МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Кафедра радиофизики и нелинейной динамики

МУЛЬТИСТАБИЛЬНОСТЬ В ГЕНЕРАТОРЕ РЭЛЕЯ С ДВУМЯ ДОПОЛНИТЕЛЬНЫМИ КОНТУРАМИ

АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ

студента 4 курса 4032 группы направления 27.03.02 «Радиофизика» института физики

Тимченко Олега Павловича

Научный руководитель,		
профессор, д.фм.н., профессор		В.В. Астахов
должность, уч. степень, уч. звание	подпись, дата	инициалы, фамилия
Зав. кафедрой,		
д.фм.н., доцент		Г.И. Стрелкова
должность, уч. степень, уч. звание	подпись, дата	инициалы, фамилия

Введение.

Термины «автоколебания» и «автоколебательные системы» впервые были введены Андроновым А.А. в конце двадцатых годов прошлого столетия. Под автоколебаниями понимают незатухающие, самоподдерживающиеся колебания в нелинейных, открытых, диссипативных системах различной природы.

В основе радиофизических автоколебательных систем лежит генератор Ван дер Поля и соответствующее уравнение. Осциллятор Ван дер Поля является базовой моделью теории колебаний и нелинейной динамики, которая универсальным образом описывает мягкое возбуждение автоколебаний, обусловленное суперкритической бифуркацией Андронова-Хопфа в системах различной природы. Уравнение Ван дер Поля связано с уравнением Рэлея. При определенной замене переменных и параметров одно переходит в другое. Генератор Ван дер Поля является простейшей автоколебательной системой с одной степенью свободы. На фазовой плоскости имеется состояние равновесия и предельный цикл. Устойчивый предельный цикл рождается из неустойчивого фокуса в результате суперкритической бифуркации Андронова-Хопфа.

Мультистабильность — универсальное нелинейное явление, наблюдаемое в системах различной природы. Под мультистабильностью понимают сосуществование нескольких аттракторов в фазовом пространстве системы, реализация каждого из которых зависит от выбора начальных условий или истории движения по параметрам. Мультистабильность имеет большое фундаментальное и прикладное значение, определяет свойства динамических систем, в одних случаях повышая, а в других понижая их функциональные возможности.

В выпускной квалификационной работе в разделе 1 изучается генератор на активном элементе с отрицательной дифференциальной проводимостью, для которого выведено уравнение Рэлея. Во втором разделе изучается появление мультистабильности в генераторе Рэлея с дополнительным контуром, а в третем – в генераторе Рэлея с двумя дополнительными контурами. Численные

исследования режимов и бифуркационный анализ проводился с помощью пакета программ XPPAUTO.

Целью выпускной квалификационной работы является изучение автоколебательных систем с различным числом степеней свободы. Освоение методов построения математических моделей радиофизических генераторов, использование аналитических и численных методов исследования типичных моделей в виде обыкновенных дифференциальных уравнений. Исследование явления мультистабильности в генераторах с двумя и тремя степенями свободы. Выявление бифуркационных механизмов формирования мультистабильности в генераторе Рэлея с дополнительными контурами.

Для достижения данной цели были поставлены следующие задачи:

- 1 Рассмотреть генератор на активном нелинейном элементе с отрицательной дифференциальной проводимостью.
- 2 Провести анализ устойчивости состояний равновесия осциллятора Рэлея.
 - 3 Вывести укороченные уравнения Рэлея для амплитуд и фаз.
- 4 Вычислить Ляпуновский характеристический показатель для анализа устойчивости предельного цикла.
- 5 Рассмотреть схему и уравнения генератора с двумя степенями своболы.
- 6 Изучить динамику осциллятора Рэлея, взаимодействующего с линейным диссипативным осциллятором.
- 7 Провести бифуркационный анализ состояний равновесия и предельных циклов в осцилляторе Рэлея, связанным с линейным осциллятором.
- 8 Вывести укороченные уравнения амплитуд и фаз генератора Рэлея с дополнительным колебательным контуром.
- 9 Провести бифуркационный анализ укороченной системы для амплитуд и фаз в осцилляторе Рэлея, связанным с линейным осциллятором.
- 10 Рассмотреть схему и уравнения генератора с двумя дополнительными колебательными контурами.

11 Изучить динамику осциллятора Рэлея, взаимодействующего с двумя линейными диссипативными осцилляторами.

Основное содержание работы

Генератор на активном нелинейном элементе с отрицательной дифференциальной проводимостью. Схема генератора представлена на рисунке 1.

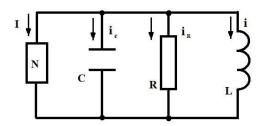


Рисунок 1 – Схема генератора

Он состоит из нелинейного элемента N и колебательного контура, из параллельно соединённых емкости C, сопротивления R и индуктивности L.

Получаем уравнение Рэлея (формула 1)

$$\ddot{x} - (\varepsilon - \dot{x}^2)\dot{x} + \omega_0^2 x = 0 \tag{1}$$

где
$$\dot{x} = \frac{dx}{dt}$$
.

Анализ устойчивости состояний равновесия осциллятора Рэлея. Исследована устойчивость состояния равновесия в зависимости от параметра возбуждения є, получено квадратное уравнение (формула 2).

$$\mu^2 - \varepsilon \mu + \omega_0^2 = 0 \tag{2}$$

Корни которого имеют вид (формула 3).

$$\mu_{1,2} = \frac{\varepsilon}{2} \pm \sqrt{\frac{\varepsilon^2}{4} - \omega_0^2} \tag{3}$$

В осцилляторе Рэлея имеется единственное состояние равновесия в начале координат, которое является устойчивым при $\varepsilon < 0$ и неустойчивым при $\varepsilon > 0$. При переходе через значение $\varepsilon = 0$ устойчивый фокус становится неустойчивым. Пара собственных значений при $\varepsilon = 0$ являются мнимыми.

Здесь происходит бифуркация Андронова-Хопфа, рождается предельный цикл.

Укороченные уравнения Рэлея для амплитуд и фаз. Получили систему уравнений для амплитуды и фазы (формула 4).

$$\begin{cases}
\dot{e} = \frac{\varepsilon}{2}\rho - \frac{3}{8}\omega_0^2 \rho^3 \\
\dot{\varphi} = 0
\end{cases}$$
(4)

Из формулы 4 следует, что

$$\varphi(t) = \varphi_0 = const$$

 φ_0 определяется из начальных условий.

Таким образом, для уравнения Рэлея получили в случае є получаем приближенное периодическое решение (формула 5).

$$x(t) = \frac{2}{\omega_0 \sqrt{3}} \sqrt{\varepsilon} \cos(\omega_0 t + \varphi_0)$$
 (5)

Оно появляется при положительных значениях параметра возбуждения, амплитуда его растет пропорционально $\sqrt{\epsilon}$.

Устойчивость состояния равновесия, бифуркацию рождения предельного цикла и устойчивость предельного цикла в полной системе можно изучать, анализируя укороченные уравнения для амплитуды и фаз (формула 4).

Бифуркационная диаграмма представлена на рисунке 2. Для полной системы это соответствует.

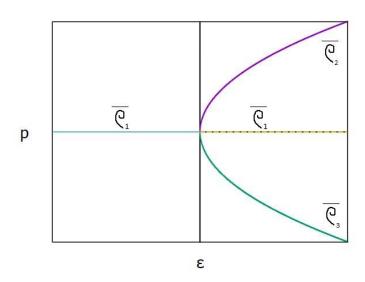


Рисунок 2 – Бифуркационная диаграмма

Суперкритическая бифуркация Андронова-Хопфа. При переходе через бифуркационные значения $\varepsilon = 0$ устойчивый фокус становится неустойчивым,

в его окрестности рождается устойчивый предельный цикл, радиус которого увеличивается пропорционально $\sqrt{\epsilon}$.

Ляпуновский характеристический показатель. Для полной системы анализ устойчивости предельного цикла можно провести, вычисляя Ляпуновский характеристический показатель. Для динамических систем на фазовой плоскости он определяется следующим образом (формула 6).

$$h = \frac{1}{T} \int_0^T \left\{ \frac{dP(\bar{x}, \bar{y})}{dx} + \frac{dQ(\bar{x}, \bar{y})}{dy} \right\} dt \tag{6}$$

где P(x,y) и Q(x,y) — первые части системы двух обыкновенных дифференциальных уравнений первого порядка.

 $ar{x}(t), \ ar{y}(t)$ — периодическое решение, которое исследуется на устойчивость.

Ляпуновский характеристический показатель предельного цикла в осцилляторе Рэлея $h=-\epsilon$ является отрицательным при $\epsilon>0$, в генераторе рождается устойчивый предельный цикл, когда параметр возбуждения ϵ переходит от отрицательных значений к положительным.

Схема и уравнения генератора с двумя степенями свободы. Схема генератора с двумя колебательными контурами показана на рисунке 3.

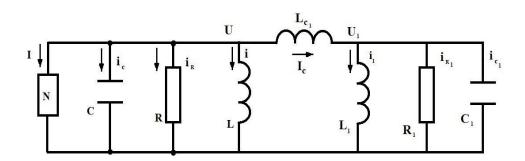


Рисунок 3 — Схема генератора на активном нелинейном элементе с двумя колебательными контурами

Уравнение генератора представим в виде системы уравнений (формула 7)

$$\ddot{x} - (\varepsilon - \dot{x}^2)\dot{x} + \omega_0^2 x = \gamma (x_1 - x) \ddot{x}_1 = a_1 \dot{x}_1 + \omega_1^2 x_1 = \gamma_1 (x - x_1)$$
(7)

где x(t), $x_1(t)$ – динамические переменные,

 ε – параметр возбуждения осциллятора Рэлея,

 a_1 – параметр диссипации линейного осциллятора,

 ω_0 и ω_1 – собственные частоты,

 γ и γ_1 — коэффициенты связи, характеризующие воздействие дополнительного контура на генератор и генератора на дополнительный осциллятор, соответственно.

Динамика осциллятора Рэлея, взаимодействующего с линейным диссипативным осциллятором. В генераторе с дополнительным контуром в зависимости от расстройки по собственным частотам при плавном увеличении параметра ε возбуждается либо синфазный, либо противофазный режим автоколебаний. Когда собственная частота основного контура ω_0 немного меньше собственной частоты дополнительного контура ω_1 , в системе мягко возбуждается синфазный режим автоколебаний. Если ω_0 немного больше ω_1 , то мягко возбуждается противофазный режим автоколебаний. В обоих случаях, выше по параметру возбуждения обнаруживается еще один устойчивый предельный цикл (или C_2 при $\omega_0 < \omega_1$ или C_1 при $\omega_0 > \omega_1$). Система бистабильной. Чтобы исследовать бифуркации рождения становится предельных циклов, механизм формирования бистабильности, проведем с помощью пакета XPPAUTO однопараметрический бифуркационный анализ состояний равновесия и предельных циклов.

Бифуркационный анализ состояний равновесия и предельных циклов в осцилляторе Рэлея, связанным с линейным осциллятором. В автоколебательной системе с двумя степенями свободы, состоящей из осциллятора Рэлея, взаимодействующего с линейным диссипативным осциллятором, мультистабильность формируется в результате двух последовательных суперкритических бифуркаций Андронова-Хопфа и одной субкритической бифуркации Неймарка-Сакера.

Исследование седловых торов свели к исследованию состояний равновесия и седловых циклов в укороченной системе для амплитуд и фаз осциллятора Рэлея, связанного с линейным осциллятором (рисунок 4).

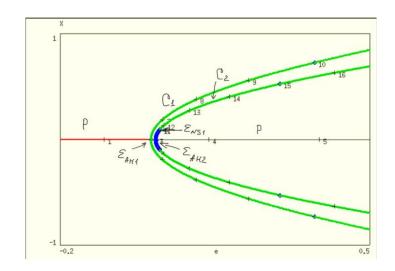


Рисунок 4 — Бифуркационная диаграмма состояния равновесия Р и седловых циклов C_1 , C_2 . $\varepsilon_{AH1}=0.0062$ — значение первой суперкирической бифуркации Андронова-Хопфа, $\varepsilon_{AH2}=0.0162$ — значение второй суперкритической бифуркации Андронова-Хопфа, $\varepsilon_{NS1}=0.0263$ — значение суперкритической бифуркации Неймарка-Сакера

Вывод укороченных уравнений амплитуд и фаз генератора Рэлея с дополнительным колебательным контуром. Получена следующая система уравнений для амплитуд и фаз.

$$\begin{cases} \dot{\rho} = \frac{\varepsilon}{2}\rho - \frac{3\omega^2}{8}\rho^3 - \frac{\gamma}{2\omega}\rho_1 \sin\psi \\ \dot{\rho_1} = -\frac{a_1}{2}\rho_1 + \frac{\gamma}{2\omega}\rho \sin\psi \\ \dot{\psi} = \frac{\omega_0^2 - \omega_1^2}{2\omega} + \frac{\gamma}{2\omega} \left\{ \frac{\rho}{\rho_1} - \frac{\rho_1}{\rho} \right\} \cos\psi \end{cases}$$

Определим частоту ω . Будем полагать, что собственные частоты ω_0 и ω_1 близки, т.е. $\omega_0 \approx \omega_1$. Тогда:

$$\frac{\omega_0^2 - \omega_1^2}{2\omega} = \frac{(\omega_0 - \omega_1)(\omega_0 + \omega_1)}{2\omega}, \frac{\omega_0 + \omega_1}{2\omega} \approx 1, \ \omega = \frac{\omega_0 + \omega_1}{2}.$$

Система уравнений принимает вид (формула 8).

$$\begin{cases}
\dot{\rho} = \frac{\varepsilon}{2}\rho - \frac{3(\omega_0 + \omega_1)^2}{32}\rho^3 - \frac{\gamma}{\omega_0 + \omega_1}\rho_1 \sin\psi \\
\dot{\rho}_1 = -\frac{a_1}{2}\rho_1 + \frac{\gamma}{\omega_0 + \omega_1}\rho \sin\psi \\
\dot{\psi} = (\omega_0 - \omega_1) + \frac{\gamma}{\omega_0 + \omega_1} \left\{ \frac{\rho}{\rho_1} - \frac{\rho_1}{\rho} \right\} \cos\psi
\end{cases} \tag{8}$$

Бифуркационный анализ укороченной системы для амплитуд и фаз.

Проведем бифуркационный анализ укороченной системы (8). Отметим, что состоянию равновесия в полной системе (отсутствие автоколебаний) соответствует неподвижная точка с нулевыми координатами в укороченной системе, предельному циклу соответствует неподвижная точка с ненулевыми координатами, квазипериодическим автоколебаниям (двумерному тору) соответствует предельный цикл.

На рисунках 5, 6 показаны бифуркационные диаграммы состояний равновесия и предельных циклов в зависимости от параметра возбуждения ε в интервале значений от -0.2 до 0.5 при фиксированных значениях других параметров $\omega_0 = 0.95$, $\omega_1 = 1.0$, $\gamma = \gamma_1 = 0.2$, $\alpha_1 = 0.01$.

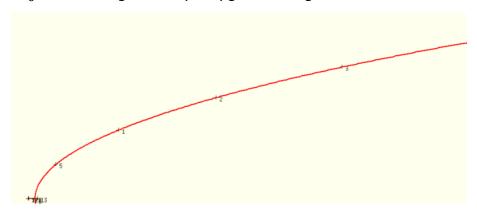


Рисунок 5 – Бифуркационная диаграмма неподвижной точки P1 укороченной системы уравнений (8).

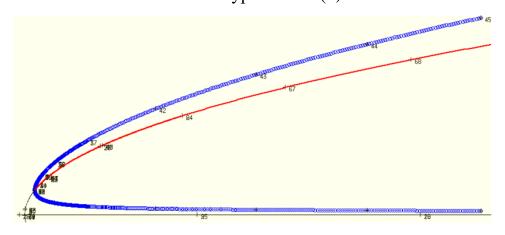


Рисунок 6 — Бифуркационная диаграмма неподвижной точки P_2 и седлового цикла

Схема и уравнения генератора с двумя дополнительными колебательными контурами. Схема генератора с двумя дополнительными колебательными контурами показана на рисунке 7.

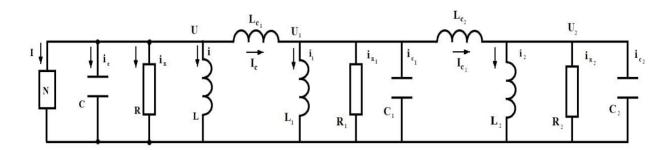


Рисунок 7 — Схема генератора с двумя дополнительными колебательными контурами

В результате получаем систему уравнений (формула 9).

$$\begin{cases} \ddot{x} - (\varepsilon - \dot{x}^2)\dot{x} + p^2x + p^2\gamma(x - x_1) = 0\\ \ddot{x}_1 + a_1\dot{x}_1 + p_1^2x_1 + p_1^2\gamma_1(x_1 - x) + p_1^2\gamma_2(x_1 - x_2) = 0\\ \ddot{x}_2 + a_2\dot{x}_2 + x_2 + \gamma_2(x_2 - x_1) = 0 \end{cases}$$
(9)

Динамика осциллятора Рэлея, взаимодействующего с двумя линейными диссипативными осцилляторами. При p=1,05 происходит переход из синфазного режима в противофазный. Это означает что при данном значении параметра p происходит важный переход в динамике системы, что может указывать на наличие мультистабильности. Для подтверждения мультистабильности необходимо проверить наличие двух и более устойчивых режимов при фиксированном значении p. Далее проведем более детальный анализ для значений p вблизи p=1,05.

При p=1,06 наблюдаем несколько устойчивых режимов при изменении начальных условий и фиксированном значении p и параметров $\varepsilon=0,15,\ \gamma_1=\gamma_2=0,2,\ \alpha_1=\alpha_2=0,01,\ p_1=1$ (рисунок 8,9 и 10).

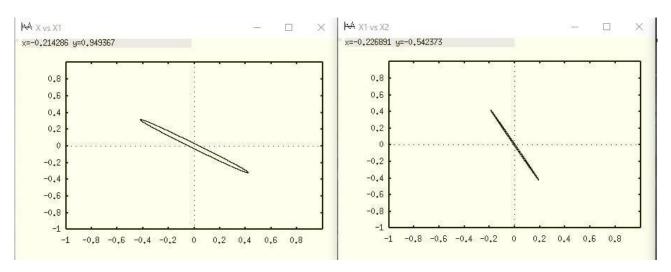


Рисунок 8 — Фазовые портреты $x(x_1), x_1(x_2)$ соответствующие противофазному режиму автоколебаний C_2 при $p=1,06, \varepsilon=0,15, \gamma_1=\gamma_2=0,2, a_1=a_2=0,01, p_1=1$

При изменении начальных условий наблюдаем следующее.

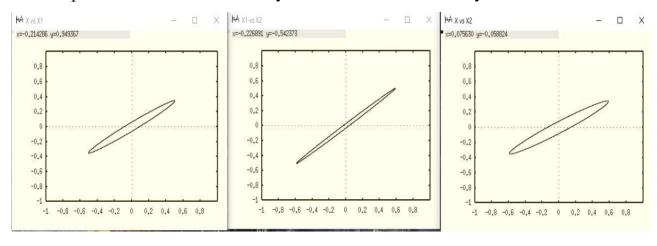


Рисунок 9 — Фазовые портреты $x(x_1), x(x_2), x_1(x_2)$ соответствующие синфазному режиму автоколебаний C_1 при $p=1,06, \varepsilon=0,15, \gamma_1=\gamma_2=0,2,$

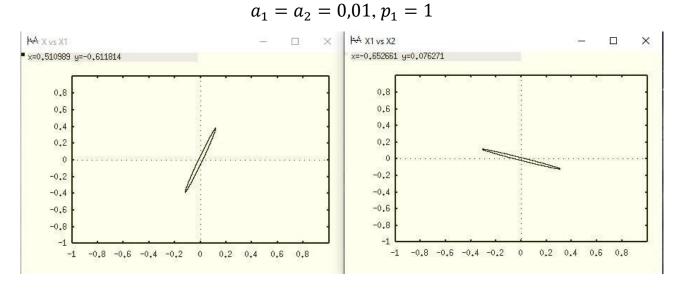


Рисунок 10 – Фазовые портреты $x(x_1), x_1(x_2)$ соответствующие режиму автоколебаний C_3 при $p=1,06, \varepsilon=0,15, \gamma_1=\gamma_2=0,2, a_1=a_2=0,01, p_1=1$

Это подтверждает наличие трех различных устойчивых состояний (или аттракторов) при одном и том же значении параметра p, так при p=1,06 была обнаружена мультистабильность, так как система демонстрирует разные поведения (C_1 , C_2 , C_3) в зависимости от начальных условий.

Заключение. В данной выпускной работе были исследованы автоколебательные системы с различным числом степеней свободы, в частности, генератор Рэлея с двумя дополнительными колебательными контурами.

Рассмотрены теоретические основы мультистабильности, а также методы построения математических моделей радиофизических генераторов. Проведен анализ устойчивости состояний равновесия осциллятора Рэлея и условия возникновения автоколебаний.

Исследован генератор Рэлея с дополнительным колебательным контуром. Показано, что добавление контуров приводит к качественным изменениям в поведении системы и возникновению бистобильности. Были проведены численные исследования режимов работы системы и бифуркационный анализ, что позволило выявить механизмы формирования мультистабильных состояний.

Заключительная часть работы была направлена на исследование генератора Рэлея с двумя дополнительными контурами. Были рассмотрены схема и уравнения генератора, а также проведен анализ динамики системы. Выявлено, что система демонстрирует сложное поведение, связанное с мультистабильностью, когда несколько устойчивых состояний могут сосуществовать при одних и тех же параметрах системы.

Численные эксперименты и аналитические расчеты, проведенные с помощью пакета программ XPPAUTO, подтвердили теоретические выводы и позволили получить более глубокое понимание механизмов формирования мультистабильности в рассматриваемых системах.