. Теория синтаксического анализа, перевода и компиляции / А. Ахо,
Дж. Ульман.— Москва: МИР, 1978.

3 Intuit: курс «Интеллектуальные робототехнические системы»
[Электронный ресурс]. — URL: https://intuit.ru/studies/courses/
46/46/lecture/1370?page=4 (Дата обращения 01.05.2022). Загл. с экр.
Яз. рус.

4 Пратт, Т. Языки программирования: разработка и реализация / Т. Пратт,
М. Зелковец.— СПб: Питер, 2002.

5 Хантер, Р.Проектирование и конструирование компиляторов / Р.Хантер.—
Москва: Финансы и статистика, 1984.

6 AMD64 Architecture Programmer’s Manual: Volumes 1-5.— Santa Clara: Ad-
vanced Micro Devices, 2021.

7 Касперски, К. Техника отладки программ без исходных текстов / К. Кас-
перски.— СПб: БХВ-Петербург, 2005.

8 Microsoft Portable Executable and Common Object File Format Specifica-
tion.— Redmond: Microsoft Corporation, 2017.

9 The Open Group Base Specifications Issue 7, 2018 edition [Электронный
ресурс]. — URL: https://pubs.opengroup.org/onlinepubs/

9699919799/ (Дата обращения 01.05.2022). Загл. с экр. Яз. англ.

10 Metanit: Атрибуты в .NET [Электронный ресурс]. — URL: https://

metanit.com/sharp/tutorial/14.4.php (Дата обращения 01.05.2022).
Загл. с экр. Яз. рус.

16

https://intuit.ru/studies/courses/46/46/lecture/1370?page=4
https://intuit.ru/studies/courses/46/46/lecture/1370?page=4
https://pubs.opengroup.org/onlinepubs/9699919799/
https://pubs.opengroup.org/onlinepubs/9699919799/
https://metanit.com/sharp/tutorial/14.4.php
https://metanit.com/sharp/tutorial/14.4.php

	ВВЕДЕНИЕ
	Теоретическая часть
	Лексический анализ
	Синтаксический анализ
	Семантический анализ
	Генерация целевого кода

	Практическая часть
	Обзор библиотеки CompileLib
	Синтаксический анализ
	Семантическая сеть
	Backend компилятора: язык EmbeddedLanguage
	Процесс компиляции кода на языке EmbeddedLanguage
	Пример компилятора

	ЗАКЛЮЧЕНИЕ
	СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

