МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н. Г. ЧЕРНЫШЕВСКОГО»

Кафедра органической и биоорганической химии

ВЗАИМОДЕЙСТВИЕ 4-ГИДРОКСИ-3-(3-ОКСО-1-АРИЛ-3-(4-АМИНОФЕНИЛ)ПРОПИЛ)-2*H*-ХРОМЕН-2-ОНОВ С N-НУКЛЕОФИЛАМИ

АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ

студентки 4 курса 412 группы направления 04.03.01 – «Химия»

Института химии

Шелеметьевой Ксении Алексеевны

Зав. кафедрой профессор, д.х.н., профессор	подпись, дата	А. Ю. Егорова
Зав. кафедрой профессор, д.х.н., профессор	подпись, дата	А. Ю. Егорова

ВВЕДЕНИЕ

<u>Актуальность и цель работы.</u> Актуальность работы по исследованию 4-арилиденизоксазолин-5-онов обусловлена их широким спектром биологической активности, включая антибактериальное, противовирусное, противогрибковое и противовоспалительное действие.

Цель данного исследования заключается в изучении синтеза, строения, свойств и биологической активности 4-арилиденизоксазолин-5-онов для дальнейшей разработки новых лекарственных препаратов с улучшенными свойствами и эффективностью.

Исследование данных соединений позволит расширить арсенал средств для борьбы с различными заболеваниями, улучшить эффективность лечения и снизить потенциальные побочные эффекты.

Были поставлены следующие задачи:

- 1. провести обзор литературных данных по синтезу 4-арилиденизоксазолин-5-онов;
 - 2. синтезировать 4-арилиденизоксазолин-5-оны;
 - 3. осуществить идентификацию 4-арилиденизоксазолин-5-онов;
- 4. провести виртуальный скрининг биологической активности синтезированных соединений по программе PASS online;
- 5. изучение влияния кислотности среды и структурных особенностей на электронные спектры поглощения 4-арилиденизоксазолин-5-онов.

Основное содержание работы

При изучении литературных данных было выяснено что, Многие изоксазолин-5-оны и их производные находят применение как лекарственные препараты, пестициды и гербициды. Изоксазольный цикл служит фармакофором, среди синтезированных производных были обнаружены антибактериальные, противовирусные и противовоспалительные средства.

Химия арилиденизоксазолинонов пока изучена лишь в ограниченной степени, что привлекает внимание многих ученых. Эти соединения могут быть использованы как отправные пункты для синтеза других гетероциклических систем, расширяя области их применения.

Высокая реакционная способность изоксазолин-5-онов обусловлена возможностью отщепления CO_2 , наличием слабой N-O связи и кислого C4-H. Эти свойства делают их эффективным инструментом для конструирования углеродного скелета органических соединений различных классов.

1 Синтез 4-арилиденизоксазолин-5-онов

Синтез арилиденизоксазолинонов проводили из расчета на 2 г гидрохлорида гидроксиламина. Сначала гидрохлорид гидроксиламина (1) растворяли в ацетоуксусном эфире (2) при нагревании в спирте. Затем отключали нагрев и добавляли замещенный бензальдегид (3).

$$NH_{2}OH^{*}HCI + H_{3}C + O CH_{3} + Aryl R-OH + H_{3}C + O CH_{3} + Aryl R-OH + H_{3}C + O CH_{3} + Aryl R-OH + H_{3}C + O CH_{3} + O CH_{3$$

3,4 a-h: a= H; b= 4-OCH₃; c= 4-Cl; d= 2-OH; e= 3-OCH₃, 4-OH; f= 3,4-OCH₃; g= 4-N(CH₃)₂; h= 4-NO₂; i= 3-OCH₃, 4-OH, 5-Br.

R = Et, i-Pr.

Синтезированные 4-арилиден-3-метилизоксазолин-5-оны **4а-і** представляют собой кристаллические вещества, с чёткими температурами

плавления, хорошо растворимые в ацетоне, диметилсульфоксиде (ДМСО), хлороформе.

Идентификация полученных соединений осуществлялась по температурам плавления уже известных образцов (таблица 1). 4-Арилиден-3-метилизоксазолин-5-оны **4i** получен впервые, для него идентификационные данные — Т.пл., данные элементного анализа, ИК и ЯМР спектроскопии представлены в таблицах 1,2.

Таблица 1 - Некоторые характеристики синтезированных соединений

таолица т - некоторые характеристики синтезированных соединении				
No	Ar	Время(мин)	Выход(%)	Т пл.
соед.				(Лит / Эксп.)
4a	C_6H_5	20	44,7	141-143 /140-142
4b	4-OCH ₃	9	67,1	179-180 /179-181
4c	4-Cl	10	61,4	128-130 /129-131
4d	2-OH	35	54	199-203 /201-202
4e	3-OCH ₃ , 4-OH	24	69	210-215 /214-215
4f	3,4-OCH ₃	25	66	161-162 /160-162
4g	$4-N(CH_3)_2$	15	78	206-209 /207-208
4h	$4-NO_2$	32	49	145-147 /146-147
4i	3-OCH ₃ , 4-OH,	47	75	233-234
	5-Br			

Образование 4-арилиден-3-метилизоксазол-5-онов **4 а-і** можно представить следующей вероятной схемой.

Первоначально ацетоуксусный эфир реагировал с гидрохлоридом гидроксиламина в присутствии соляной кислоты с получением оксима I, который при последующей реакции с арилальдегидом давал промежуточное соединение II. Затем, внутримолекулярная циклизация между гидроксильными и карбонильными группами и удалением H₂O приводит к получению промежуточного продукта III. Наконец, промежуточный продукт III теряет одну молекулу этанола, с последующим замыканием кольца с образованием конечного продукта 4.

Таблица 2 — Идентификация 4-арилиден-3-метилизоксазолин-5-она $\bf 4i$

No॒	Элементн. анализ	ИК-спектр, v,
соед.	Вычислено/найдено (%)	CM ⁻¹
4i	C 46,18/ <u>47,40</u>	$v_{OH} = 3415$
	H 3,23/ <u>3,73</u>	$v_{OCH3} = 2856$
	N 4,49/ <u>4,97</u>	$v_{Ar-C} = 1632$
	Br 25,60/ <u>25,13</u>	$v_{N=C} = 1619$
		$v_{Ar-Br} = 1090$
		$v_{N-O} = 968$
		$vs_{CH} = 2854$
		$vas_{CH} = 2925$
		$v_{C=O} = 1724$

2 Виртуальный скрининг биологической активности 4арилиденизоксазолин-5-онов

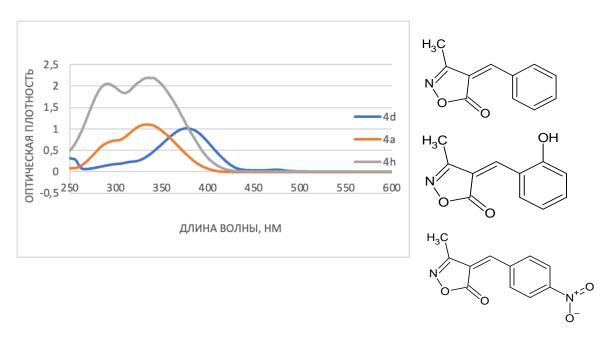
Синтезируемые соединения **4а-і** предполагают наличие вероятной биологической активности. Проведен виртуальный скрининг с помощью программы PASS online. Результат приведен в таблице 3.

Таблица 3 — результаты виртуального скрининга биологической активности (Ра — вероятность ожидаемого типа активности; Рі — вероятность обратного действия).

В-во	Активность	Вероятность	
		Pa	Pi
4a	Агонист целостности мембран	0,903	0,010
	Ингибитор	0,865	0,016
	аспульвинондиметилаллилтрансферазы		
	Лечение фобических расстройств	0,769	0,046
4b	Ингибитор	0,911	0,006
	аспульвинондиметилаллилтрансферазы		
	Агонист целостности мембран	0,901	0,011
	Ингибитор хлордеконредуктазы	0,763	0,027
4c	Агонист целостности мембран	0,912	0,008
	Лечение фобических расстройств	0,850	0,017
	IgA-специфический ингибитор	0,785	0,007
	сериновой эндопептидазы		
4d	Агонист целостности мембран	0,893	0,013
	Ингибитор	0,870	0,015
	аспульвинондиметилаллилтрансферазы		
	Глюкановый ингибитор эндо-1,6-бета-	0,733	0,015
	глюкозидазы		
4e	Агонист целостности мембран	0,920	0,007
	Ингибитор	0,899	0,008

	аспульвинондиметилаллилтрансферазы		
	Ингибитор 1-ацилглицерин-3-фосфат-О-	0,803	0,003
	ацилтрансферазы		
4f	Агонист целостности мембран	0,889	0,014
	Ингибитор	0,878	0,013
	аспульвинондиметилаллилтрансферазы		
	Ингибитор 1-ацилглицерин-3-фосфат-О-	0,755	0,003
	ацилтрансферазы		
4g	Агонист целостности мембран	0,853	0,023
	Ингибитор тауриндегидрогеназы	0,800	0,013
	Ингибитор НАДФН-пероксидазы	0,784	0,014
4h	Глюкановый ингибитор эндо-1,6-бета-	0,796	0,008
	глюкозидазы		
	Ингибитор убихинол-цитохром-с-	0,805	0,031
	редуктазы		
	Ингибитор фузаринин-С	0,780	0,009
	орнитинэстеразы	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3,002
4i	Ингибитор	0,924	0,005
	аспульвинондиметилаллилтрансферазы		
	Ингибитор микотиол-S-конъюгата	0,704	0,005
	амидазы		
	Ингибитор ферулоилэстеразы	0,688	0,023

Также проведен анализ возможных побочных и токсических эффектах. Данные представлены в таблице 4.

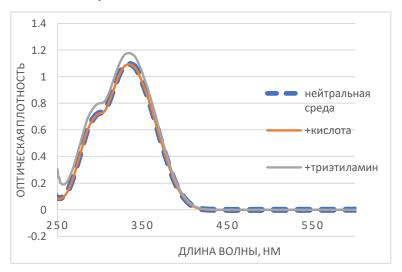

Таблица 4 – результаты виртуального скрининга токсического эффекта (Ра – вероятность ожидаемого типа активности; Рі – вероятность обратного действия).

В-во	Активность	Вероятность	
		Pa	Pi
4a	Язва, афтозный	0,741	0,032
	Нефротический синдром	0,661	0,009
	Нефрит	0,634	0,018
4b	Нефротический синдром	0,652	0,010
	Язва, пептическая	0,634	0,007
	Нефрит	0,628	0,020
4c	Язва, афтозный	0,726	0,036
	Скрытое кровотечение	0,697	0,027
	Гипоплазия коры надпочечников	0,670	0,011
4d	Язва, афтозный	0,836	0,011
	Нефротический синдром	0,674	0,008
	Кровавая рвота	0,692	0,029
4e	Язва, афтозный	0,770	0,025
	Язва, пептическая	0,661	0,005
	Язва желудка	0,609	0,008
4f	Язва, пептическая	0,636	0,006
	Нефротический синдром	0,605	0,015
	Язва желудка	0,598	0,009
4 g	Нефрит	0,600	0,027
	Нефротический синдром	0,562	0,024
	Миокардит	0,553	0,021
4h	Нефрит	0,641	0,017
	Интерстициальный нефрит	0,552	0,025
	Нефротический синдром	0,534	0,032
4i	Нефротический синдром	0,447	0,077
	Язва, пептическая	0,392	0,060
	Миокардит	0,391	0,089

Основываясь на полученных результатах можно сделать вывод, что многие арилиденизоксазолиноны являются агонистами целостности мембран, а также ингибиторами аспульвинондиметилаллилтрансферазы. Исходя из значений вероятности можно сделать вывод о том, что метоксигруппа и гидроксигруппа повышают вероятность проявления данных видов активности. Среди токсических эффектов часто встречается язва разных типов и нефротический синдром.

3 Изучение электронных спектров поглощения 4арилиденизоксазолин-5-онов

Для исследования были выбраны три соединения: 3-метил-4-бензилиден-изоксазол-5-он (4a), 3-метил-4-(2-гидроксибензлиден)-изоксазол-5-она (4d) и 3-метил-4-(4-нитро)-изоксазол-5-она (4h). Спектры данных веществ были записаны в апротонном полярном органическом растворителе — ацетонитриле.


Рис. 1. Электронные спектры поглощения соединений 4a, 4d, 4h, записанные в CH₃CN.

Установлено, что 3-метил-4-бензилиден-изоксазол-5-он 4а имеет максимум полосы поглощения при $\lambda=333\,$ нм, наблюдается «плечо» при $\lambda=299\,$ нм.

При введении в систему полярной группы, которая содержит неподеленную электронную пару (ОН-группа) в 2 положение ароматического кольца (соединение 4d), мы наблюдаем батохромный сдвиг в сопровождении с не ярко выраженным гипохромным эффектом, что связано с изменением длины цепи сопряжения, появлением дополнительного сопряжения с неподеленной парой электронов атома кислорода и всей сопряженной системой.

Введение электроноакцепторной NO_2 -группы в 4 положение ароматического кольца (соединение 4h) вызывает незначительный батохромный сдвиг, но все сопровождается сильным гиперхромным эффектом и появляется еще одна полоса поглощения при $\lambda = 290$ нм, что связано с электроноакцепторным влиянием нитрогруппы, дополнительным сопряжением.

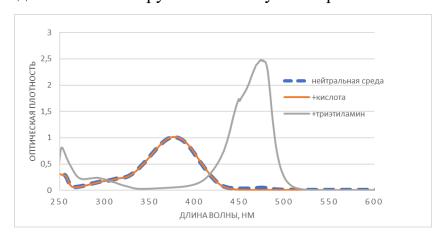
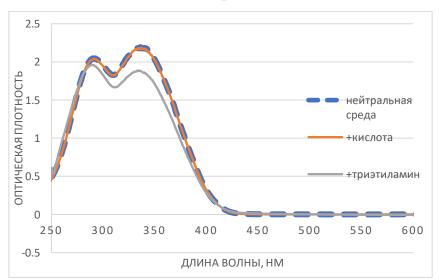

При изучении спектров поглощения соединения 4а было замечено, что добавление каталитических количеств уксусной кислоты не оказывает никакого влияния на смещение полосы спектра. Но при добавлении в систему триэтиламина, тем самым, увеличивая полярность системы, мы наблюдаем несущественное увеличение интенсивности поглощения.

Рис. 2. Электронные спектры поглощения соединения 4a, записанные в CH₃CN, CH₃CN + CH₃COOH, CH₃CN + Et₃N.


В ходе написания спектра соединения 4d было выявлено аналогичное действие кислоты на систему, в то время как добавление триэтиламина вызывает значительные изменения спектра. Наблюдается сдвиг полосы

поглощения в длинноволновую область спектра, с ярко выраженным гиперхромным эффектом. Это можно объяснить дополнительным взаимодействием ОН-группы и молекулами триэтиламина.

Рис. 3. Электронные спектры поглощения соединения 4d, записанные в CH₃CN, CH₃CN + CH₃COOH, CH₃CN + Et₃N.

Соединение 4h при добавлении кислоты также не оказывает влияния на картину спектра. А при добавлении триэтиламина возникает уменьшение интенсивности поглощения, при этом сохраняются 2 полосы поглощения при λ = 289 нм и λ = 334 нм, вследствие того, что триэтиламин не оказывает существенного влияния на NO₂-группу.

Рис. 4. Электронные спектры поглощения соединения 4h, записанные в CH_3CN , $CH_3CN + CH_3COOH$, $CH_3CN + Et_3N$.

В результате определения спектров поглощения было изучено влияние рН среды и структурных особенностей на интенсивность полос спектра.

Выявлено, что кислая среда не вызывает спектральных изменений вне зависимости от структуры ароматического кольца. Также показано влияние электронодонорного и электроноакцепторного заместителя в бензольном кольце на картину спектра.

ЗАКЛЮЧЕНИЕ

- 1. Выполнен поиск и анализ литературных данных по синтезу, свойствам и биологической активности 4-арилиденизоксазолин-5-онов.
- 2. Синтезированы 4-арилиденизоксазолин-5-оны, отличающийся положением и природой заместителей в арилиденовом фрагменте, на основе ацетоуксусного эфира, гидроксиламина соляноксилого и соответствующего бензальдегида. Расширен ряд ранее известных соединений.
- 3. Предложена и обоснована схема образования 4арилиденизоксазолин-5-онов, протекающая через первоначальное образование оксима ацетоуксусного эфира, альдольно-кротоновую конденсацию и гетероциклизацию с образованием изоксазольного фрагмента.
- 4. Состав и строение впервые полученного 3-метил-4-(3-метокси-4-гидрокси-5-бром)-изоксазолин-5-онасделано на основании данных элементного анализа, ИК и ЯМР спектроскопии.
- 5. С помощью программы PASS проведен виртуальный скрининг биологического действия и токсического эффекта полученных 4-арилиденизоксазолин-5-онов, определены перспективные кандидаты для дальнейших испытаний.
- 6. С помощью метода УФ-спектроскопии изучено влияние кислотности среды и заместителей в ароматическом фрагменте на спектр поглощения.