МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Кафедра математической теории упругости и биомеханики

Исследование распространения планарной краевой волны в пластине с учётом световозвращающей плёнки на торце

АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ

студентки 4 курса 431 группы

направления 01.03.03 – Механика и математическое моделирование

механико-математического факультета

Тишиной Александры Сергеевны

Научный руководитель проф. каф. МТУиБМ, д.ф.-м.н.

М.В. Вильде

Зав. кафедрой д.ф.-м.н., профессор

____ Л.Ю. Коссович

Саратов 2024

Введение

Настоящая бакалаврская работа посвящена изучению распространения планарной краевой волны в пластине с учетом влияния световозвращающей плёнки на торце.

Актуальность темы. Краевые волны – это вид упругих волн, распространение которых связано со свойствами волноведущей структуры (guidedwaves). Волны Лэмба являются наиболее часто используемыми волнами такого типа в неразрушающем контроле. Краевые волны, в отличие от волн Лэмба, характеризуются локализацией наиболее интенсивных колебаний в окрестности края пластины или оболочки. В последнее время появился ряд работ, в которых существование таких волн подтверждается экспериментально, однако отмечаются небольшие расхождения между расчетными И измеренными характеристиками. При сравнении экспериментов, выполненных в разное время, возникло предположение, что расхождения связаны с наличием светоотражающей пленки, наклеенной на торец для улучшения качества измерения с помощью лазерного виброметра.

С практической точки большой зрения интерес представляет фундаментальная симметричная краевая волна ES₀, соответствующая в краевой планарной низкочастотном диапазоне волне. Уточненные динамические уравнения теории растяжения пластин построены в работе. Уточненные граничные условия могут быть построены с помощью методики, разработанной в статье для случая изгиба пластины.

Многочисленные исследования (см. ссылки в этой работе) показывают, что деформацию упругого тела с тонким покрытием на поверхности можно моделировать с помощью приведенных граничных условий. По аналогии, можно учесть влияние светоотражающей пленки на торце путем формулировки подходящих приведенных граничных условий.

2

Целью данной работы является изучение влияния светоотражающей пленки, расположенной на торце пластины, на свойства планарной краевой волны.

Задачи работы заключаются в следующем:

1) получить решение, описывающее планарную краевую волну, на основе классических и уточненных уравнений теории обобщенного плоского напряженного состояния с уточненными граничными условиями, вывести асимптотику для скорости волны;

2) сформулировать приведенные граничные условия, моделирующие световозвращающую пленку на торце;

 получить решение для планарной краевой волны в случае пластины с плёнкой, вывести асимптотику для скорости волны;

4) построить аппроксимирующие функции, приближенно описывающие поведение скорости волны в широком частотном диапазоне;

5) сравнить полученные аппроксимации с решением задачи в трехмерной постановке и с экспериментальными данными.

Материалами исследования являются уточненная теория растяжения пластин и данные экспериментов о распространении краевых волн в пластине с пленкой на торце.

Научная значимость работы состоит в изучении влияния световозвращающей плёнки на распространение планарной краевой волны.

Структура и объем работы. Бакалаврская работа состоит из введения, четырёх разделов, заключения, списка используемых источников, включающего 22 наименования. Работа изложена на 42 листах машинописного текста, содержит 12 рисунков.

Основное содержание работы

Во введении описывается актуальность темы, формулируется цель исследования и ставятся задачи.

3

В первом разделе получен вывод дисперсионного уравнения планарной краевой волны на основе простейшей двумерной теории растяжения пластин. Рассматривается задача о распространении гармонических волн в полубесконечной пластине полутолщины h, занимающей область S = { $-\infty \le x_1 \le 0$, $-\infty \le x_2 \le \infty$ } в прямоугольной декартовой системе координат. Используя динамические уравнения теории растяжения пластин в перемещениях, а также условие свободного края при $x_1=0$, получаем дисперсионное уравнение

$$\left(\gamma^{2} - \frac{\omega^{2}}{2c_{2}^{2}}\right)^{2} - \gamma^{2}\sqrt{\gamma^{2} - \frac{\omega^{2}}{c_{1}^{2}}}\sqrt{\gamma^{2} - \frac{\omega^{2}}{c_{2}^{2}}} = 0, \qquad (1)$$

соответствующее симметричной краевая моде ES₀ в низкочастотной области. Здесь $c_2 = \sqrt{\frac{\mu}{\rho}}$, $c_1 = \sqrt{E/(1 - v^2)\rho}$.

Полагая, что $\omega = c_R \gamma$, приходим к уравнению для c_R вида

$$\left(1 - \frac{c_R^2}{2c_2^2}\right)^2 - \sqrt{1 - \frac{c_R^2}{c_1^2}}\sqrt{1 - \frac{c_R^2}{c_2^2}} = 0.$$
 (2)

Как видно из (2), скорость планарной краевой волны c_R зависит только от параметров материала (c_1 , c_2) или (E, v, ρ), но не зависит от частоты или волнового числа. Уравнение (2) совпадает с уравнением для скорости волны Рэлея с учетом того, что под скоростью c_1 понимается скорость волны расширения в теории пластин

Во втором разделе получено дисперсионное уравнение планарной краевой волны на основе уточнённой теории растяжения пластин и уточнённых граничных условий.

Гипотезы классической теории растяжения пластин применимы только на достаточно низких частотах. Для более точного описания планарной краевой волны можно использовать уточненную теорию растяжения пластин и уточнённые граничные условия. Получаем уточнённое дисперсионное уравнение

$$\left(\gamma^{2} - \frac{\omega^{2}}{2c_{2}^{2}}\right)^{2} - \gamma^{2}\sqrt{\gamma^{2} - \frac{\omega^{2}}{c_{1}^{2}}} - \varepsilon_{1}^{2}\frac{\omega^{2}}{c_{2}^{2}}\sqrt{\gamma^{2} - \frac{\omega^{2}}{c_{2}^{2}}} = 0, \qquad (3)$$

где $\varepsilon_{1}^{2} = \frac{(1-\nu)^{2}}{4}\varepsilon_{0}^{2} = \frac{\nu^{2}}{12}\varepsilon^{2}, \varepsilon_{0}^{2} = \frac{\nu^{2}}{3(1-\nu)^{2}}\varepsilon^{2}, \ \varepsilon^{2} = \frac{h^{2}\omega^{2}}{c_{2}^{2}}.$

На основании полученного дисперсионного уравнения выведена асимптотика, записанная в безразмерном виде с помощью величин $k = \frac{c}{c_2}$, $\omega_* = \frac{\omega h}{c_2}$

$$k_{as} = \frac{c_0}{c_2} = k_R \left(1 - \frac{v^2}{24k_1^2 B} \omega_*^2 + O(\omega_*^4) \right).$$
(4)

Здесь
$$B = \frac{1 - \nu}{2k_1^2} + \frac{1}{k_2^2} - \frac{2}{k_3^2}, \ c_0 = \frac{\omega}{\gamma_0} = c_R \left(1 - \frac{\nu^2}{24k_1^2 B} \frac{h^2 \omega^2}{c_2^2} + O(\varepsilon^4) \right), \ k_1 = \sqrt{1 - \frac{c_R^2}{c_1^2}},$$

 $k_2 = \sqrt{1 - \frac{c_R^2}{c_2^2}}, \ k_3^2 = 1 - \frac{c_R^2}{2c_2^2}.$

Для сравнения таким же способом получена асимптотика для скорости краевой волны без уточнения граничных условий

$$k_{as}^{(0)} = \frac{c_0^{(0)}}{c_2} = k_R \left(1 + \left(\frac{v^2 k_3^2}{12k_1 k_2 B(1-v)} - \frac{v^2}{24k_1^2 B} \right) \omega_*^2 + O\left(\omega_*^2\right) \right).$$
(5)

Здесь
$$c_0^{(0)} = \frac{\omega}{\gamma_0} = c_R \left(1 + \frac{\nu^2 h^2 \omega^2 k_3^2}{12c_2^2 k_1 k_2 B(1-\nu)} - \frac{\nu^2 h^2 \omega^2}{24c_2^2 k_1^2 B} + O(\varepsilon^2) \right).$$

В выражениях (4) и (5) $k_R = \frac{c_R}{c_2}$ это безразмерная скорость, вычисленная по

классической теории обобщенного плоского напряженного состояния.

Выполнено сравнение графиков по приведенным выше формулам сграфиком безразмерной фазовой скорости волны ES_0 , найденной по трёхмерной теории в работе (k_{3D}). Результаты показали, что фазовая скорость k_R , найденная по классической теории, соответствует предельному значению

скорость волны ES₀ при $\omega_* \to 0$. Решение по уточненной теории с уточненными граничными условиями k_{as} описывает асимптотическое поведение фазовой скорости k_{3D} при $\omega_* \to 0$ и имеет достаточно малую погрешности при $\omega_* \leq 2$. Решение уточненных уравнений с классическими граничными условиями описывает асимптотическое поведение k_{3D} качественно неверно: с ростом частоты фазовая скорость получилась возрастающей, а не убывающей. Таким образом, при моделировании планарной краевой волны с помощью уточненных теорий уточнение граничных условий является обязательным.

Подобрана функция, которая имеет при $\omega_* \to 0$ асимптотическое поведение (5) и стремится к константе c_w при $\omega_* \to \infty$, получена аппроксимация $\frac{c_w}{c_2} = k_w = 0.874 + 0.054\sqrt{\nu}$.За основу взята функция ошибок

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} dt.$$
 (6)

Используется асимптотическое представление этой функции при $x \rightarrow 0$:

$$\operatorname{erf}(x) = \frac{2x}{\sqrt{\pi}} + O(x^3). \tag{7}$$

Аппроксимирующая функция ищется в виде

$$f_{appr}(\omega_*) = k_R \left(1 - a_0 \operatorname{erf}^2(a_1 \omega_*) \right).$$
(8)

Коэффициенты a_0, a_1 определяются из условий:

$$\omega_* \to 0: \quad f_{appr}(\omega_*) \to k_R \left(1 - \frac{v^2}{24k_1^2 B} \omega_*^2 \right),$$

$$\omega_* \to \infty: \quad f_{appr}(\omega_*) \to k_w.$$
(9)

С помощью разложения (7) и известного свойства $\operatorname{erf}(x) \to 1$ при $x \to \infty$ найдены коэффициенты

$$a_0 = 1 - \frac{k_w}{k_R}, \quad a_1 = \frac{v}{24a_0k_1}\sqrt{\frac{6\pi a_0}{B}}.$$
 (10)

6

В *третьем разделе* сформулированы граничные условия для пластины с плёнкой на торце, выведена асимптотика и получена аппроксимирующая функция.

Светоотражающая пленка представляет собой композитный материал, состоящий из клейкого эпоксидного слоя, в который внедрены стеклянные микросферы с радиусами 50±20 мкм. Общая толщина пленки составляет приблизительно 100 мкм. Далее при формулировке приведенных граничных условий пленка рассматривается как присоединенные массы, равномерно распределенные по торцевой поверхности и связанные с пластиной упругими связями.

Граничные условия с учётом светоотражающей плёнки на торце пластины $x_1 = 0$ можно записать в виде

$$\frac{\partial u_1}{\partial x_1} + v \frac{\partial u_2}{\partial x_2} + \frac{v^2}{6(1-v)} \frac{h^2}{c_2^2} \frac{\partial^2}{\partial t^2} \operatorname{div} \overline{u} + \frac{v}{6(1-v)} h^2 \left(\frac{\partial^2}{\partial x_1^2} + v \frac{\partial^2}{\partial x_2^2} \right) \operatorname{div} \overline{u} - (1-v) \frac{h\omega^2}{2c_2^2} \rho'_n u_1 - (1-v) \frac{h^2 \omega^2}{2c_2^2} q'_n \left(\frac{\partial u_2}{\partial x_2} - \frac{v}{1-v} \operatorname{div} \overline{u} \right) = 0, \quad (11)$$

$$\frac{1}{2} \left(\frac{\partial u_1}{\partial x_2} + \frac{\partial u_2}{\partial x_1} + \frac{v}{3(1-v)} h^2 \frac{\partial^2}{\partial x_1 \partial x_2} \operatorname{div} \overline{u} \right) - (1-v) \frac{h\omega^2}{2c_2^2} \rho'_t u_2 = 0,$$

где
$$p'_n = \frac{\alpha_n}{(1 - \alpha_n \beta_n \omega^2 h^2 c_2^{-2})}, p'_t = \frac{\alpha_t}{(1 - \alpha_t \beta_t \omega^2 h^2 c_2^{-2})}, \beta_n = \frac{\mu \xi_n}{h}, \beta_t = \frac{\mu \xi_t}{h},$$

$$\alpha_{n} = \frac{\rho_{n}}{\rho h}, \ \alpha_{t} = \frac{\rho_{t}}{\rho h}, \ q_{n}' = \frac{(K_{r} - q_{r}\alpha_{t}\beta_{t}\omega^{2}h^{2}c_{2}^{-2})h^{-1}\alpha_{t}}{(1 - \kappa_{r}\alpha_{t}\beta_{t}\omega^{2}h^{2}c_{2}^{-2})(1 - \rho_{t}\xi_{t}\omega^{2}h^{2}c_{2}^{-2})(1 - \alpha_{n}\beta_{n}\omega^{2}h^{2}c_{2}^{-2})}.$$

Получена асимптотика

$$k_{as}^{Fl} = k_R \left(1 + b_1^{as} \omega_* + b_2^{as} \omega_*^2 + O(\omega_*^3) \right),$$
(12)

где

$$b_{1}^{as} = -\frac{k_{R}\left(k_{1}p_{n}' + k_{2}p_{t}'\right)}{4k_{1}k_{2}B} = -\frac{k_{R}\left(k_{1}\alpha_{n} + k_{2}\alpha_{t}\right)}{4k_{1}k_{2}B},$$

$$b_{2}^{as} = -\frac{1}{2}\frac{B_{2}(b_{1}^{as})^{2}}{k_{R}^{2}B} - \frac{b_{1}^{as}}{4k_{1}k_{2}B}\left(\frac{3 - 4\kappa_{1}^{2}k_{R}^{2}}{k_{1}}p_{n}' + \frac{3 - 4k_{R}^{2}}{k_{2}}p_{t}'\right) - (13)$$

$$-\frac{1}{2}q_{n}'\frac{\kappa_{1}^{2}}{Bk_{3}^{2}} + \frac{\left(1 - k_{1}k_{2}\right)p_{n}'p'}{4k_{1}k_{2}B} - \frac{v^{2}}{24k_{1}^{2}B}.$$

Далее в расчетах были приняты следующие значения параметров:

- толщина пластины 2h = 0.02 м;
- модуль Юнга пластины $E = 7.287 \times 10^{10}$ Па;
- плотность пластины $\rho = 2710$ кг/м³;
- коэффициент Пуассона пластины v = 0.355;
- $\rho_n = 0.168 \, \text{kg/m^2}, \ \rho_t = 0.15 \, \text{kg/m^2},$

•
$$\xi_n = \frac{1}{60 \times 10^{12}} \text{ M/IIa}, \ \xi_t = \frac{1}{10 \times 10^{12}} \text{ M/IIa},$$

- $\gamma_{E,n} = 0.9, \ \gamma_n = 0.7, \ \gamma_{E,t} = 0.963, \ \gamma_t = 0.8, \ \theta_n = 3 \times 10^{-7} \text{ c}, \ \theta_t = 2 \times 10^{-8} \text{ c},$
- $K_r = -3.1831 \times 10^{-5} \text{ m}, q_r = 2.86479 \times 10^{-4} \text{ m}, \kappa_r = 0.7$.

На рисунке 1 представлено сравнение полученной асимптотики с решением трехмерной задачи. Здесь $c_{3D} = k_{3D}c_2$, $c_{as}^{Fl} = k_{as}^{Fl}c_2$.

Рисунок 1 – Сравнение полученной асимптотики с решением трехмерной задачи для пластины с плёнкой

Для построения аппроксимации скорости волны ES₀в пластине со рассматривается функция

$$g_{appr}(\omega_{*}) = k_{R} \left(1 + b_{1}^{as} \omega_{*} + \frac{b_{2}^{as} \omega_{*}^{2}}{1 + a_{1} \omega_{*}^{2} + a_{2} \omega_{*}^{4}} \right).$$
(14)

Предположим, что из каких-либо соображений (например, из экспериментальных данных) известна точка минимума функции

$$r_{3D}(\omega_*) = k_{3D}(\omega_*) - k_R b_1^{as} \omega_*.$$
(15)

В безразмерных переменных точка минимума будет определяться значениями $\omega_{\min} = 5.386$, $k_{\min} = 0.904$. Такой подход позволит нам найти более простую производную, без учета слагаемого с множителем b_1^{as} в формуле (15). Найдем производную от аппроксимирующей функции

$$g'(\omega_*) = -k_R \left(\frac{2\omega_* b_2^{as} (a_2 \omega_*^2 - 1)}{(a_2 \omega_*^4 + a_1 \omega_*^2 + 1)^2} \right).$$
(16)

Приравнивая (16) к нулю, находим коэффициент a_2 :

$$a_2 = \frac{1}{\omega_{\min}^4} \,. \tag{17}$$

Коэффициента a_1 найдем из условия $g_{appr}(\omega_{\min}) - k_R b_1^{as} \omega_{\min} = k_{\min}$. Получим

$$a_{1} = -\left(a_{2}\omega_{\min}^{2} + \frac{1}{\omega_{\min}^{2}} + \frac{b_{2}^{as}k_{R}}{k_{R} - k_{\min}}\right).$$
 (18)

В четвёртом разделе было выполнено сравнение с трёхмерной теорией и экспериментальными данными.

Сравнение найденных аппроксимирующих функции с решением трёхмерной задачи для трех значений коэффициента Пуассона v = 0.25, 0.355, 0.45 показало, что построенная аппроксимация для пластины без плёнки позволяет получить достаточно хорошее приближение. Точность аппроксимации несколько ухудшается при уменьшении коэффициента Пуассона. Таким образом, как для случая без пленки, так и для случая с

пленкой решение трехмерной задачи может быть приближенно заменено аппроксимацией, вычисляемой по простой явной формуле.

В качестве исходных данных для дипломной работы были предоставлены экспериментальные данные, полученные из натурных экспериментов на алюминиевой пластине толщиной 2 см.

Как видно из рисунка 2, наблюдается хорошее согласование теории и эксперимента. Также можно отметить, что наличие пленки приводит к изменению поведения скорости волны в зависимости от частоты.

Заключение

В данной работе получен ряд новых результатов, касающихся распространения планарной краевой волны в пластине, на торце которой приклеена световозвращающая пленка. Сформулированы приведенные граничные условия для пластины со световозвращающей плёнкой на торце. Выведено дисперсионное уравнение на основе уточненных уравнений

теории растяжения пластин и построенных приведенных граничных условий. Выведена асимптотика для скорости краевой волны при стремлении частоты к нулю. С помощью асимптотик были построены аппроксимирующие функции. Сравнение с трёхмерным решением показало, что аппроксимирующие функции, найденные в данной работе, точно описывают решение на малых частотах и с небольшой погрешностью в частотном диапазоне. Отметим высоком также, что асимптотики, выведенные в данной работе, можно использовать для приближенного описания квазифронта при действии быстро изменяющихся нагрузок. Сравнение с экспериментальными данными показало, что модель пленки, принятая в данной работе, позволяет описать влияние световозвращающей плёнки на низшую симметричную краевую волну в широком частотном диапазоне.

Автор выражает благодарность сотрудникам Института математики, механики и информатики Кубанского государственного университета Голубу М. В. и Еремину А. А. за предоставленные экспериментальные данные, а также аспиранту СГУ Плешкову В. Н. за результаты обработки данных методом матричных пучков.