МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ИМЕНИ Н.Г.ЧЕРНЫШЕВСКОГО»

Кафедра физики открытых систем

«Аддитивные технологические подходы для быстрого прототипирования ключевых компонентов устройств вакуумной микроэлектроники»

АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ

студентки <u>4</u> курса <u>4041</u>	_ группы	
направления 09.03.02 «	Информационные сис	стемы и технологии»
код	и наименование направления	
И	нститута Физики	
	именование факультета	
<u>Чернозубки</u>	ной Кристины Сергее	ВНЫ
ф	амилия, имя, отчество	
Научный руководитель доцент кафедры физики открытых систем, к.фм.н должность, ученая степень, уч. звание	подпись, дата	Адилова А.Б. Инициалы Фамилия
Зав. кафедрой физики открытых полное наименование	<u></u>	
д.фм.н., профессор		Короновский А.А.
должность, ученая степень, уч. звание	подпись, дата	 Инициалы Фамилия

СОДЕРЖАНИЕ

Введение	3
Основное содержание работы	<i>6</i>
Заключение	10
Список используемых источников	12

Введение

собой Развитие технологий трехмерной печати представляет значительный прорыв области проектирования И производства микроэлектронных устройств, особенно в вакуумной микроэлектронике. Методы аддитивного производства открывают новые возможности для создания сложных геометрических форм и структур, которые ранее были трудно воспроизводимы или даже недоступны c использованием традиционных методов изготовления [1].

Путем создания трехмерных компьютерных моделей устройств перед их фактическим производством, исследователи и инженеры могут проводить предварительные численные расчеты, оптимизировать конструкцию изделий и избежать потенциальных ошибок на ранних стадиях разработки. Это позволяет существенно сократить время и затраты на создание новых микроэлектронных устройств, а также обеспечить высокую точность и качество конечного продукта.

В радиоэлектроники, использование 3D печати рамках ДЛЯ производства микроэлектронных устройств предъявляет определенные требования, связанные с металлизацией и качеством поверхности. Эти эффективность рабочие факторы непосредственно влияют на характеристики создаваемых устройств.

В процессе быстрого эволюционного развития аддитивные технологии 3D-печати становятся основополагающими в передовых производствах, включая область радиоэлектроники. Различные инновационные виды таких технологий, как FDM (Fused Deposition Modeling) (FFF - Fused Filament Fabrication), SLA (Stereolithography), DLP (Digital Light Processing), LCD (Liquid Crystal Display), SLS (Selective Laser Sintering) и SLM (Selective Laser Melting), предоставляют широкие возможности для производства компонентов и устройств в этой сфере. Они обеспечивают эффективное проектирование и изготовление как бытовой техники, медицинских

инструментов, так и запчастей для автомобилей, обеспечивая простоту и быстроту процесса производства.

Аддитивные технологии существенно упрощают процесс разработки и производства продукции, а также позволяют оперативно проводить анализ возможных дефектов продукции еще до ее создания благодаря трехмерной визуализации проектов. С учетом широкого спектра материалов, используемых в трехмерной печати, таких как инженерные пластики, металлы, керамика, песок и полимеры, возможно создание разнообразных изделий с учетом их уникальных потребностей и требований.

Различные методики, такие как FDM, SLS, SLM, SLA, DLP и LCD предлагают разные подходы к созданию уникальных изделий с различными свойствами и качеством прототипа. Эти методики отличаются по расходным материалам, скорости производства и качеству конечного продукта, что позволяет выбирать наиболее подходящий подход в зависимости от конкретных потребностей и целей производства.

Виды наиболее популярных аддитивных технологий:

- 1. Послойное выращивание объекта из пластиковой нити (FDM). Нагревающая головка с фильерами (экструдер) расплавляет тонкую пластиковую нить (леску) и послойно укладывает ее согласно данным математической 3D-модели [2].
- 2. Селективное лазерное спекание полимерных порошков (SLS) спекание порошка с помощью инфракрасного лазера при повышенной температуре, которая помогает зернам порошка спекаться при контакте с лазерным лучом. В SLS-принтере имеется так называемая «кровать», на которой валик распределяет тонкий слой порошка, а затем лазер спекает его частицы в соответствии с 3D-моделью, создавая деталь слой за слоем [2].
- 3. Селективное лазерное сплавление металлических порошков (SLM) Принцип работы тот же, что и в SLS, но вместо спекания происходит сплавление [2].

- 4. Лазерная стереолитография (SLA) в SLA-принтерах применяется лазер. Он выборочно засвечивает фотополимерную смолу, находящуюся в емкости принтера. Лазерный луч светит на дно резервуара и направляется зеркальными гальванометрами на точную область, подлежащую отверждению [3].
- 5. Цифровая обработка светом (DLP) в DLP-печати используется проектор, а не ультрафиолетовый лазер, как в SLA. Проектор излучает свет сразу на весь слой смолы, избирательно отверждая деталь с помощью тысяч мельчайших зеркал, называемых цифровыми микрозеркальными устройствами, направляющими световую проекцию [3].
- 6. Фотополимеризация с помощью ЖК-экрана (LCD) как и в случае с DLP, LCD-печать заключается в одновременной засветке целых слоев для отверждения фотополимера, но без применения зеркал. Вместо этого мощные жидкокристаллические панели пропускают на модель свет с помощью светодиодов. ЖК-панель блокирует засветку в тех областях, которые не подлежат фотополимеризации [3].

На рисунке 1 представлены различные виды аддитивных технологий:

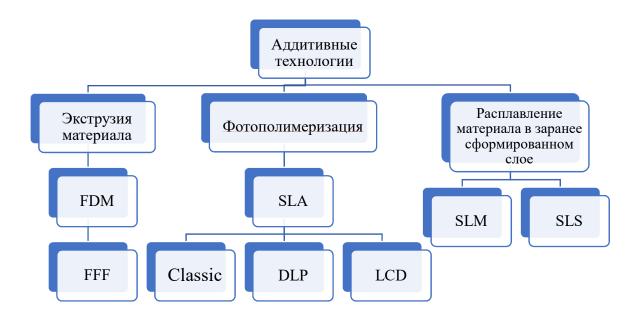


Рисунок 1 – Схема аддитивных технологий

Таким образом, использование 3D печати в радиоэлектронике требует учета специфических требований к металлизации, качеству поверхности и другим параметрам, чтобы обеспечить эффективное функционирование и оптимизацию радиоэлектронных устройств, особенно при работе на высоких рабочих частотах.

Основное содержание работы

В работе была исследована периодическая замедляющая структура типа одиночная гребенка, представленная на рисунке 3. Она является одним из базовых узлов приборов вакуумной микроэлектроники - усилителей и генераторов электромагнитного излучения.

Замедляющая система типа гребенки представлена на рисунке 2 Она состоит из двух не соединенных между собой металлических пластин, расстояние между которыми равно b. В верхней пластине прорезаны щели шириной d и глубиной l, перпендикулярные оси z [4].

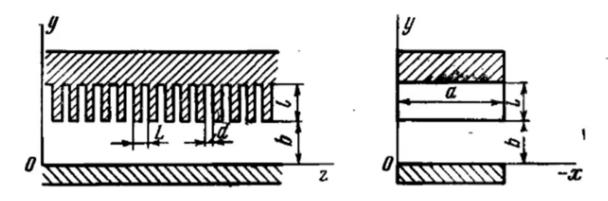


Рисунок 2 – Замедляющая система типа гребенки [4]

Было проведено сравнение двух структур, изготовленных с помощью разных технологий, в частности LCD – технологии и DLP – технологии.

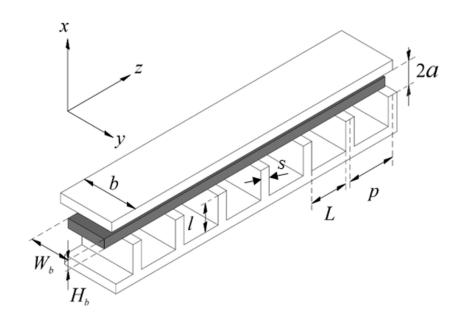


Рисунок 3 – Схематический вид исследуемой структуры

В таблице 1 приведены основные параметры нашей модели.

Таблица 1. Основные параметры модели.

Ширина волновода, b	1.9 мм
Период, р	0.5 мм
Толщина ламели, <i>s</i>	0.1 мм
Высота ламели, <i>l</i>	0.9 мм

В данной работе был использован 3D принтер Asiga MAX X27 UV (DLP – технология) для изготовления структур, представленных на рисунке 4, и принтер Anycubic Photon Mono 4K (LCD – технология).

Для создания трехмерной модели в программном обеспечении AutoDesk Fusion 360 были использованы инструменты моделирования, рендеринга и анимации. Fusion 360 позволяет создавать сложные геометрические формы, применять различные материалы и текстуры, а также проводить анализ прочности и динамики объектов.

Слайсер Asiga Composer предоставил возможность нарезать трехмерную модель на тонкие плоские слои, необходимые для последующей печати на 3D принтере. Этот процесс позволяет оптимизировать печать и улучшить качество изготавливаемого объекта.

Изначально была создана трехмерная модель в программного обеспечении AutoDesk Fusion 360 (рисунок 4). Далее был использован слайсер Asiga Composer, который нарезал 3D-модель на множество плоских двумерных слоев, из которых 3D-принтер сложил физический объект, а также позволил импортировать и подготовить модель для печати.

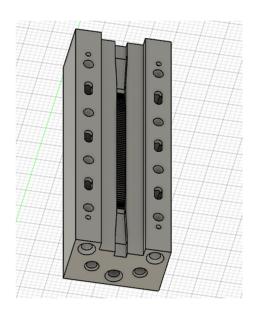


Рисунок 4 — Трехмерная модель исследуемой структуры

После того, как 3D принтер напечатал структуры (рисунки 5, 6), был произведен процесс очистки с помощью устройства автоматической очистки Formlabs Form Wash. Этот процесс позволяет удалить остатки смолы и других материалов с поверхности напечатанных объектов, обеспечивая им чистоту и готовность к дальнейшей обработке. Далее был проведен процесс удаления поддержек с помощью ножниц. Завершающим этапом была постполимеризация с использованием УФ камеры XYZPrinting MultiCure180.

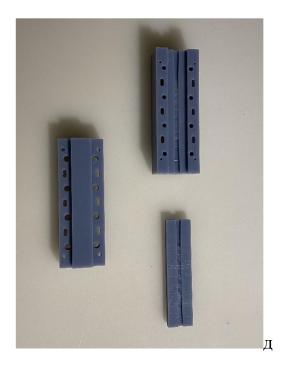


Рисунок 5 – Получившиеся структуры (LCD-технология)

Рисунок 6 – Получившиеся структуры (DLP - технология) Далее была осуществлена металлизация изделий (рисунок 7)

Рисунок 7 – Результат металлизации

Далее при помощи оптического и сканирующего микроскопа были исследованы структуры и был проведен сравнительный анализ технологий LCD и DLP.

Вычисления были автоматизированы при помощи пакета вычислений Wolfram Mathematica. Результаты измерений приведены в таблице 2,3.

Таблица 2 - Результаты измерений (LCD - технология).

Параметр	Исходный размер в 3D-	Результат измерений
	модели	
Ширина ламели	150 мкм	138 ± 11 мкм
Ширина канала	1900 мкм	1880 ± 20 мкм
Период	500 мкм	484 ± 12 мкм

Таблица 3 - Результаты измерений (DLP - технология).

Параметр	Исходный размер в 3D-	Результат измерений
	модели	
Ширина ламели	150 мкм	140 ± 8 мкм
Ширина канала	1900 мкм	1884 ± 9 мкм
Период	500 мкм	490 ± 12 мкм

Заключение

В результате выполнения дипломной работы были изучены и проанализированы различные технологии аддитивного производства, морфологии проведено исследование c помощью оптического сканирующего микроскопов и погрешностей изготовления микроразмерных фотополимерной структур использованием 3D-печати, именно технологий DLP и LCD, а также изучен метод металлизации полимерных изделий на основе магнетронного распыления.

Было выявлено и рассчитано, что технология DLP наиболее точная и подходит для прототипирования компонентов вакуумной микроэлектроники, а именно замедляющей системы типа гребенка.

Полученные результаты могут быть использованы для дальнейшего развития технологий прототипирования компонентов микроэлектроники и улучшения качества изготовленных структур.

Список используемых источников

- Дресвянников, В. А. Классификация аддитивных технологий и анализ направлений их экономического использования / В. А. Дресвянников, Е. П. Страхов // Модели, системы, сети в экономике, технике, природе и обществе. 2018. № 2 (26). С. 16–28.
- 2. Новиков, С.В. Аддитивные технологии: состояние и перспективы : учебное пособие / С.В. Новиков, К.Н. Рамазанов. Уфа : УГАТУ, 2022. 75 с.
- 3. Аддитивные технологии: журнал об аддитивном производстве : сайт. URL: https://additiv-tech.ru/publications/sravnenie-tehnologiy-sla-dlp-i-lcd-kak-vybrat-fotopolimernyy-3d-printer.html (дата обращения: 02.06.2023)
- 4. Лебедев И.В. Техника и приборы СВЧ. 1 изд. Москва: Высшая школа, 1970. 440 с.