МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г.ЧЕРНЫШЕВСКОГО»

Кафедра геофизики

«Оперативное выделение в процессе бурения реперов по данным ГТИ и ГИС на Восточно-Мессояхском месторождении Западной Сибири»

АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ

студентки 5 курса 531 группы заочной формы обучения		
специальность 21.03.01 Нефтегазовое дело		
профиль «Геолого-геофизический сервис нефтегазовых скважин»		
геологического факультета		
Руди Юлии Андреевны		
Научный руководитель		
кандидат геолмин.наук, доцент		К.Б. Головин
Зав. кафедрой		
кандидат геолмин.наук, доцент		Е.Н. Волкова

Введение. Бакалаврская работа посвящена проблеме использования данных ГТИ и ГИС при изучении разрезов месторождений во время бурения.

Актуальность данной проблемы имеет большое практическое значение, так как эффективное ее решение позволяет оперативно проводить расчленение разреза и корреляцию отложений.

Целью выпускной квалификационной работы стало изучение разреза скважины и выделение реперного горизонта по данным ГТИ и ГИС. Особый интерес в получении этой геолого-геофизической информации на Восточно-Мессояхском месторождении обусловлен тем, что реперы служат для сопоставления разрезов скважин, что упрощает процесс их дальнейшей корреляции.

Задачи данной работы состоят в следующем:

- 1. дать характеристику Восточно-Мессояхского месторождения;
- 2. описать комплексы методов ГТИ и ГИС применяемых для достижения поставленной цели;
- 3. провести литолого-стратиграфическое расчленение выбранного интервала по данным ГТИ и ГИС;
- 4. обосновать выделение интервала «шоколадных» глин опираясь на данные каротажных диаграмм и результаты проведенного комплекса ГТИ.

В качестве практического материала в работе используются: общие сведения о месторождении Восточно-Мессояхское и результаты ГТИ и ГИС по скважине № 6104, сводная литолого-стратиграфическая колонка по месторождению Восточно-Мессояхское, сводные планшеты ГТИ и ГИС по скважине №6104, обзорная карта месторождений углеводородного сырья Тазовского района Ямало-Ненецкого автономного округа.

В настоящей выпускной квалификационной работе было написано три раздела:

- 1 Геолого-геофизическая характеристика района работ;
- 2 Методика и объём работ;
- 3 Результаты исследований.

Основное содержание работы. Первый раздел «Геолого-геофизическая характеристика района работ». В разделе представлена геолого-геофизическая характеристика района работ. Приводятся общие сведения о территории исследования.

Восточно-Мессояхский лицензионный участок расположен в Тазовском районе Ямало-Ненецкого автономного округа Тюменской области. Восточно-Мессояхское месторождение открыто в 1989г и относится к категории крупных.

Территория месторождения относится к Мессояхской криологической области, характеризующейся сплошным распространением многолетнемерзлых пород.

Месторождение приурочено к восточному поднятию Среднемессояхского вала, особенностью геологического строения которого является широкое развитие в его пределах дизьюнктивных дислокаций. Элементы разрывной тектоники, вызывающие активную межрезервуарную миграцию УВ, существенным образом повлияли на характер распределения их по залежам Восточно-Мессояхского месторождения.

По результатам сейсморазведочных работ и поисково-разведочного бурения нефтегазоконденсатность на Восточно-Мессояхском месторождении установлена в отложениях верхнего и нижнего мела.

Нефтеносность отложений установлена по керну, геохимическим, промыслово-геофизическим данным, результатам опробования поисковоразведочных скважин в процессе бурения и в колонне. Нефтегазоносные пласты залегают по разрезу в широком диапазоне, абсолютные отметки кровли – от 767 до 2461 м (а.о).

В целом месторождение характеризуется следующим:

- Большой этаж нефтегазоносности (1800 м);
- Многопластовость;
- Залегание нефти, в основном, в виде тонких оторочек между массивными газовыми шапками и подошвенной водой, или с обширными

газовыми шапками, или подстилаемые толщей воды (по пластам – от 6 до 44 м);

- Наличие дизьюнктивных экранирующих нарушений (с амплитудой вертикального сброса до 100 м), обуславливающих блоковое строение залежей;
- Резко неоднородное строение продуктивных пластов, сформировавшихся в континентальных условиях (пласты ПК, МХ) и условиях морского мелководья (пласты БУ);
- Невыдержанность продуктивных пластов по площади месторождения;
- Неравномерное чередование глин, песчаников, алевролитов и аргиллитов.

Второй раздел «Методика выполнения работы». В разделе дается краткое описание геофизических методов для литолого-стратиграфического расчленения.

При проведении геолого-геохимических исследований производится отбор шлама для дальнейшего его описания и проведения анализов. Для установления истиной глубины отобранного шламового материала рассчитывается время отставания шлама в минутах, т. е. время движения выбуренных частиц шлама от забоя до шламоотборника.

Отобранные пробы шлама отмываются от промывочной жидкости холодной водой непосредственно на буровой или в станции. После промывки производится первый визуальный просмотр шлама под лупой. Далее анализируется по фракциям (фракционный анализ).

Люминесцентно-битуминологический анализ (ЛБА) проб шлама, керна и промывочной жидкости проводится с целью определения остаточного нефтебитумосодержания горных пород. Анализ основан на свойстве битумоидов, при их облучении ультрафиолетовыми лучами, испускать «холодное» свечение, интенсивность и цвет которого позволяют визуально оценить наличие и качественный состав битумоида в исследуемой породе.

Свойство нефти люминесцировать имеет большое практическое значение, оно позволяет:

- обнаружить весьма незначительные количества ее (следы) в керне (люминесцентно-битуминологический анализ обнаруживает в породе битумы при их концентрации от 0.005 %);
- устанавливать (достаточно точно) процент нефтенасыщения в сложно построенных коллекторах с неясно выраженным слоистым или пятнистым нефтенасыщением;
- отбивать слабо нефтенасыщенные участки отложений, зачастую не видимых в дневном свете, что немаловажно при подсчете запасов и разработке месторождений;
- увидеть слабовыраженную или невидимую в дневном свете сложную геометрию текстур и трещин, неравномерную карбонатизацию.

Газовый каротаж (ГзК) – метод исследования скважин, основанный на определении содержания и состава угле водородных газов и битумов в промывочной жидкости.

Газовый каротаж представляет собой прямой метод выделения в разрезе пластов, содержащих углеводороды. Каротаж скважины продуктивных основан изучении количественного качественного на И состава попавшего в промывочную жидкость В процессе углеводородного газа, разбуривания горных пород при проводке скважин. Информативными газами для выделения продуктивных пластов являются предельные УВ от метана до гексана (С1 – С6).Основной задачей газового каротажа является выделение перспективных на нефть и газ интервалов в разрезе бурящей скважины и определение характера их насыщения.

Механический каротаж сводится к регистрации продолжительности проходки скважины — времени, затраченного на бурение одного метра породы. Определяется посредством хронометража времени, затрачиваемого на бурение определенного участка скважины.

С помощью компоновки LWD в процессе бурения скважины 6104 Восточно-Мессояхского месторождения проведен комплекс ГИС.

Боковой каротаж УЭС в процессе бурения даёт возможность получать замеры оптимальные для подсчета параметров пласта, которые могут применяться для решения таких задач, как выявление маломощных пластов, анализ градиента внедрения фильтрата бурового раствора и определение УЭС пластов в отдельных квадрантах окружности скважины. Боковой каротаж азимутально сфокусирован и в целом не подвержен влиянию соседних пластов.

В данной работе диаграмма БК использовалась для литологостратиграфического расчленения.

Нейтрон-нейтронный каротаж - метод исследований скважин, основанный на облучении горных пород потоком быстрых нейтронов и регистрации многократно рассеянных медленных нейтронов.

ННК-т заключается в измерении плотности потока тепловых нейтронов, образующихся в результате замедления в горных породах быстрых нейтронов от стационарного источника. При постоянной длине зонда плотность потока тепловых нейтронов зависит от замедляющих и поглощающих свойств среды, т.е. от водородосодержания и наличия элементов с высоким сечением захвата тепловых нейтронов.

В работе использовался для литолого-стратиграфического расчленения и определения нейтронной пористости.

Гамма-каротаж — один из методов измерения естественной радиоактивности горных пород в разрезах. Он относится к основным исследованиям, проводится во всех поисковых и разведочных скважинах, в открытом стволе, перед спуском каждой технической или эксплуатационной колонны, по всему разрезу, включая кондуктор.

Гамма-каротаж (ГК) заключается в измерении γ -излучения естественных (EP3),содержащихся радиоактивных элементов горных породах, энергетический Интенсивность пересеченных скважиной. И спектр регистрируемого излучения зависит OT состава, концентрации

пространственного распределения ЕРЭ, а также от плотности и эффективного атомного номера горных пород.

В данной работе диаграмма ГК использовалась для литологостратиграфического расчленения, и для определения коэффициента глинистости.

Метод гамма-гамма каротажа (ГГК) основан на облучении горных пород γ - квантами и измерении рассеянного γ излучения. В качестве источника излучения применят радионуклиды с энергией γ-квантов от десятков кэВ до 1 МэВ. В этом диапазоне происходит два основных процесса: комптоновское рассеяние γ-квантов на электронах и их фотоэлектрическое поглощение атомами вещества. В варианте ГГК-П породы облучаются потоком жёстких гамма-квантов с энергией 0,5 – 2 МэВ; мягкие гамма-кванты с энергией менее 0,2 МэВ поглощаются с помощью фильтра.

Данные ГГК-п использовались для литологического расчленения пород и оценки плотности.

Третий раздел «Результаты исследований». В результатах работы отражены результаты проведенных исследований, которые были выполнены с целью выделения реперного горизонта представленного «шоколадными» глинами. На скважине 6104Восточно-Мессояхского месторождения были проведены геохимические исследования в интервале 2650-2750м, был проанализирован шлам на литологический состав, люминисцентно-битуминологический анализ, газовый и механический каротаж.

По результатам геолого-геохимических исследований в изучаемом разрезе скважины зарегистрированы следующие фоновые показания:

- средний уровень газопоказаний -0.0484% абс;
- среднее значения механической скорости проходки 38м/ч;
- люминесценция хлороформных вытяжек шлама представлена на рисунке 9-3 балла, беловато-голубого цвета, легкие битумоиды.

Интервал 2655-2724м отмечен аномалиями характерными для бурения участка «шоколадных» глин:

- средний уровень газопоказаний 0,0284% абс;
- среднее значение механической скорости проходки 45м/ч.

Интервал 2724-2750м имеет аномалии показаний характеризующие его как перспективный:

- средний уровень газопоказаний 0,9725% абс;
- среднее значение механической скорости проходки 30м/ч;
- показания ЛБА представленного на рисунке 10 4 балла, беловато-желтого цвета, маслянистые битумоиды.

Данные изменения приурочены к вскрытию кровли пласта БУ8.

В соответствии с прямыми качественными признаками комплекса ГИС, выполненного в исследуемой скважине, «шоколадные» глины характеризуются меньшими показаниями ГК и значительно повышенными показаниями ГГК-п из-за большей плотности породы и более интенсивного поглощения гамма-лучей, а также по данным нейтронного метода показания нейтронной пористости резко увеличиваются из-за высокой вмещающей способности данного вида глин.

При анализе каротажной диаграммы и полученных данных по различным геофизическим методам, а также при рассмотрении сводного разреза выделен реперный горизонт, представленный «шоколадными» глинами в интервале 2655-2724м.

На Восточно-Мессояхском месторождении высокой гамма-активностью обладают чистые глины. Менее радиоактивны песчаные глины, за ними идут глинистые пески и карбонатные породы. Аномально низкие значения ГК характерны для пластов углей и известняков.

Показания ГК являются функцией не только радиоактивности пород, но и их плотности. При одинаковой гамма - активности породы с большей плотностью отмечаются меньшими показаниями ГК из-за более интенсивного

поглощения ими γ лучей, таковыми на месторождении являются искомые «шоколадные» глины.

По данным нейтронного метода возможно выделение пластичных глин - покрышек и определение структуры глинистых пластов, а также выделение плотных прослоев и зон углефикации и битуминизации. Данные нейтронного каротажа, в совокупности с другими методами, также информативны при разделении водо-нефтенасыщенных пластов, но только при высокой минерализации пластовых вод, и дают основную информацию при изучении газонасыщенных интервалов, где показания НК резко увеличиваются.

Для дополнительного подтверждения литолого-стратиграфического расчленения было произведено выделение пород по типу коллектор — неколлектор с использованием прямых качественных и косвенных количественных признаков (определение пористости и относительной амплитуды метода потенциалов собственной поляризации).

При анализе каротажных диаграмм и полученных данных по различным геофизическим методам, а также при рассмотрении сводного разреза было установлено, что значения фильтрационно-емкостных свойств в интервале 2655-2724м соотносятся с отсутствием прямых качественных признаков соответствующих типу коллектор, это обозначает, что данный интервал приурочен к породе-покрышке.

В результате интерпретации данных каротажных диаграмм ГТИ и ГИС было установлено, что реперный горизонт представленный «шоколадными» глинами расположен в интервале 2655-2724м.

Заключение. Таким образом, на примере скважины 6104Восточно-Мессояхского месторождения, была доказана эффективность использования комплексной интерпретации данных ГТИ и ГИС, с целью обеспечения возможности оперативного литолого-стратиграфического расчленения разреза и точности проводки. В работе для выполнения поставленных задач данные, полученные исследованиями ГТИ, являлись основными и проводились по всему разрезу скважины, однако для подтверждения полученных сведений и уточнения положения литологических границ между породами был проведен дополнительный анализ и интерпретация диаграмм ГИС, что позволило подтвердить расчленение разреза и выделить реперный горизонт.