«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г.ЧЕРНЫШЕВСКОГО»

	т-фреймы в обработке в даление размытости)	информации
V.		
б	В	
<u>2</u> 01.04.02	218	
-		
	В В	
MM MM		M M
MM M MM MM		ММ

Введение. Устранение размытия изображений — это одна из ключевых задач в области обработки изображений и компьютерного зрения. Размытие может возникать по ряду причин, таких как движение камеры, дефокусировка, атмосферные условия и т.д. В контексте цифровой фотографии, видеонаблюдения и медицинской визуализации четкие изображения имеют решающее значение для точного анализа и принятия решений. В связи с этим разработка методов устранения размытия имеет большое значение.

Настоящая работа посвящена изучению методов устранения размытия изображений с использованием жестких фреймов. Жесткие фреймы представляют собой совокупность структур, которые описывают пространственные или временные ограничения, применяемые к обработке данных.

Основное содержание работы. Магистерская работа состоит из четырех глав.

Во введении были четко обоснованы актуальность исследования, определены цели и задачи, а также описаны возможные практические приложения.

В первой главе были введены базовые определения и свойства, относящиеся к теории жестких вейвлет-фреймов.

Вторая глава была посвящена базисным сплайнам и их роли в кратномасштабном анализе. Было показано, что такая система способна формировать жесткий фрейм.

Третья глава содержала практическую реализацию алгоритма разложения по жесткому фрейму.

В четвертой главе были представлены различные инструменты и методы обработки изображений. В частности, был применен метод, использующий теорию жестких фреймов, чтобы решить проблему устранения размытия изображения, что подтверждает практическое значение проведенного исследования.

В заключении подведен итог проделанной работы, сформулированы общие выводы исследования.

Теория кратномасштабного анализа (КМА) базируется на теории функциональных пространств. Такое описание $L^2(\mathbb{R})$ через «иерархические» вло-

женные друг в друга подпространства $V_m, m \in \mathbb{Z}$:

$$\{0\}.. \subset V_{-2} \subset V_{-1} \subset V_0 \subset V_1 \subset V_2 \subset .. \subset L^2(\mathbb{R}),\tag{1}$$

как можно заметить, что каждое следующее пространство «шире» предыдущего.

Для того чтобы последовательность подпространств $V_m, m \in \mathbb{Z}$ являлась ортогональным КМА, она должна удовлетворять следующим требованиям:

- 1. $\overline{\bigcup_{m\in Z} V_m} = L^2(\mathbb{R})$, объединение всех замкнутых подпространств есть пространство $L^2(\mathbb{R})$;
- 2. $\bigcap_{j\in Z} V_j = \{0\}$, подпространства нигде не пересекаются;
- 3. $\varphi \in V_m \to \varphi(2\cdot) \in V_{m+1}$;
- 4. $\varphi \in V_0 \to \varphi(\cdot n) \in V_0, n \in \mathbb{Z};$
- 5. $\exists \varphi \in V_0$ такая, что семейство $\varphi_{0,n} = \varphi(\cdot n)$ образует ортонормированный базис (ОНБ) для V_0 . Тогда φ масштабирующая функция (scaling function).

В целях построения КМА целесообразно рассмотреть ортогональное дополнение W_m к V_m , такое что:

- 1. $\overline{\bigcup_{m\in Z}W_m}=L^2(\mathbb{R}),$ объединение всех W_m в пределе есть пространство $L^2(\mathbb{R});$
- 2. $\bigcap_{m\in \mathbb{Z}} W_m = \{0\}$, подпространства W_m нигде не пересекаются;
- 3. $\exists W_0 \in V_1 : W_0 \perp V_0$, и $V_0 \oplus W_0 = V_1$;
- 4. $3. \to L_2(\mathbb{R}) = \bigoplus_{j=-\infty}^{\infty} W_j$.

Пространство W_m — вейвлет пространство. Пусть $\{\varphi_{0,n},\psi_{0,n}\}_{n=-\infty}^{\infty}$ — образуют базис пространства V_1 , где $\{\varphi_{0,n}\}_{n=-\infty}^{\infty}$ — есть ортонормированный базис пространства V_0 , а $\{\psi_{0,n}\}_{n=-\infty}^{\infty}$ — базис W_0 в соответствии с разложением $V_0 \oplus W_0 = V_1$.

Построенная последовательность расширяющихся подпространств (1) может быть использована для того, чтобы от произвольной функции f из $L_2(\mathbb{R})$ перейти к ее достаточно точному приближению в пространстве V_j . Это делается ортогональным проектированием пространства $L_2(\mathbb{R})$ на подпространство V_j :

$$P_j: L_2(\mathbb{R}) \to V_j, P_j(f) = \sum_{n \in \mathbb{Z}} \langle f, \varphi_{j,n} \rangle \varphi_{j,n}(x).$$

Стоит заметить, что здесь не возникает вопроса о сходимости ряда, так как в любой точке $x \in \mathbb{R}$ сумма состоит из одного ненулевого слагаемого, поскольку промежутки, на которых функции $\phi_{j,n}(x)$ отличны от нуля, при различных n не пересекаются. Достаточно очевидно, что операторы $P_j: L_2(\mathbb{R}) \to V_j$ — линейны и непрерывны. Также стоит заметить, что для любого $j \in \mathbb{Z}$ имеет место равенство $P_j P_{j+1} = P_j$.

Далее предлагается отметить некоторые результаты, на которых будет основано дальнейшее повествование.

Определение 1.1 Пусть $\varphi \in V_1$, но $V_0 \subset V_1$, тогда функция φ — называется масштабирующей, а соответствующее ей масштабирующее уравнение записывается как:

$$\varphi(x) = 2\sum_{k \in \mathbb{Z}} h_0[k]\varphi(2x - k), \tag{2}$$

для некоторого $h_0 \in \ell_2(\mathbb{Z})$.

Определение 1.2 Последовательность h_0 — называется маской масштабирующего уравнения.

Определение 1.3 Система $X(\Psi) \subset L_2(\mathbb{R})$ — жесткий фрейм в $L_2(\mathbb{R})$, если справедливо представление:

$$||f||_{L_2(\mathbb{R})}^2 = \sum_{g \in X(\Psi)} ||\langle f, g \rangle||^2,$$

где $\langle \cdot, \cdot \rangle$ — скалярное произведение в $L_2(\mathbb{R})$:

$$\langle f_1, f_2 \rangle = \int_{\mathbb{R}} f_1 \overline{f_2} dx.$$

Определение 1.4 Система $X(\Psi) \subset L_2(\mathbb{R})$ — фрейм в $L_2(\mathbb{R})$, если для $0 < A \leq B < \infty$ справедливо представление:

$$A||f||_{L_2(\mathbb{R})}^2 \le \sum_{g \in X(\Psi)} \|\langle f, g \rangle\|^2 \le B||f||_{L_2(\mathbb{R})}^2,$$

где A, B — нижняя и верхняя граница фрейма соответственно.

Определение 1.5 Система $X(\Psi) \subset L_2(\mathbb{R})$ — жесткий фрейм в $L_2(\mathbb{R})$, если для $0 < A \le B < \infty$ справедливо представление:

$$\sum_{g \in X(\Psi)} \|\langle f, g \rangle\|^2 = B \|f\|_{L_2(\mathbb{R})}^2,$$

где A = B = 1 — нижняя и верхняя граница фрейма соответственно.

Теорема 1.1 Система вейвлетов $X(\Psi)$ — образует жесткий фрейм в $L_2(\mathbb{R})$, тогда и только тогда, когда выполнено:

$$\sum_{\psi \in \Psi} \sum_{k \in \mathbb{Z}} \|\widehat{\psi}(2^k \xi)\| = 1; \sum_{\psi \in \Psi} \sum_{k=0}^{\infty} \widehat{\psi}(2^k \xi) \overline{\widehat{\psi}(2^k (\xi + (2j+1)2\pi))} = 0, j \in \mathbb{Z}.$$
 (3)

 $X(\Psi)$ — ОНБ в $L_2(\mathbb{R})$ тогда и только тогда, когда выполнено (3) и $\|\psi\| = 1, \forall \psi \in \Psi$.

Пусть $\{V_n\}_{n\in\mathbb{Z}}$ — КМА, порожденный масштабирующей функцией φ с маской h_0 . Построение системы, которая образует жесткий фрейм начинается с построения $\Psi \subset L_2(\mathbb{R})$. Целью построения жестких вейвлет-фреймов на основе КМА — является нахождение $\Psi = \{\psi_1, \dots, \psi_r\} \subset V_1$ такого, что $X(\Psi)$ образует жесткий фрейм для $L_2(\mathbb{R})$. Поскольку $V_0 \subset V_1$ порождается $\varphi(2\cdot)$, то задача сводится к нахождению $\Psi \subset V_1$, а именно к нахождению такой маски h_ℓ :

$$\psi_{\ell}(x) = 2\sum_{k \in \mathbb{Z}} h_{\ell}[k]\phi(2x - k). \tag{4}$$

Где h_1, \ldots, h_r — называется маской вейвлетов. Преобразование Фурье (4) имеет вид:

$$\widehat{\psi}_{\ell}(2\cdot) = \widehat{h}_{\ell}\widehat{\phi}, \quad \ell = 1, \dots, r.$$

Предложение 1.6 Рассматриваемые конструкции КМА удовлетворяют следующим требованиям:

- $\{h_l: l=0,1,\ldots,r\} \in \ell_2(\mathbb{Z})$ и \widehat{h}_ℓ измеримо и ограничено;
- Маска h_0 масштабирующей функции $\varphi \in L_2(\mathbb{R})$ удовлетворяет:

$$\|\widehat{h}_0(\xi) - 1\| \le C\|\xi\|;$$

- $\sum_{k \in 2\pi\mathbb{Z}} |\hat{\phi}(\cdot + k)|^2$ — ограничена.

Теорема 1.2 Пусть $\varphi \in L_2(\mathbb{R})$ — масштабирующая функция, и h_0 — маска масштабирующей функции и $\exists \{h_1,\ldots,h_r\}$. Также, если масштабирующая функция φ и $\{h_l: l=0,1,\ldots,r\} \in \ell_2(\mathbb{Z})$ удовлетворяют предложению 1.8, то система $X(\Psi)$, где $\Psi = \{\psi_1,\ldots,\psi_r\}$, определенна в (4), образует жесткий фрейм в $L_2(\mathbb{R})$ при условии:

$$\sum_{\ell=0}^{r} \left| \widehat{h}_{\ell}(\xi) \right|^{2} = 1, \qquad \sum_{\ell=0}^{r} \widehat{h}_{\ell}(\xi) \overline{\widehat{h}_{\ell}(\xi + \pi)} = 0, \tag{5}$$

выполняется почти для всех $\xi \in \sigma(V_0)$, где:

$$\sigma(V_0) := \{ \xi \in \mathbb{R} : \sum_{k \in 2\pi\mathbb{Z}} |\hat{\phi}(\cdot + k)|^2 \neq 0 \}.$$
 (6)

Кроме того, при r=1 и $\|\phi\|_{L_2(\mathbb{R})}=1$, тогда $X(\Psi)$ — ОНБ в $L_2(\mathbb{R})$.

Также, маска масштабирующей функции h_0 должна удовлетворять:

$$\left|\widehat{h}_0(\xi)\right|^2 + \left|\widehat{h}_0(\xi + \pi)\right|^2 \le 1. \tag{7}$$

Условия в (5) могут быть записаны в терминах последовательностей $\{h_0, h_1, \ldots, h_r\}$:

$$\sum_{\ell=0}^{r} \sum_{k \in \mathbb{Z}} \overline{h_{\ell}[k]} h_{\ell}[k-p] = \delta_{p,0}, \quad p \in \mathbb{Z};$$
(8)

$$\sum_{\ell=0}^{r} \sum_{k \in \mathbb{Z}} (-1)^{k-p} \overline{h_{\ell}[k]} h_{\ell}[k-p] = 0, \quad p \in \mathbb{Z},$$
(9)

где $\delta_{p,0}=1$, тогда и только тогда, когда p=0 и 0 в противном случае. **Лемма 1.7.** Пусть масштабирующая функция $\phi \in L_2(\mathbb{R})$, и выполняется предположение 1.8. Тогда для любой функции $f \in L_2(\mathbb{R})$ выполняется:

$$\lim_{n\to-\infty} \mathcal{P}_n f = 0.$$

Лемма 1.8. Пусть масштабирующая функция $\phi \in L_2(\mathbb{R})$ удовлетворяет предложению 1.8 и (7). Тогда для любой функции $f \in L_2(\mathbb{R})$ выполняется:

$$\lim_{n\to\infty} \mathcal{P}_n f = f.$$

Пусть В-сплайн первого порядка есть:

$$B_1(x) = \chi(x) = \begin{cases} 1, & \text{при } x \in [0, 1]; \\ 0, & \text{иначе }. \end{cases}$$

Далее определим сплайн B_m через свертку:

$$B_m(x) := (B_{m-1} * B_1)(x) = \int_0^1 B_{m-1}(x-t)dt, \quad m \ge 2, \tag{10}$$

где B_1 — характеристическая функция интервала [0,1].

Далее пусть:

$$\psi_l(x) = 2\sum_{k \in \mathbb{Z}} h_l[k]\phi(2x - k),$$

где
$$h_0 = \left[\frac{1}{4}, \frac{1}{2}, \frac{1}{4}\right], \quad h_1 = \left[-\frac{1}{4}, \frac{1}{2}, -\frac{1}{4}\right], \quad h_2 = \left[\frac{\sqrt{2}}{4}, \frac{1}{2}, -\frac{\sqrt{2}}{4}\right].$$

Далее объединим пересекающиеся интервалы, получим:

$$\psi_0 = \begin{cases} 1+x, & x \in [-1,-\frac{1}{2}]; \\ 1+x, & x \in [-\frac{1}{2},0]; \\ 1-x, & x \in [0,\frac{1}{2}]; \\ 1-x, & x \in [\frac{1}{2},1]; \\ 0, & \text{иначе}, \end{cases} \qquad \psi_1 = \begin{cases} -1-x, & x \in [-1,-\frac{1}{2}]; \\ 1+3x, & x \in [-\frac{1}{2},0]; \\ 1-3x, & x \in [0,\frac{1}{2}]; \\ -1+x, & x \in [\frac{1}{2},1]; \\ 0, & \text{иначе}, \end{cases}$$

$$\psi_2 = \begin{cases} -\sqrt{2}(1+x), & x \in [-1,-\frac{1}{2}]; \\ \sqrt{2}x, & x \in [-1,-\frac{1}{2}]; \\ \sqrt{2}x, & x \in [-\frac{1}{2},0]; \\ \sqrt{2}x, & x \in [0,\frac{1}{2}]; \\ \sqrt{2}(1-x), & x \in [\frac{1}{2},1]; \\ 0, & \text{иначе}. \end{cases}$$

Очевидно, выбранные последовательности $\{h_0, h_1, h_2\}$ удовлетворяют (8) - (9) и $X(\Psi)$ — жесткий фрейм.

Поскольку:

$$\mathcal{P}_L f = D^L \mathcal{P}_0 D^{-L} f,$$

то без потери общности можно использовать $\mathcal{P}_0 f \in V_0$ для приближения f. При необходимости всегда можно рассматривать функцию $f\left(2^{-L}\right)$) вместо f, так как приближение функции f в пространстве V_L то же, что приближение функции $f\left(2^{-L}\right)$) в пространстве V_0 .

Алгоритм. Для заданного сигнала $v \in \mathbb{R}^N$, где $N \in \mathbb{N}$ — кратное 2^L , где $L \in \mathbb{N}$. Обозначим $v_{0,0} = v$. Тогда L-уровневое быстрое разложение и восстановление задаются следующим образом:

- 1. Разложение: Для каждого j = 1, 2, ..., L:
 - Получить низкочастотные коэффициенты v на уровне j:

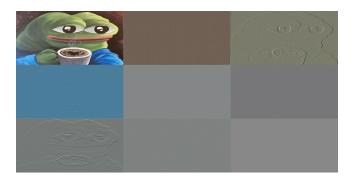
$$v_{0,j} = \downarrow \left(\tilde{h}_0 \circledast v_{0,j-1} \right);$$

- Получить высокочастотные коэффициенты v на уровне j:

$$v_{\ell,j} = \downarrow \left(\tilde{h}_{\ell} \circledast v_{0,j-1} \right), \quad \ell = 1, 2, \dots, r.$$

2. Восстановление: Для каждого j = L, L - 1, ..., 1:

$$v_{0,j-1} = \sum_{\ell=0}^{r} \tilde{h}_{\ell}^* \circledast (\uparrow v_{\ell,j})$$



Pисунок 1 - Pезультат разложения.

В соответствии с рисунком 1, представлено разложение исходного изображения с фильтрами $h_0 = \left[\frac{1}{4}, \frac{1}{2}, \frac{1}{4}\right], \quad h_1 = \left[-\frac{1}{4}, \frac{1}{2}, -\frac{1}{4}\right], \quad h_2 = \left[\frac{\sqrt{2}}{4}, \frac{1}{2}, -\frac{\sqrt{2}}{4}\right].$

Фильтрация в частотной области заключается в модифицировании Фурьеобраза изображения и последующем выполнении обратного преобразования для получения обработанного результата.

Простейшим способом восстановления является инверсная фильтрация, которая предполагает получение оценки $\hat{F}(u,v)$ Фурье-преобразования исходного изображения делением Фурье-преобразования искаженного изображения на частотное представление искажающей функции:

$$\hat{F}(u,v) = F(u,v) + \frac{N(u,v)}{H(u,v)},$$
 (11)

очвидно, что даже зная искажающую функцию, невозможно точно восстановить неискаженное изображение (обратное Фурье-преобразование функции F(u,v)), поскольку функция N(u,v) неизвестна.

Рисунок 2 — Модифицированный метод Винера: а - Восстановленное изображение.

В соответствии с рисунком 2 представлен результат восстановления изображения посредством применения модифицированного метода Винера.

MSE	
R 22.6629	PSNR
G 21.1638	34.5776
B 26.8322	

Таблица 1 — Полученные ошибки для модифицированного метода Винера.

Пусть наблюдаемое изображение имеет вид:

$$y = x * k + \varepsilon,$$

тогда предлагаемая целевая функция модели устранения размытия представлена как:

$$\arg\min_{k,x} \|x \circledast k - y\|_{2}^{2} + \gamma_{1} P_{x}^{\sigma} + \gamma_{2} P_{k}^{\alpha}, \tag{12}$$

где:

$$P_x^{\sigma} = \sigma ||x||_0 + ||\nabla x||_0,$$

$$P_k^{\alpha} = ||wk||_0 - \alpha ||k||_1,$$

 $\gamma_1, \ \gamma_2$ и σ — веса регуляризации, $\alpha \in [0, \ 1]; \ w$ — матрица преобразования фреймлетов, удовлетворяющая условию $w^Tw = I, \ \nabla$ — оператор градиента, где $\nabla x = (\nabla_h x, \ \nabla_v x)^T.$

Для приближенного восстановления изображения с некоторой PSF, в соответствии с предложенной моделью, необходимо решить следующую задачу:

$$\arg\min_{x} \|x \circledast k - y\|_{2}^{2} + \gamma_{1} \left(\sigma \|x\|_{0} + \|\nabla x\|_{0}\right). \tag{13}$$

Для приближения PSF в (12) необходимо решить следующую задачу:

$$\arg\min_{k} \|x \circledast k - y\|_{2}^{2} + \gamma_{2} (\|wk\|_{0} - \alpha \|k\|_{1})$$

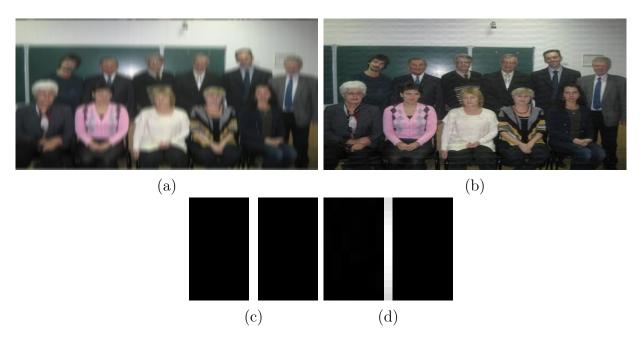


Рисунок 3 — Восстановленое изображение: а - исходное изображение; b - Восстановленное изображение; с - Исходная PSF; d - Найденная PSF.

MSE	
R 4.345456	PSNR
G 4.282529	41.647336
B 4.426256	

Таблица 2 — Полученные ошибки для восстановленного изображения.

В соответствии с рисунком 3, представлены промежуточные значения найденной PSF.

Заключение. В настоящей работе были изучены основы теории жестких вейвлет-фреймов и их применение в области обработки данных и изображений. Проведенный анализ показал, что В-сплайны могут служить эффективной основой для создания жестких фреймов, что открывает широкие возможности для различных практических применений.

Были реализованы различные алгоритмы, в контексте обработки изображений, в частности, для решения задачи устранения размытия.

Таким образом, проделанная работа продемонстрировала практическую значимость жестких вейвлет-фреймов в области обработки изображений, а также стимулирует поиск новых способов применения теории жестких фреймов в других областях науки и техники.