МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего образования «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Кафедра математической теории упругости и биомеханики

Распространение гармонических волн в слое с упруго закреплёнными границами

АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ

студента 4 курса 431 группы

направления 01.03.03 – Механика и математическое моделирование

механико-математического факультета

Коваленко Владислава Александровича

Научный руководитель доцент, к.ф.-м.н.

Я.А.Парфенова

Зав. кафедрой д.ф.-м.н., профессор

Л.Ю.Коссович

Саратов 2023 **ВВЕДЕНИЕ**.В математическом моделировании физических явлений важнейшую роль играет выбор граничных условий. Множество научных работ посвящено изучению процесса распространения волн в упругих твердых телах, причем при постановке задач, в большинстве случаев, принимается одно из предположений: границы тела жестко закреплены (условия Дирихле) или границы тела свободны (условия Неймана). Задача о распространении гармонических волн в слое со свободными границами к настоящему времени решена полностью. Однако, исследованию задач с упругим закреплением границ посвящено небольшое число работ.

Актуальность бакалаврской работы обусловлена тем, что на практике, существует множество ситуаций, когда нельзя пренебречь реальными свойствами сред, окружающих тело. Например, кровеносные сосуды человека подвержены влиянию окружающих тканей, поэтому, при моделировании распространения волн в стенках, границы сосудов не всегда корректно описывать как свободные. В этом случае целесообразно на границе задавать условия упругого закрепления. Кроме того, условия упругого закрепления к задаче для тела с упругим закреплением на границе, моделирующим эффект влияния покрытия на волновые процессы, происходящие в теле.

Целью работы является изучение распространения гармонических волн в упругом изотропном слое, границы которого упруго закреплены в касательном направлении и свободны в нормальном направлении.

Для достижения поставленной цели исследования были поставлены следующие задачи

- Изучить основные характеристики волновых процессов;
- Поставить задачу о распространении симметричных гармонических волн в упругом слое с границами упруго закрепленными в касательном направлении;

2

- Вывести и численно решить соответствующее дисперсионное уравнение;
- Получить длинноволновую низкочастотную асимптотику корней дисперсионного уравнения в случае малых значений параметра жесткости закрепления;
- Получить длинноволновые высокочастотные асимптотики корней дисперсионного уравнения в случае малых значений параметра жесткости закрепления;
- Получить длинноволновые высокочастотные асимптотики корней дисперсионного уравнения в случае больших значений параметра жесткости закрепления;
- Сравнить асимптотики корней дисперсионного уравнения с численным решением.

Структура и содержание работы. Работа состоит из введения, 6 разделов, заключения, списка использованных источников. Работа включает 9 рисунков. Список использованных источников содержит 24 наименований.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ. Во введении обосновывается актуальность проводимого исследования, приведен обзор литературы по данному исследованию, сформулирована цель работы и решаемые задачи.

В первом разделе содержатся некоторые сведения о волнах, такие как: дисперсия, дисперсионное уравнение, волноводы, моды, гармоники.

Во втором разделе поставлена задача о распространение гармонических волн в слое с упруго закреплёнными границами.

Рассмотрим плоское напряженное состояние бесконечного упругого изотропного слоя толщины 2h. Схема слоя изображена на Рисунке 1. Будем считать, что слой закреплен таким образом, что его границы свободны в нормальном направлении, а касательные напряжения пропорциональны соответствующим перемещениям. Таким образом, граничные условия примем в виде:

$$\tau_{22} = 0, \tau_{21} + du_1 = 0$$
при $x_2 = \pm h,$
(1)

Рисунок 1 - Схема слоя

Уравнения движения имеют вид:

$$c_{1}^{2} \frac{\partial^{2} u_{1}}{\partial x_{1}^{2}} + c_{2}^{2} \frac{\partial^{2} u_{1}}{\partial x_{2}^{2}} + (c_{1}^{2} - c_{2}^{2}) \frac{\partial^{2} u_{2}}{\partial x_{1} \partial x_{2}} = \frac{\partial^{2} u_{1}}{\partial t^{2}},$$
(2)

$$c_{1}^{2} \frac{\partial^{2} u_{2}}{\partial x_{2}^{2}} + c_{2}^{2} \frac{\partial^{2} u_{2}}{\partial x_{1}^{2}} + (c_{1}^{2} - c_{2}^{2}) \frac{\partial^{2} u_{1}}{\partial x_{1} \partial x_{2}} = \frac{\partial^{2} u_{2}}{\partial t^{2}}$$
(3)

В третьем разделе получены дисперсионные уравнения в слое с упруго закреплёнными границами для случая симметричных и антисимметричных волн.

Для удобства перейдем к безразмерным переменным:

$$\{x_1, x_2\} = h\{\bar{x}_1, \bar{x}_2\},\$$

$$t = \frac{h}{c_2}\bar{t},$$
(4)

Введем безразмерные компоненты напряженно-деформированного состояния, безразмерную фазовую скорость \bar{v} , волновое число \bar{k} и круговую частоту $\bar{\omega}$

$$\{u_{1}, u_{2}\} = h\{\bar{u}_{1}, \bar{u}_{2}\}$$

$$\{\tau_{12}, \tau_{22}\} = \mu\{\bar{\tau}_{12}, \bar{\tau}_{22}\},$$

$$v = c_{2}\bar{v},$$

$$k = \frac{\bar{k}}{h},$$

$$\omega = \frac{\bar{\omega}h}{c_{2}},$$
(5)

обозначим $\kappa = \frac{c_2}{c_1} = \sqrt{\frac{1-2\nu}{2(1-\nu)}}.$

Получим вид граничных условий в безразмерной форме :

$$\begin{cases} \frac{\partial \bar{u}_1}{\partial \bar{x}_2} + \frac{\partial \bar{u}_2}{\partial \bar{x}_1} + \delta \bar{u}_1 = 0 \\ \\ \kappa^{-2} \frac{\partial \bar{u}_2}{\partial \bar{x}_2} + (\kappa^{-2} - 2) \frac{\partial \bar{u}_1}{\partial \bar{x}_1} = 0 \end{cases}$$
 при $\bar{x}_2 = \pm 1.$ (6)

Решение будем искать в виде:

$$u_{1}(\bar{x}_{1}, \bar{x}_{2}, \bar{\tau}) = V_{1}ch(q\bar{k}\bar{x}_{2})e^{ik(\bar{x}_{1}-\bar{\nu}\bar{\tau})}$$
(7)
$$u_{2}(\bar{x}_{1}, \bar{x}_{2}, \bar{\tau}) = V_{2}sh(q\bar{k}\bar{x}_{2})e^{i\bar{k}(\bar{x}_{1}-\bar{\nu}\bar{\tau})}$$

Подставляя решение в уравнение движения, получим :

$$V_{1}(-\kappa^{-2} + q^{2} + \nu^{2}) + iq(\kappa^{-2} - 1)V_{2} = 0$$

$$V_{2}(\kappa^{-2}q^{2} - 1 + \nu^{2}) + iq(\kappa^{-2} - 1)V_{1} = 0$$
(8)

Решение системы уравнений принимает вид:

$$u_{1} = (V_{1}ch(q_{1}kx_{2}) + V_{2}ch(q_{2}kx_{2}))e^{ik(x_{1}-\nu\tau)}$$

$$u_{2} = -\frac{i}{q_{1}} (V_{1}sh(q_{1}kx_{2}) + V_{2}q_{1}q_{2}sh(q_{2}kx_{2}))e^{ik(x_{1}-\nu\tau)}, \qquad (9)$$

где $q_1^2 = 1 - v^2$, $q_2^2 = 1 - v^2 \kappa^2$

Подставляя решение в граничные условия, получим

$$V_1 \left[2q_1 sh(q_1 k) + \frac{\delta}{k} ch(q_1 k) \right] + V_2 \left[\left(q_2 + \frac{1}{q_2} \right) sh(q_2 k) + \frac{\delta}{k} ch(q_2 k) \right] = 0$$

$$V_1 [\kappa^{-2}(-i)q_1^2 + (\kappa^{-2} - 2)(i)] ch(q_1 k) + V_2 [\kappa^{-2}(-i) + (\kappa^{-2} - 2)(i)] ch(q_2 k) = 0$$

$$= 0.$$

Эта система линейных алгебраических уравнений, однородных относительно переменных V_1 и V_2 , имеет нетривиальное решение тогда и только тогда, когда ее определитель будет равен нулю. Таким образом, дисперсионное уравнение для случая растяжения-сжатия слоя, упругозакрепленного в касательном направлении имеет вид

$$q_{1}q_{2}ch(q_{1}k)sh(q_{2}k) - \left(1 - \frac{v^{2}}{2}\right)^{2}ch(q_{2}k)sh(q_{1}k) + q_{1}\frac{v^{2}\delta}{4k}ch(q_{1}k)ch(q_{2}k) = 0$$
(10)

Обозначив $\alpha_1 = q_1 k = \sqrt{k^2 - \omega^2}, \ \alpha_2 = q_2 k = \sqrt{k^2 - \kappa^2 \omega^2},$ уравнение можно записать в следующем виде:

$$\left(k^2 - \frac{\omega^2}{2}\right)^2 \frac{sh\alpha_1}{\alpha_1} ch\alpha_2 - \frac{\omega^2}{4}\delta \cdot ch\alpha_1 ch\alpha_2 - k^2\alpha_2^2 \frac{sh\alpha_2}{\alpha_2} ch\alpha_1 = 0 \quad (11)$$

Положив в (11) $\delta = 0$ получаем известное уравнение Рэлея – Лэмба, что подтверждает правильность вывода,

$$\gamma^4 ch\alpha_2 sh\alpha_1 - \alpha_1 \alpha_2 k^2 sh\alpha_2 ch\alpha_1 = 0.$$
⁽¹²⁾

В четвёртом разделе проводился численный анализ дисперсионного уравнения с нахождением частот запирания и численного решения дисперсионного уравнения.

Анализ распространения гармонических волн в системах с дисперсией приводит к необходимости определения зависимости между частотой волны ω и волновым числом *k*. Корни дисперсионного уравнения найдены с использованием метода продолжения решения по параметру.

Численное решение полученного дисперсионного уравнения (11) позволяет провести анализ трансформации симметричных мод, происходящих вследствие изменения параметра жесткости упругого закрепления *δ*. На рисунке 2 представлены решения уравнения (11). Красными линиями показаны моды, соответствующие частотам толщинного для случая растяжения сжатия, синими линиями – частотам сдвигового толщинного резонанса. Графики построены при следующих параметрах жесткости закрепления *δ*:

 $\delta = 0$ – сплошные красные и синие линии, это моды дисперсионного уравнения Релея-Лэмба (12);

 δ =0.01; 0.1; 1,5; 10, 100 – цветные пунктирные линии.

Черная пунктирная линия соответствует решениям дисперсионного уравнения для смешанных граничных условий, то есть случаю $\delta \to \infty$.

Рассмотрим трансформацию симметричных мод более подробно. При $\delta \to \infty$ частота запирания фундаментальной моды отклоняется от нуля и фундаментальная мода трансформируется в первую сдвиговую гармонику. Моды, соответствующие частотам толщинного резонанса растяжения сжатия сохраняют свои частоты $\frac{(2l-1)}{2\kappa}\pi$, l = 1, 2, ..., меняя лишь

форму, в то время, как сдвиговые моды перемещаются вверх вместе с ростом δ в диапазоне частот запирания $\left[\pi n, \left(n + \frac{1}{2}\right)\pi\right]$, (n = 1, 2, ...). Нижняя граница этого интервала соответствует модам для слоя со свободными границами, а верхние — модам для слоя, жёстко закреплённого в касательном направлении.

Рисунок 2 - Трансформация симметричных мод в упругом изотропном слое при $\nu = 0.3$

В пятом разделе проводился длинноволновый асимптотический анализ дисперсионного уравнения для случая малых значений параметра жесткости закрепления δ.

В случае малых $\delta m = 1$, то есть $\delta = \delta_0 k^2$. Тогда дисперсионное уравнение преобразуется к виду

$$\left(k^{2} - \frac{\omega^{2}}{2}\right)^{2} \frac{th\alpha_{1}}{\alpha_{1}} - \frac{\omega^{2}}{4} \delta_{0}k^{2} - \alpha_{2}^{2}k^{2} \frac{th\alpha_{2}}{\alpha_{2}} = 0.$$
(13)

Величину ω^2 представим в виде разложения по степеням k^2 :

$$\omega^{2} = (\omega_{0}^{2}) + \sum_{i=1}^{\infty} a_{i} k^{2i}.$$
(14)

Дисперсионное уравнение в данном случае может быть асимптотически сбалансировано тремя различными способами, а именно:

1.
$$th(\eta q_2) \sim 1$$
, $th(\eta q_1) \sim 1$, $V \sim 1$; $\eta = kh$
2. $th(\eta q_2) \sim 1$, $th(\eta q_1) \sim k^2$, $V \sim k^{-1}$;
3. $th(\eta q_2) \sim k^{-2}$, $th(\eta q_1) \sim 1$, $V \sim k^{-1}$.

Первый случай связан с фундаментальной модой при малых б. Асимптотическое разложение для квадрата круговой частоты в этом случае найдено в виде

$$\omega^{2} = \delta_{0} + [4(1 - \kappa^{2}) + \delta_{0}]k^{2} - \frac{1}{3}[4(1 - 5\kappa^{2} + 8\kappa^{4} - 4\kappa^{6}) + \delta_{0}(3 - 8\kappa^{2} + 4\kappa^{4}) + \delta_{0}^{2}]k^{4} + O(k^{6})$$
(15)

Асимптотика (15) показывает, что как только параметр жесткости закрепления становится отличным от нуля, существование длинноволновой низкочастотной моды в рассматриваемом слое становится невозможным. Это подтверждает также рисунок 3, на котором представлено сравнение асимптотик (15) с численным решением. Можно наблюдать их хорошее совпадение в области малых волновых чисел.

Второй вариант баланса дисперсионного уравнения соответствует гармоникам, связанным с частотами сдвигового толщинного резонанса $\omega = \pi n \ (n = 1, 2 \dots).$

После ряда вычислений получим асимптотическое разложение для частоты

$$\omega^{2} = (\pi n)^{2} + \left(1 + 2\delta - \frac{8tg(\kappa\omega_{0})\kappa}{\omega_{0}}\right)k^{2} + \left(\frac{4\kappa(1-\kappa^{2})}{\omega_{0}^{2}\kappa} + \delta\left[\frac{10-8\kappa^{2}}{\omega_{0}^{2}} - \frac{4}{\omega_{0}}\right] + \frac{7}{\omega_{0}}\delta^{2} + \frac{4tg^{2}(\kappa\omega_{0})}{\omega_{0}^{3}\kappa} \cdot \left[4\omega_{0}\kappa^{2} + 8\kappa^{4} + 1 - 9\kappa^{2} - 12\kappa^{2}\delta\right] + \frac{4tg(\kappa\omega_{0})}{\omega_{0}\kappa}\left[\kappa - \kappa^{2} - 2\kappa^{3}\delta + \frac{20\kappa^{3}}{\omega_{0}^{2}}\right] + 32\frac{\kappa^{3}}{\omega_{0}^{3}}tg^{3}(\kappa\omega_{0})\right)k^{4} + O(k^{6}),$$
(16)

где $\omega_0 = \pi n$, n = 1, 2, ...

Последний вариант баланса дисперсионного уравнения связан с частотами толщинного резонанса растяжения-сжатия $\omega_0 = \frac{\pi(2n-1)}{2\kappa}$ (n = 1,2,...).Методика получения асимптотики аналогична использованной в предыдущем случае.

Следовательно, разложение для частоты будет выглядеть следующим образом:

$$\omega^{2} = \left(\frac{\pi(2n-1)}{2\kappa}\right)^{2} + \left(\frac{1}{\kappa^{2}} + \frac{8}{\omega_{0}tg\omega_{0}}\right)k^{2} + \left(\frac{4}{\kappa^{2}\omega_{0}^{2}}\left[\kappa^{2} - 1 - -\frac{\kappa^{3}+3}{\omega_{0}tg\omega_{0}} + \frac{\kappa^{2}-1+2\delta\kappa^{2}}{tg^{2}\omega_{0}} - \frac{8\kappa^{2}}{\omega_{0}tg^{3}\omega_{0}} - \frac{12\kappa^{2}}{\omega_{0}^{2}tg^{2}\omega_{0}}\right])k^{4} + O(k^{6})$$
(17)
9.5
9.0
8.5
8.0
7.5
7.0
6.5
6.0
0.0
0.5
1.0
0.5
1.0
1.5
2.0
2.5
3.0
k

Рисунок 4 - Сравнение асимптотик (16) и (17) с численным решением для первых гармоник при $\delta = 0,0001$ и $\kappa = 0.53452$

Рисунок 5 -Сравнение асимптотик (16) и (17) с численным решением для вторых гармоник при $\delta = 0,0001$ и $\kappa = 0.53452$

На рисунках 4 и 5, на примере первых двух гармоник дисперсионного уравнения, представлено сравнение асимптотик (16) и (17) с численным решением. На данных графиках снова можно наблюдать хорошее совпадение асимптотик с численным решением в рассмотренном диапазоне волновых чисел. Сравнивая графики, можно заключить, что область применимости асимптотик (16) и (17) увеличивается с ростом номера гармоники.

В шестом разделе был проведён длинноволновый асимптотический анализ дисперсионного уравнения для случая больших значений параметра жесткости закрепления δ.

Асимптотическая структура дисперсионного уравнения, связанная с первым семейством гармоник характеризуется следующими порядками величин:

$$th(\eta q_1) \sim k^2$$
, $th(\eta q_2) \sim 1$, $V \sim k^{-1}$.

Получим разложение для частоты :

$$\omega^{2} = (\omega_{0})^{2} + \left(1 - \frac{2\omega_{0}^{2}}{\delta_{0}}\right)k^{2} + \left(\frac{3}{\delta_{0}^{2}}(\omega_{0}^{2} + 2\delta_{0})\right)k^{4} + O(k^{6}), \quad (18)$$

10

где $\omega_0 = \frac{\pi(2n-1)}{2}.$

Второй асимптотический баланс характеризуется следующим распределением порядков величин, входящих в дисперсионное уравнение:

$$th(\eta q_1) \sim 1$$
, $th(\eta q_2) \sim k^4$, $V \sim k^{-1}$.

Разложение для частоты будет выглядеть следующим образом

$$\omega^{2} = (\omega_{0})^{2} + \left(\frac{1}{\kappa^{2}}\right)k^{2} + \left(-\frac{8}{\delta}\right)k^{4} + O(k^{6}), \tag{19}$$

На рисунках 6 и 7 приведено сравнение асимптотик (18) и (19) с численным решением при $\delta = 1000$ для первых двух гармоник соответственно. Пунктирной линией представлено численное решение, сплошными асимптотики.

Сравнивая графики можно заключить, что область применения асимптотик (20) и (21) увеличивается с ростом номера гармоники.

ЗАКЛЮЧЕНИЕ. В процессе работы было выведено дисперсионное уравнение для мод, симметричных относительно срединной плоскости, и проведено его численное решение, которое позволило увидеть качественную картину изменения дисперсионных кривых с ростом параметра жесткости закрепления δ .

Так же проводился длинноволновый асимптотический анализ рассматриваемого дисперсионного уравнения, в результате чего были получены асимптотики, описывающие поведение дисперсионных кривых в окрестности частот запирания при больших и малых δ.

Сравнение асимптотик с численным решением показало достаточно хорошее их совпадение в рассматриваемом диапазоне волновых чисел.