МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Кафедра	теоретических	основ
компьютерной	безопасности	И
криптографии		

Разработка системы обнаружения и предотвращения утечек

АВТОРЕФЕРАТ

дипломной работы

студента 6 курса 631 группы специальности 10.05.01 Компьютерная безопасность факультета компьютерных наук и информационных технологий Пронина Никиты Евгеньевича

Научный руководитель		
старший преподаватель		А. А. Лобов
	22.01.2024 г.	
Заведующий кафедрой		
д. фм. н., доцент		М. Б. Абросимов
	22.01.2024 г.	

ВВЕДЕНИЕ

Каждый день компании по всему миру вынуждены защищать свою информацию от различного рода утечек. Их последствия могут быть самыми разными: начиная от репутационных потерь и заканчивая банкротством. Данные атаки могут быть исходить как извне, так и изнутри компании. Чтобы защититься от них, компании прибегают как разного рода средствам защиты, одними из которых являются DLP системы — системы, предотвращающие потери данных.

Целью данной работы является, изучение DLP систем, методов поиска утечки данных в текстовых сообщениях, а также построение программной модели имитирующей работу DLP системы, которая ориентирована на анализ электронной почты.

Дипломная работа состоит из введения, 3 разделов, заключения, списка использованных источников и 7 приложений. Общий объем работы — 71 страница, из них 40 страниц — основное содержание, включая 28 рисунков и 0 таблиц, список использованных источников из 20 наименований.

КРАТКОЕ СОДЕРЖАНИЕ

1 O DLP Системах

В данной главе приводится общая информация о DLP системах

1.1 Описание DLP системы

Наилучшим техническим вариантом для предотвращения утечки данных является применение систем класса DLP (Data Loss/Leakage Prevention). Они контролируют все наиболее вероятные каналы утечки позволяют идентифицировать информацию самыми современными способами, что обеспечивает наименьшее количество ложных срабатываний [1].

1.2 Классификация DLP систем

В зависимости от критериев классификации DLP системы делятся на несколько классов. По локализации (сетевой архитектуре) DLP-системы подразделяются на хостовые и шлюзовые.

По механизму определения степени конфиденциальности передаваемых данных выделяют два вида DLP-систем:

- Системы, которые устанавливают конфиденциальность на основе анализа маркеров документа,
 - Системы, которые для этого проводят анализ содержимого документа.

С точки зрения *правомерности отслеживания действий* пользователя можно выделить легальные и нелегальные DLP-системы.

По способности блокирования информации, опознанной как конфиденциальная, выделяют системы с активным и пассивным контролем действий пользователя.

1.3 Принцип работы DLP системы

Современная система защиты от утечки информации, как правило, является распределённым программно-аппаратным комплексом, состоящим из большого числа модулей различного назначения. Часть модулей

функционирует на выделенных серверах, часть — на рабочих станциях сотрудников компании, часть — на рабочих местах сотрудников службы безопасности.

Выделенные сервера могут потребоваться для таких модулей как база данных и, иногда, для модулей анализа информации. Эти модули, по сути, являются ядром и без них не обходится ни одна DLP-система.

1.4 Примеры существующих DLP систем

В данной подглаве были рассмотрены следующие существующие DLP системы:

- 1. InfoWatch;
- 2. SearchInform;
- 3. Ростелеком-Солар;
- 4. Zecurion;
- 5. Falcongaze.

Вывод

В данной главе было проделано следующее:

- 1. Дано определение DLP системы;
- 2. Описана классификация DLP систем относительно четырех критериев;
- 3. Описан принцип работы DLP системы, расположение её модулей внутри корпоративной сети, а также назначение каждого из модулей;
 - 4. Рассмотрены и оценены пять существующих DLP систем.

2 Методы анализа

В данной главе описаны основные методы анализа текста, используемые в DLP системах.

2.1 Лингвистический метод анализа

Лингвистический метод анализа — метод, который работает напрямую с содержанием файла и документа.

Данный метод включает в себя два вида анализа текста: морфологический и семантический.

1) Морфологический анализ предполагает дословный и описательный разбор конкретной части текста. Он призван расчленить исследование на более мелкие составляющие и определить суть, роль каждого элемента в нем.

На практике выделяют два вида морфологического анализа:

- 1) Дословный;
- 2) Попредложный.
- 2) Семантический анализ этап в последовательности действий алгоритма автоматического понимания текстов, заключающийся в выделении семантических отношений, формировании семантического представления текстов.

В общем случае семантическое представление является графом, семантической сетью, отражающим бинарные отношения между двумя узлами – смысловыми единицами текста.

2.2 Статистический метод анализа

Статистический метод анализа — метод анализа, в котором исследуются качественные и количественные характеристики текста, такие как объем текста, частота встречаемых символов и слов, процентное соотношение частей речи и так далее. При этом смысловая нагрузка текста игнорируется. В данном методе можно выделить два подметода: графематический и контент анализ.

1) Графематический анализ – метод, создающий базу для

последующего морфологического и синтаксического анализа, на основе выделения слов, цифровых комплексов, формул и т.д. анализ направлен на разбивку текста на слова, разделители и т.д., сборку слов, написанных в разрядку, выделение устойчивых оборотов, фамилии, имени, отчества, даты и т.п., выделение электронных адресов и имен файлов, выделение предложений из входного текста абзацев, заголовков, примечаний [9].

2) Контент-анализ — это метод сбора данных и анализа содержания текста. Слово «контент» (содержание) имеет отношение к словам, рисункам, символам, понятиям, темам или же иным сообщениям, которые могут быть объектом коммуникации. Слово «текст» означает нечто написанное, видимое или произнесенное, которое выступает как пространство коммуникации.

Контент-анализ позволяет исследователю выявлять содержание в источнике коммуникации. Он позволяет поэкспериментировать с содержанием и рассмотреть его с использованием методов, отличных от обычного прочтения книги или просмотра телевизионной программы. С помощью контент-анализа исследователь может сравнить содержание множества текстов и анализировать его с помощью количественной методики (например, диаграмм, таблиц).

Недостаток статистического метода в том, что алгоритм не способен самостоятельно обучаться, формировать категории и типизировать. Как следствие — зависимость от компетенций специалиста и вероятность задания хеша такого размера, при котором анализ будет давать избыточное количество ложных срабатываний.

Вывод

В данной главе были подробно описаны два метода анализа текста – лингвистический и статистический. Лингвистический метод анализа текста оценивает содержание документа, определяя роль каждого элемента текста, его связь с другими элементами текста и выделяя смысловую составляющую всего текста. Данный метод даёт точную оценку при поиске утечки данных, однако ресурсозатратен и сложен в реализации.

Статистический метод анализ оценивает содержание документа относительно качественных и количественных характеристик текста, игнорируя смысловую нагрузку. Данный метод прост в реализации и не требует большого количества ресурсов, однако чувствителен к настройке параметров, а также компетенций специалиста, в связи с чем может выдавать некорректный результат.

3 Программная реализация

В данной главе будет рассмотрена программа, которая имитирует работу DLP системы. Данная программа написана на языке Python. При написании программы использовались следующие библиотеки:

- 1. NLTK для обработки и анализа текста;
- 2. SQLite для создание и ведения базы данных;
- 3. Response для создания и обработки http запросов;
- 4. Docx для обработки .docx файлов.

3.1 Описание программы

Данная программа моделирует процесс общения пользователей. Каждый пользователь имеет свой уровень доступа, который варьируется от 1 до 10. Каждый документ в системе также имеет уровень доступа, аналогичный пользовательскому. После отправки сообщения, программа анализирует его содержание и сравнивает с архивом известных документов, а также с таблицы запрещенных комбинаций слов. В случае нахождения запрещенных комбинаций слов или высокого совпадения с документом, на который у одного из пользователей не хватает прав, система блокирует отправку сообщения. Также каждое сообщение проверяется лингвистическим методом, и, в случае высокого совпадения с запрещенной информацией, администратор получает уведомление с предупреждением о возможной утечке.

Вся информация, которая необходима для функционирования программы, хранится в базе данных. Она состоит из 8 таблиц: «Пользователи», «Файлы», «Журнал событий», «Точность», «Сообщения», «Файлы из сообщений», «Список доступа к файлам» и «Список запрещенных комбинаций слов».

3.2 Работа программы

Для оценки корректности работы алгоритмов программы были созданы следующие условия:

1. Добавлены в базу данных пользователей user5 и user8 с уровнями

доступа 5 и 8 соответственно;

- 2. Добавлены в базу данных два документа с уровнем доступа 6, текстыдокументов перечислены в приложениях Е и Ж соответственно;
 - 3. Разрешены пользователю user5 доступ к документу из приложения Е;
 - 4. Добавлены фразу «bad person» в список запрещенных фраз;

Проведены следующие эксперименты:

- 1. Отправка в теле сообщения текста документа, к которому у одного из пользователей нет доступа;
- 2. Отправка во вложенном файле текста документа, к которому у одного из пользователей нет доступа;
 - 3. Отправка запрещенной фразы в теле сообщения;
 - 4. Отправка запрещенной фразы во вложенном файле;
- 5. Отправка в теле сообщения текста, похожего по смыслу на текст документа, к которому у одного из пользователей нет доступа;
- 6. Отправка во вложенном файле текста, похожего по смыслу на текст документа, к которому у одного из пользователей нет доступа;
- 7. Отправка текста содержащего информацию в теле сообщения или во вложенном файле из документа, к которому пользователю user5 выдали доступ;

Вывод

В данной главе была описана программная реализация DLP системы, настроенной на анализ утечки данных в текстовых сообщениях. Принцип работы программы, а также методы анализа текста, используемые при реализации, основаны на информации, приведенной в первой и второй главе. Был проведены эксперименты с целью определения наличия или отсутствия утечки информации в сообщении. Результаты экспериментов подтвердили корректность работы алгоритмов.

ЗАКЛЮЧЕНИЕ

В данной работе были рассмотрены различные классы DLP систем, а также изучены методы работы, при помощи которых DLP системы обнаруживаюти предотвращают утечку конфиденциальных данных.

Также были рассмотрены различные методы анализа текста, которые используются при поиске утечки конфиденциальных данных в текстовых сообщениях.

Была разработан алгоритм, который анализирует текст сообщения, а также содержимое вложенного файла формата .docx двумя методами, на основе результатов которых делается вывод о наличии либо отсутствии утечки конфиденциальной информации:

- 1. Морфологический анализ текста
- 2. Семантический анализ текста

Для демонстрации алгоритма была разработана программа с графическим интерфейсом. В ходе демонстрации программы алгоритм подтвердил свою работоспособность.

Таким образом, все поставленные задачи выполнены, цели работы достигнуты.