МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Кафедра геометрии

Коники в проективной геометрии

АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ

студента 4 курса 421 группы

направления 02.03.01 Математика и компьютерные науки

механико-математического факультета

Боатенга Сампсона

Научный руководитель

к.ф.-м.н., доцент

л.Н. Ромакина

Зав. кафедрой

к.ф.-м.н., доцент

подпись, дата

С.В. Галаев

Саратов 2023

Введение. Изучение коник восходит к Древней Греции, где такие математики, как Евклид и Аполлоний, исследовали их свойства. Однако только в 19 веке проективная геометрия стала отдельной областью изучения.

Проективная геометрия была разработана такими математиками, как Дезарга, Паскаля и Брианшона, которые стремились объединить изучение геометрических объектов в рамках единой структуры. Сегодня проективная геометрия продолжает оставаться важной областью исследований в математике и имеет множество практических приложений. Коники — это проективной геометрии, фундаментальное понятие В изучающей геометрические свойства, которые остаются неизменными при проектировании. В этом отчете мы исследуем свойства коник в проективной геометрии и их приложения. Другим важным интересным аспектом этого проекта является теория двойственности, которая делает все другие утверждения и теоремы действительными в том, что касается коники. Теория двойственности играет важную роль в кониках и делает все утверждения истинными. В данной работе мы даем обзор всех этих определений и их взаимосвязей (без доказательств), начиная с конических сечений в Древней Греции и заканчивая овалами в Новое время.

Целями работы являются изучение свойств конических сечений в проективной геометрии и их приложений в неевклидовой геометрии, компьютерной графике и физике. Мы рассматриваем работу над темой как подготовку к дальнейшей самостоятельной разработке новых методов решения задач в этих областях. С помощью программного обеспечения СогеlDraw мы смогли визуализировать определенные приложения и рецептуры в соответствующих изображениях.

В первом разделе представлены основные понятия проективной геометрии. Второй раздел представляет проективную геометрию и связанные с ней подразделы. Третий и последний раздел представлен кратки обзор современных исследований линий второго порядка евклидовой и неевклидовой геометрий в отечественных и зарубежных коник.

Основное содержание работы. В работе исследованы невырожденные линии второго порядка на проективной плоскости и основные понятия проективной геометрии. В процессе разделы работы поведен лишь, кратки обзор современных исследований свойств коник и их приложений.

Определение 1.1. Пусть $L_{n+1}-(n+1)$ — мерное векторное пространство над полем $\mathbb R$ вещественных чисел, L_{n+1}^* — множество всех ненулевых векторов пространства L_{n+1} . Множество P_n назовем *проективным пространством п* измерений векторным пространством L_{n+1} , если задано отображение $f: L_{n+1}^* \to P_n$, удовлетворяющее условиям:

- 1) f сюръективное отображение;
- 2) равентсво f(x) = f(y) выполняется тогда и только тогда, когда векторы x и y колинеарны: x||y.

Теорема 1. Через любые две точки плоскости P_2 проходит одна и только одна прямая.

Теорема 2. Любые две прямые плоскости P_2 пересекаются.

Теорема 3. Пусть $R = \{A_1, A_2, A_3, E\}$ — произвольный проективный репер плоскости P_2 . Существует система вектором, согласованная относительно R. Реферативный характер

Теорема 4. Проективные координаты x_1, x_2, x_3 точки X – коэффициенты разложения вектор x, порождающего точку X, по векторам a_1, a_2, a_3 согласовано относительно проективного репера R системы векторов a_1, a_2, a_3, e .

Теорема 5. Если системы векторов a_1, a_2, a_3, e и a_1', a_2', a_3', e' согласованы относительно репера R, то существует действительное ненулевое число α , при котором выполняются равенство

$$\exists \alpha (\alpha \in \mathbb{R}, \alpha \neq 0): \ a_1' = \alpha a_1, \ a_2' = \alpha a_2, a_3' = \alpha a_3, e' = \alpha e$$
 (1.1)

Теорема 6. Пусть $(x_1: x_2: x_3)$ — координаты точки X в проективном репере R, а a_1, a_2, a_3, e — некоторая согласованния относительно R система векторов. Тогда вектор $m = x_1a_1 + x_2a_2 + x_3a_3$ порождает точку X.

Теорема 7. В проективном репере R координатами заданы точки: $X(x_1;x_2;x_3)$, $Y(y_1;y_2;y_3)$, $Z(z_1;z_2;z_3)$. Точки X,Y,Z являются коллинеарными тогда и только тогда, когда

$$\begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix} = 0.$$

Определение 1.2. Пусть на плоскости P_2 заданы прямая l и не принадлежащая ей точка S. Проекцией точки M на прямую l из центра S назовем точку пересечения прямых l и SM.

Теорема 8. Если в проективном репере $R = \{A_1, A_2, A_3, E\}$, тогда M координаты $(m_1: m_2: m_3)$ и $E_{12} = A_3 E \cap A_1 A_2$, то в репере $R_0 = \{A_1, A_2, A_3, E_{12}\}$ на прямой $A_1 A_2$ проекция M_3 точки M из центра A_3 задана координатами $(m_1: m_2)$.

Теорема 8. (Принцип двойственности). Если справедливо некоторое утверждение о точках, прямых проективной плоскости и их инцидентности, то справедливо и двойственное ему утверждение.

Теорема 9. (Теорема Дезарга). Если прямые, соединяющие соответственные вершины трехвершинников ABC, A'B'C' плоскости P_2 , проходят через одну точку D, то соответственные стороны этих трех трехвершинников пересекаются в точках, лежащих на одной прямой.

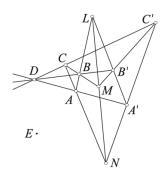


Рисунок 1.1 – Конфигурация Дезарга

Точки и прямые в теореме Дезарга образуют так называемую конфигурацию Дезарга, в которой через каждую из десяти точек проходят три прямые и на каждой из десяти прямых лежат три точки.

Теорема 10. Если соответственные стороны три трехвершинников ABC, A'B'C' плоскости P_2 пересекаются в точках, лежащих на одной прямой, то прямые, соединяющие соответственные вершины этих трехвершинников, проходят через одну точку.

Определение 1.3. Совокупность четырех точек общего положения и шести прямых, попарно соединяющих данные точки, назовем польным четырехвершинником проективной плоскости.

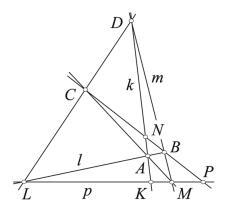


Рисунок 1.2 — Польный четырехвершинником АВСО точки

Определение 4. Проективным преобразованием плоскости P_2 назовем линейно взаимное однозначное преобразование этой плоскости, т.е. преобразование, в котором каждой точке M с координатами (x_p) в некотором проективном репере R соответствует точка M' такими координатами (x'_p) в репере R, что

$$\mu x'_{p} = a_{p1}x_{1} + a_{p2}x_{2} + a_{p3}x_{3}, \tag{1.2}$$

где $det||a_{pq}|| \neq 0$, $a_{pq} \in \mathbb{R}$, $\mu \neq 0$.

Теорема 11. В проективном преобразовании точки, лежащие на одной прямой, переходят в точки, лежащие на одной прямой.

Теорема 12. Для любых попарно различных точек A, B, C, D, M проективной прямой m справедливы равенства:

- 1) (ABCD) = CDAB;
- 2) $ABCD = \frac{1}{(BACD)}$, $(ABCD) = \frac{1}{(ABDC)}$;
- 3) (ABCC) = 1, (ABCB) = 0;
- 4) (ABCD) + (ACBD) = 1;
- 5) (AMCD)(MBCD) = (ABCD).

Пусть на проективной прямой m заданы точки A, B, C, D. Будем говорить, что пара точек A, B не разделяет пару точек C, D, если (ABCD) > 0(((ABCD) < 0)).

Если (ABCD) = -1, точнее говорят, что пара точек A, B гармонически разделяет точек C, D. А Четверку точек A, B, C, D в этом случае назовем гармонически сопряженной.

Определение 5. Множество всех точек проективной плоскости P_2 , координаты в некотором проективном репере $R = \{A_1, A_2, A_3, E\}$ удовлетворяют уравнению второй степени

$$b_{11}x_1^2 + b_{22}x_2^2 + b_{33}x_3^2 + 2b_{12}x_1x_2 + 2b_{13}x_1x_3 + 2b_{23}x_2x_3 = 0 (1.3)$$

назовем линей второго порядка плоскости P_2 .

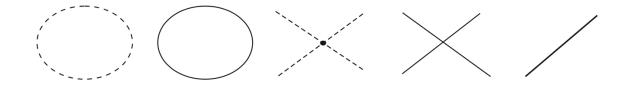


Рисунок 1.3 — Линии второго порядка проективной плоскости

Теорема 13. Прямая пересекает конику не более чем в двух вещественных точках.

Замечание. Пусть $(x_1: x_2: x_3)$ — некоторый вектор пространства L_3 , будем его также называть контравариантным вектором. Ковектором, или ковариантным вектором, сопряженным с вектором $(x_1: x_2: x_3)$, назовем такую тройку чисел (x^1, x^2, x^3) , что

$$x^1x_1 + x^2x_2 + x^3x_3 = 0. (1.4)$$

Определение 5. Множество всех точек проективной плоскости P_2 , сопряженных с точкой M относительно овальной линии α , назовем полярой точкой M относительно линии α .

Точки M,N назовем сопряженными относительно линии α , если выполняется условие

$$\sum_{p,q=1}^{3} b_{pq} m_p n_q = 0. (1.5)$$

Теорема 14. (Теорема Паскаля). Если шестивершинник вписан в линию второго порядка, то точки пересечения трех пар противоположных сторон колинеарны.

По теорему Паскаля по принципу двойственности проективной плоскости соответствует теорема Брианшона.

Теорема 15. (Теорема Брианшона). Если шестивершинник описан около линии второго порядка, то три диагонали, соединяющие противоположные вершниы этого шестивершинник, проходят через точку.

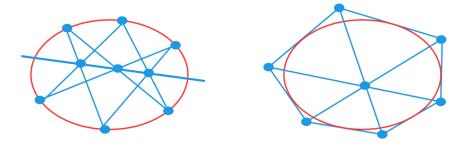


Рисунок 1.3 - Конфигурация Паскаля и Брианшона

Заключение. В заключение хотелось бы выделить тот факт, что изучение коников в проективной геометрии является очень значимым направлением с точки зрения исследований. Результаты этой работы могут быть использованы для дальнейших исследований и в других областях науки и

техники, даже в математике, физике, информатике и многих других областях.