МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Кафедра теоретических основ компьютерной безопасности и криптографии

Униграфы и их свойства

АВТОРЕФЕРАТ

дипломной работы

студента 6 курса 631 группы специальности 10.05.01 Компьютерная безопасность факультета компьютерных наук и информационных технологий Шкатова Владимира Михайловича

Научный руководитель		
д. фм. н., доцент		М. Б. Абросимов
	22.01.2022 г.	
Заведующий кафедрой		
д. фм. н., доцент		М. Б. Абросимов
	22.01.2022 г.	

ВВЕДЕНИЕ

Теория графов является одним из наиболее динамично развивающихся разделов современной математики. Графовые модели широко применяются для моделирования различных сетей во многих прикладных задачах и в естественных науках, не меньшее применение графы находят и внутри других областей математики.

Одним из любопытных подразделов теории графов является теория степенных последовательностей, изучающая связи между графами и числовыми последовательностями их степеней. В рамках неё вводится такой объект как униграф – граф, который однозначно, с точностью до изоморфизма, определяется своей степенной последовательностью.

Данная работа развивает результаты одной из статей автора и исследует свойства униграфов, связанные с некоторыми их NP-полными инвариантами, формулируются алгоритмы для быстрого их вычисления. Помимо этого, на основе теоретического аппарата, появившегося в работах Тышкевич, в рамках работы был разработан метод генерации униграфов с заданным числом вершин.

Дипломная работа состоит из введения, 8 разделов, заключения, списка использованных источников и 5 приложений. Общий объем работы — 78 страниц, из них 40 страниц — основное содержание, включая 5 рисунков и 6 таблиц, список использованных источников из 7 наименований.

КРАТКОЕ СОДЕРЖАНИЕ

1 Основные определения

Будем называть граф *униграфом*, если не существует никакого другого неизоморфного ему графа с таким же вектором степеней.

2 Метод декомпозиции графов

Расщепляемым графом называется граф G, множество вершин которого можно разделить на два непересекающихся множества A и B, где вершины из A образуют клику, а вершины из B образуют независимое множество.

Расщепляемой тройкой называется тройка (G,A,B), где $G=(V,\alpha)$ – расщепляемый граф, A – клика в нём, B – независимое множество, $A\cup B=$ =G и $A\cap B=\emptyset$. Будем считать две тройки (G_1,A_1,B_1) и (G_2,A_2,B_2) изоморфными, если существует изоморфизм φ графов G_1 и G_2 и при этом $\varphi(A_1)=A_2, \varphi(B_1)=B_2.$

Пусть есть расщепляемая тройка (G,A,B) и произвольный граф H. Тогда композицией $F=(G,A,B)\circ H$ будем называть граф, полученным добавлением в объединение графов $G\cup H$ ребёр между каждой вершиной из A и каждой вершиной из H.

Граф F называется pазложимым, если его можно представить в виде композиции какой-либо расщепляемой тройки и какого-то графа, в противном случае граф называется p

Теорема 1 1. n-вершинный граф F с вектором степеней d разложим тогда и только тогда, когда существуют неотрицательные p и q такие, что выполняется

$$0$$

2. Пара (p,q), для которой выполняется равенство выше, называется хорошей. Каждой хорошей паре соответствует некоторое разложение F=(G,

 $A,B) \circ H$ и каждому разложению F соответствует некоторая хорошая пара.

3. Обозначим как p_0 минимальное p из всех хороших пар (p,q). Если $p_0 \neq 0$, то обозначим $q_0 := |\{i: d_i < p_0\}|$ (число вершин со степенью, меньшей p_0), если же $p_0 = 0$, то примем $q_0 := 1$. Тогда в разложении $F = (G, A, B) \circ H$ G неразложим тогда и только тогда, как соответствующая этому разложению хорошая пара (p,q) совпадает с (p_0,q_0) .

Теорема 2 (о декомпозиции). 1. Всякий граф F представим в виде $F = (G_1, A_1, B_1) \circ \ldots \circ (G_k, A_k, B_k) \circ F_0$, причем каждый граф в этом разложении неразложим (если неразложим сам F, то тогда $F_0 = F$, а расщепляемые компоненты в разложении отсутствуют). Такое разложение графа F называется каноническим.

2. Пусть даны графы F и $F^{'}$ с их каноническими разложениями $F=(G_{1},A_{1},B_{1})\circ\ldots\circ(G_{k},A_{k},B_{k})\circ F_{0}$ и $F^{'}=(G_{1}^{'},A_{1}^{'},B_{1}^{'})\circ\ldots\circ(G_{k}^{'},A_{k}^{'},B_{k}^{'})\circ F_{0}^{'}$. В этом случае $F\cong F^{'}$ тогда и только тогда, когда $F_{0}\cong F_{0}^{'}$, k=l и $\forall i:G_{i}\cong G_{i}^{'}$.

Теорема 3. Граф F является униграфом тогда и только тогда, когда в его разложении все расщепляемые графы G_i и нерасщепляемый остаток F_0 являются униграфами.

Таким образом, для того, чтобы прийти к полному описанию и алгоритму распознавания униграфов, необходимо описание неразложимых униграфов – расщепляемых и нерасщепляемых. Работа вводит описание нужных классов графов: $U_2(m,n), U_3(m), S_2(p_1,q_1;\ldots;p_r,q_r); S_3(p,q_1;q_2); S_4(p,q)$, а также операций дополнения и инверсии расщепляемых троек, и приходит к следующей классификации.

Теорема 4 (классификация униграфов). 1. Разложимыми униграфами являются все графы вида

$$(G_1, A_1, B_1) \circ \ldots \circ (G_k, A_k, B_k) \circ G$$
,

где $k \ge 1$, (G_i, A_i, B_i) независимо пробегают множество неразложимых

 $^{^{1}}$ Tyshkevich, R. Decomposition of graphical sequences and unigraphs / R. Tyshkevich // Discrete Mathematics. – 2000. – Vol. 220. – P. 201–238.

расщепляемых униграфов, G пробегает множество неразложимых нерасщепляемых графов.

2. Неразложимый нерасщепляемый граф G является униграфом тогда и только тогда, когда G или \overline{G} является одним из следующих графов:

$$C_5$$
; $mK_2(m \ge 2)$; $U_2(m, n)$; $U_3(m)$.

3. Неразложимый расщепляемый граф G является униграфом тогда и только тогда, когда G, \overline{G} , G^I или \overline{G}^I является одним из следующих графов:

$$K_1; O_1; S_2(p_1, q_1; \dots; p_r, q_r); S_3(p, q_1; q_2); S_4(p, q).$$

3 Алгоритм разложения и распознавания униграфов

В статье² приводится описание алгоритма разложения, работающего за линейное время от числа вершин в графе. На его основе можно указать следующий алгоритм распознавания униграфичности.

Алгоритм 1 (распознание униграфичности графа G).

- 1. Вычислить разложение $G=(G_1,A_1,B_1)\circ...\circ(G_l,A_l,B_l)\circ G_0$, где G_l последний расщепляемый компонент, G_0 последний нерасщепляемый компонент (может быть пустым графом).
- 2. Если G_0 не пуст, пытаться распознать его как один из классов неразложимых нерасщепляемых униграфов теоремы 4.
- 3. Для всех расщепляемых G_i пытаться распознать их как принадлежащие к одному из классов неразложимых расщепляемых униграфов теоремы 4.
- 4. Если хотя бы для одного G_i или G_0 распознание окончилось неудачно, G не униграф. Если все компоненты распознаны как униграфы, G униграф.

Распознание каждой компоненты возможно за не более чем линейное время, так как формы их векторов степеней известны.

4 Генерация униграфов

Алгоритм 2 (перечисление униграфических векторов степеней)

 $^{^2}$ Тышкевич, Р. И. Декомпозиция графов / Р. И. Тышкевич, С. В. Суздаль // Избранные труды Белорусского Государственного Университета, 2001. – Т. 6. – С. 482–500.

Вход: число n.

Выход: униграфические векторы степеней для графов с n вершинами.

Шаг 1. Создать списки basicNonSplits, basicSplits.

Шаг 2. Добавить в basicNonSplits пустой граф. Добавить в basicNonSplits все неразложимые нерасщепляемые графы с числом вершин не больше n.

Шаг 3. Добавить в basicSplits все неразложимые расщепляемые графы с числом вершин не больше n.

Шаг 4. Для каждого графа NS из basicNonSplits делать шаги 5-6. По окончанию перейти к шагу 7.

Шаг 5. Если |NS|=n, то выдать NS и вернуться к шагу 4 для следующего графа.

Шаг 6. Для всех графов S из basicSplits запускать процедуру $recEnum(S\circ NS),$ если $|S\circ NS|=|S|+|NS|\leqslant n$

Шаг 7. Все униграфы с числом вершин n перечислены, конец.

Процедура recEnum(G)

Вход: граф G.

Шаг 1. Если |G|=n, то **выдать** G и выйти из процедуры на уровень выше.

Шаг 2. Для всех графов S из basicSplits запускать процедуру $recEnum(S\circ G),$ если $|S\circ G|=|S|+|G|\leqslant n.$

5 Кликовые числа униграфов

Предложение 1. ³ Для композиции $F = (G, A, B) \circ H$, где G неразложим, справедливо: clique(F) = clique(H) + |A|.

Алгоритм 3 (быстрое вычисление кликового числа униграфов). Для произвольного униграфа F возможно вычисление кликового числа за

³Шкатов, В. М. Распознавание униграфов и быстрое вычисление их кликовых чисел / В. М. Шкатов // Проблемы теоретической кибернетики. Материалы XIX международной конференции. Под редакцией Ю. И. Журавлева. — Казанский федеральный университет, 2021. – С. 158–161.

полиномиальное время по следующему алгоритму:

- 1. Вычислить разложение $F=(G_1,A_1,B_1)\circ...\circ(G_{l-1},A_{l-1},B_{l-1})\circ G_l$, где G_l последний компонент разложения, расщепляемый или нерасщепляемый.
 - 2. Распознать все компоненты разложения как униграфы из теоремы 4.
 - 3. $clique(F) = |A_1| + \ldots + |A_{l-1}| + clique(G_l)$.

Таблица 1 — Сопоставление скорости алгоритмов вычисления кликового числа на всех униграфах

Число вершин	Число униграфов	Алг. 4	Перебор
14	70662	0,5 c.	0,9 c.
15	167834	1,4 c.	2,4 c.
16	398627	3,4 c.	6 c.
17	946402	8,5 c.	16 c.
18	2246294	21,8 c.	42,3 c.
19	5330340	54,5 c.	2 м. 4 с.
20	12647767	2 м. 15 с.	5 м. 19 с.
21	30010020	5 м. 50 с.	14 м. 17 с.

6 Хроматические числа униграфов

Предложение 2. Для композиции $F = (G, A, B) \circ H$, где G неразложим, справедливо: $\chi(F) = \chi(H) + |A|$. С учетом предложения и теорем выше, получаем следующее утверждение.

Алгоритм **4** (быстрое вычисление хроматического числа униграфов). Для произвольного униграфа F возможно вычисление хроматического числа за полиномиальное время по следующему алгоритму:

- 1. Вычислить разложение $F=(G_1,A_1,B_1)\circ...\circ(G_{l-1},A_{l-1},B_{l-1})\circ G_l$, где G_l последний компонент разложения, расщепляемый или нерасщепляемый.
 - 2. Распознать все компоненты разложения как униграфы из теоремы 4.

3.
$$\chi(F) = |A_1| + \ldots + |A_{l-1}| + \chi(G_l)$$
.

Таблица 2 – Сопоставление скорости алгоритмов вычисления хроматического числа на всех униграфах

Число вершин	Число униграфов	Алг. 5	Перебор
11	5304	0,2 c.	0,3 c.
12	12555	0,3 c.	1 м. 9 с.
13	29754	0,4 c.	_
14	70662	0,6 c.	_
15	167834	1,5 c.	_
16	398627	3,7 c.	_
17	946402	8,7 c.	_
18	2246294	22,7 c.	_
19	5330340	56,6 c.	_
20	12647767	2 м. 20 с.	_
21	30010020	5 м. 58 с.	_

7 Числа независимости униграфов

Предложение 3. Для композиции $F = (G, A, B) \circ H$, где G неразложим, справедливо: indep(F) = indep(H) + |B|.

С учетом предложения и теорем выше, получаем следующее утверждение.

Алгоритм 5 (быстрое вычисление числа независимости для униграфов). Для произвольного униграфа F возможно вычисление числа независимости за полиномиальное время по следующему алгоритму:

- 1. Вычислить разложение $F=(G_1,A_1,B_1)\circ...\circ(G_{l-1},A_{l-1},B_{l-1})\circ G_l$, где G_l последний компонент разложения, расщепляемый или нерасщепляемый.
 - 2. Распознать все компоненты разложения как униграфы из теоремы 4.
 - 3. $indep(F) = |B_1| + \ldots + |B_{l-1}| + indep(G_l)$.

Таблица 3 — Сопоставление скорости алгоритмов вычисления числа независимости на всех униграфах

Число вершин	Число униграфов	Алг. 6	Перебор
14	70662	0,6 c.	1 c.
15	167834	1,5 c.	2,7 c.
16	398627	3,7 c.	6,7 c.
17	946402	8,8 c.	18,6 c.
18	2246294	23 c.	47,4 c.
19	5330340	57 c.	2 м. 7 с.
20	12647767	2 м. 18 с.	5 м. 22 с.
21	30010020	6 м. 3 с.	14 м. 24 с.

8 Числа доминирования униграфов

Предложение 4. Пусть задан граф $F=(G,A,B)\circ H$, где G неразложим. Если |A|>0, то dom(F)=dom(G). Если же |A|=0, то dom(F)=|B|+dom(H).

Алгоритм 6 (быстрое вычисление чисел доминирования униграфов. Для произвольного униграфа F возможно вычисление числа доминирования за полиномиальное время по следующему алгоритму:

- 1. Вычислить разложение $F=(G_1,A_1,B_1)\circ...\circ(G_{l-1},A_{l-1},B_{l-1})\circ G_l$, где G_l последний компонент разложения, расщепляемый или нерасщепляемый.
- 2. Пусть k это индекс первого компонента, который не является расщепляемым графом с пустой кликой (если такого компонента не существует, что $F=O_l,\,dom(F)=l).$

3.
$$dom(F) = \sum_{i=1}^{k-1} |B_i| + dom(G_k)$$
.

Таблица 4 — Сопоставление скорости алгоритмов вычисления числа доминирования на всех униграфах

Число вершин	Число униграфов	Алг. 7	Перебор
14	70662	0,6 c.	1,7 c.
15	167834	1,5 c.	4,9 c.
16	398627	3,5 c.	14,8 c.
17	946402	8,9 c.	44,6 c.
18	2246294	22,6 c.	2 м. 15 с.
19	5330340	57,4 c.	6 м. 10 с.
20	12647767	2 м. 22 с.	17 м. 42 с.
21	30010020	6 м. 17 с.	52 м. 10 с.

ЗАКЛЮЧЕНИЕ

В ходе данной работы были расмотрен классов графов, называемых униграфами, изучены свойства четырёх их NP-полных инвариантов: кликового числа, хроматического числа, числа независимости, числа доминирования. Также был разработан алгоритм генерации униграфов с заданным числом вершин. В ходе практической работы были получены следующие результаты.

- 1. На языке Go написана программа, реализующая алгоритм разложения графов и определения униграфичности.
- 2. На языке Go реализован алгоритм генерации всех униграфических векторов степеней заданного размера.
- 3. С помощью генератора получены данные о количестве униграфов с числом вершин $n\leqslant 21$.
- 4. Теоретически обоснованы, разработаны и реализованы на Go алгоритмы быстрого вычисления для униграфов четырёх NP-полных инвариантов: кликового числа, хроматического числа, числа независимости, числа доминирования.
- 5. Произведено сравнение скорости работы различных алгоритмов вычисления кликового числа, хроматического числа, числа независимости, числа доминирования для униграфов.