## МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

## «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО» (СГУ)

| r c 1 | 1     | 1     |        |     |
|-------|-------|-------|--------|-----|
| K ad  | bедра | reod  | hизи   | ки  |
| LLUU  | родра | 1 000 | DITOIL | III |

## «Характер насыщения и выделение продуктивных пород-коллекторов по данным ГТИ и ГИС»

## АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ

Студента 5 курса 532 группы направление 21.03.01 «Нефтегазовое дело» профиль «Геолого-геофизический сервис » геологического факультета Халилова Сабухи Илгаровича

| Научный руководитель |               |              |
|----------------------|---------------|--------------|
| К.гм.н., доцент      |               | Б.А. Головин |
|                      | подпись, дата |              |
| Зав. кафедрой        |               |              |
| К.гм.н., доцент      |               | Е.Н. Волкова |
|                      | полпись, дата |              |

**Введение.** ГТИ тесно связывают с газовым каротажем, так как с его развитием и образовались геолого-технологические исследования, так же газовый каротаж входит в комплекс ГТИ и составляет его существенную часть.

Основными задачами интерпретации данных газового каротажа являются: выдача оперативных заключений в процессе бурения скважин и прогнозной оценки характера насыщения пластов в комплексе с данными ГИС.

Одним из перспективных участков, где возможно открытие залежей нефти за счет поиска является район Светлая структура, которая и стала объектом изучения в данной работе.

Цель бакалаврской работы, показать на примере поисково-оценочной скважины №1 Светлой структуры, где бурение сопровождалось станцией ГТИ для изучения геологического строения разреза скважины, выявление продуктивных пластов-коллекторов и оценка их характера насыщения.

Основные задачи решаемые в бакалаврской работе следующие:

- 1. Изучение геологической характеристики района работ;
- 2. Ознакомление с физико-геологическими основами геолого-геохимических исследований;
  - 3. Изучение основы газового и механического каротажа;
- 4. Изучение проведения термовакуумной дегазации раствора и построение палеток раздельного анализа газа;
- 5. Определение характера насыщения по методикам РАГ, ЛБА, ОПУС $_4$  и ГИС:
- 6. Обобщение полученных результатов на площади работ, с целью выделения продуктивных интервалов разреза.

Бакалаврская работа состоит из 3 разделов: геолого-геофизическая характеристика территории, Методика раздельного анализа газа и обобщенного показателя углеводородного состава, определение характера насыщения по палетке РАГ и методу ОПУС<sub>4</sub>, введения, заключения, списка использованных источников и 3 приложений.

**Основное содержание работы.** Светлая структура административно расположена в Духовницком районе Саратовской области.

Светлая структура подготовлена в 2015 г сейсморазведочными работами МОГТ-2Д по отражающим горизонтам  $nC_1$ up,  $C_1$ t,  $C_1$ bb.

Ближайшими месторождениями, где продуктивность углеводородов установлена в нижнекаменноугольных отложениях являются Маленькое, Богородское, Никольское, Андреевское-1, Кротовское и Васильковское, что позволяет прогнозировать на Светлой структуре открытие залежи нефти и газа в бобриковском, упинском и малевском горизонтах.

Ближайшие населенные пункты с. Никольское в 5,5 км юго-западнее от участка, с. Богородское в 4 км к югу, д. Брыковка в 9,5 км и Григорьевка в 11 км к северо-западу. Населенные пункты расположены на пересыхающей реке Стерех и соединены шоссейной дорогой. Районный центр Духовницкое, с.Богородское, с. Никольское соединены с городами Энгельс, Балаково и Пугачев асфальтированными дорогами.

Ближайшая железнодорожная станция Ишково расположена в 21 км к юговостоку от контура изучаемой структуры. В 35 км западнее контура, на левом берегу реки Волги, расположен районный центр - посёлок городского типа Духовницкое. В посёлке находится пристань.

Рассматриваемый участок представляет холмистую степную равнину, расчленённую овражно-балочной сетью, с глубиной оврагов до 20 м и крутизной склонов от 45 градусов до вертикальных обрывов. Абсолютные отметки рельефа изменяются от + 35 до +100 м. Район не заболочен, не сейсмичен.

Основная водная артерия – р. Волга в 35 км на запад. Питьевая вода из с. Богородское. Техническая вода из водозаборной скважины.

Среднегодовая температура воздуха  $+5.8^{\circ}$ С. Среднемесячная температура января составляет минус  $13^{\circ}$ С с минимумом до минус  $41^{\circ}$ С. Температура июля  $+22^{\circ}$ С с максимумом до  $+42^{\circ}$ С. Среднегодовое количество осадков -516 мм.

Преобладающее направление ветров северо-западное зимой и юго-восточное летом, в среднем 4 – 5 м/сек. редко до 20 м/сек.

Основанием для составления проектного литолого-стратиграфического разреза являются результаты сейсморазведочных работ, данные паспорта на подготовленную структуру к поисковому бурению и данные структурного и глубокого бурения на нефть и газ на прилегающих площадях [4].

Осадочный чехол представлен девонской, каменноугольной, юрской, неогеновой и четвертичной системами.

В тектоническом отношении Светлая структура приурочена к южному склону Жигулевского свода Волго-Уральской антеклизы, как показано на приложении Б. Свод на юге и юго-западе граничит с Иргизским прогибом, а на юго-востоке – с Бузулукской впадиной.

Основной, формирующей древний структурный план, тектонической фазой в истории геологического развития района является додевонская — время заложения рифей-вендского Пачелмско-Саратовского авлакогена в результате движения блоков фундамента по глубинным разломам. Последовавшая затем инверсия и размыв полностью уничтожили отложения венда, рифея и всего нижнего палеозоя (кембрий, ордовик, силур, нижний девон).

В период проявления герцинского цикла на фоне активного формирования окружающих Жигулевский (Иргизского свод геоструктур прогиба, Пугачевского свода, Бузулукской впадины), сам свод был относительно пассивен и постепенно (от склонов к своим вершинам) заполнялся осадками среднего И верхнего девона, которые залегали непосредственно кристаллическом фундаменте. Происходило формирование структур облекания в терригенном девоне над додевонскими останцами. В предтиманскую фазу тектогенеза отложения эйфельского и живетского возраста в пределах останцов были размыты, в сводах останцов тиманско-пашийские отложения залегают на породах фундамента [6].

В фамене и на протяжении всего карбона, на фоне равномерного погружения, происходили слабые унаследованные подвижки, сформировавшие

структурный план горизонтов палеозоя на Жигулевском своде. Он характеризуется наличием малоразмерных, относительно изометричных, унаследованных в палеозойской части чехла структурных элементов. Таковым в низах девона и карбона является и Никольское поднятие.

В дальнейшем, структурный план исследуемой площади формировался под влиянием тектонических движений, проявившихся в предмезозойское и предакчагыльское время, сопровождавшихся интенсивными размывами. В результате были уничтожены триасовые, пермские, частично верхнекаменноугольные, среднеюрские, верхнеюрские, меловые и палеогеновые отложения на всей территории изучения.

В результате такой истории развития на участке наиболее перспективными направлениями представляются поиски унаследованно развивавшихся над додевонскими останцами структур, выраженных по основному нижнесреднекаменноугольному продуктивному комплексу.

Светлая структура, расположена в пределах Жгулевско-Пугачевского нефтегазоносного района Средневолжской нефтегазоносной области Волго-Уральской нефтегазоносной провинции. В качестве нефтегазоперспективных здесь выделена Богородско-Остролукская зона дислокаций западно-северозападного простирания, состоящая из двух пологих брахиантиклинальных поднятий: Остролукского - на западе и Богородского - на востоке.

На рассматриваемой территории основные перспективы связываются с карбонатным фаменско-турнейским, терригенным нижневизейским, карбонатным визейско-башкирским нефтегазоносными комплексами.

**Методика исследования.** Изучаемые при газовом каротаже природный и попутный газы нефтяных и газовых месторождений представляют собой в основном смесь УВ с неуглеводородными газами.

При вскрытии скважиной нефтегазоносного пласта газ, содержащийся в перовом пространство его, поступает в циркулирующую через забой скважины ПЖ и выносится с ней на устье скважины. Здесь часть ПЖ дегазируется и

извлеченная из газовая смесь поступает на суммарный анализ (суммарный газовый каротаж) и компонентный анализ (компетентный газовый каротаж).

При суммарном газовом каротаже измеряются суммарные газовые показания  $\Gamma_{\text{сум}}$ , а иногда И суммарное содержание «тяжелых» УВ  $\Gamma_{\text{т.сум}}$ .

При компонентном газовом каротаже определяются объемные содержания УВ в газовой смеси  $C_{an}$ , а по ним относительные содержания УВ  $C_{on}$ , индекс компонентного состава газа в пласте  $I_{\kappa\Gamma}$ , флюидные коэффициенты  $C_{nm}$  и суммарное содержание УВ в ПЖ  $\Gamma_{x,cym}$ .

Суммарные газовые показания  $\Gamma_{\text{сум}}$  представляют собой выраженное в процентах суммарное объемное содержание измеряемых газов в ГС. Величина  $\Gamma_{\text{сум}}$  только приближенно характеризует суммарное содержание УВ в ГС и показывает наличие газовой аномалии против соответствующего интервала разреза скважины.

Основная газоаналитическая аппаратура станции - газовый хроматограф.

(рисунок 1) Основными узлами хроматографа являются: хроматографическая (разделительная) колонка, газоанализатор И регистрирующий прибор. Дозатор отбирает пробы углеводородных газов, подает в разделительную колонку для хроматографического анализа. В хроматографической колонке происходит разделение газовых смесей на и с одним из анализируемых компонентов (метан, этан, пропан, бутан, пентан и гексан). Из колонки поток смесей, разделенных во времени, направляется на газоанализатор, а результаты анализа - на регистрирующий прибор (рисунок 2). Регистратор (как правило, это ПК) выстраивает график зависимости сигнала от времени.



Рисунок 1 - Газовый хроматограф

Дегазатор постоянного объема использует систему непрерывной постоянной подачи раствора в дегазационную камеру, обеспечивая неизменные условия дегазации (рисунок 2).

Суммарный газоанализатор (рисунок 3) измеряет содержание метана, тяжелых углеводородов и суммарной концентрации углеводородных газов в газовоздушной смеси, извлеченной путем непрерывной дегазации из бурового раствора



Рисунок 2 - Дегазатор постоянного объема



Рисунок 3 - Суммарный газоанализатор

Диаграмма, зарегистрированная как функция времени, представляет собой ряд пиков, моменты их появления характеризуют наличие в газовой смеси тех или иных компонентов, а площади — содержание этих компонентов.

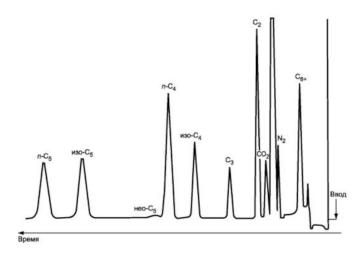



Рисунок 4 – Газовая хроматография

Величины Con, полученные против исследуемого пласта, сравнивают с граничными значениями используя палетку раздельного анализа газа, определяют индекс компонентного состава газа в пласте Ікг.

Обобщенный газовый коэффициент, с помощью которого можно с большой вероятностью определить характер насыщения залежи является метод - обобщенный показатель углеводородного состава (ОПУС).

Первоочередное расчленение разреза производилось по данным механического каротажа.

Механический каротаж как метод основан на изменении скорости бурения (Vмех.) или обратной ее величины – продолжительности бурения заданного постоянного интервала (ДМК). При прочих равных условиях эти параметры зависят от литологического состава пород и коллекторских свойств. Метод

применяется для литологического расчленения разреза, выделения коллекторов и зон АВПД.

Сущность метода сводится к регистрации продолжительности проходки скважины - времени т, затрачиваемого на бурение одного метра породы.

Шлам и керн является источником информации о свойствах и строении геологического разреза. Отбор шлама производится в желобной системе у устья скважины, шламоотборником. По шламу описываются свойства и характер выделения нефти и битума. Присутствие в породе нефти и битумов придает ей коричневато-бурую окраску, наличие газа в породе не сопровождается изменением ее окраски, но порода издает резкий характерный запах.

**Результаты исследований.** В скважине №1 Светлой в качестве первичной информации о литологическом разрезе скважины и отслеживания пластов-коллекторов использовался метод механического каротажа и отбор шлама.

При проведении геолого-геохимических исследований в разрезе ствола скважины №1 с глубины 685 до 1434 м, газы поступившие в хроматограф пересчитывались из абсолютных значений в удельную газонасыщенность.

В интервалах черемшано-прикамского, тульского, бобриковского, кизелово-черепетского вскрыты пород-коллекторы с возможными признаками нефте- или газо- или водонасыщения.

По данным интерпретации ДМК и данных газового каротажа в разрезе наблюдались повышенные значения газопоказаний с уменьшением значений ДМК в песчаниках и известняках, что говорит о их хороших коллекторских свойствах, также наблюдаются зависимость снижения газопоказаний с увеличением значений ДМК, что, свидетельствует об ухудшении коллекторских свойств в глинистых пропластках разреза.

В интервале 845-846,9 м черемшано-прикамского горизонтов уровень газопоказаний по данным частичной дегазации буровой промывочной жидкости до 0,0077 % абс; удельная газонасыщенность шлама 0,0431 см<sup>3</sup>/дм<sup>3</sup>.

Люминесценция хлороформных вытяжек шлама -3 БЖ МБ. По данным РАГ карбонатный коллектор насыщен нефтью с водой.

В интервале 848,5-849,4м черемшано-прикамского горизонтов уровень газопоказаний по данным частичной дегазации буровой промывочной жидкости до 0,0182% абс; люминесценция хлороформных вытяжек шлама – 3 балла, беловато-голубого цвета – легкие битумоиды. По данным РАГ карбонатный коллектор насыщен водой.

В интервале 1307,4-1308,6 м тульского горизонта уровень газопоказаний по данным частичной дегазации буровой промывочной жидкости до 0,0219 % абс; удельная газонасыщенность керна 0,071 см<sup>3</sup>/дм<sup>3</sup>; люминесценция хлороформных вытяжек шлама – 3 БГ ЛБ, 3 БЖ МБ. По данным РАГ карбонатный коллектор насыщен нефтью с водой.

В интервале 1325,2-1329,5 м бобриковского горизонта уровень газопоказаний по данным частичной дегазации буровой промывочной жидкости до 0,0594% абс; удельная газонасыщенность керна 7,459 см<sup>3</sup>/дм<sup>3</sup>; люминесценция хлороформных вытяжек шлама – 3 БЖ МБ. По данным РАГ терригенный коллектор, насыщен водой.

В интервале 1368,6-1369,6м кизеловского-черепетского-упинского горизонтов уровень газопоказаний по данным частичной дегазации буровой промывочной жидкости до 0,0364% абс; удельная газонасыщенность керна 4,45см<sup>3</sup>/дм<sup>3</sup>; люминесценция хлороформных вытяжек шлама – 3 Ж МСБ. По данным РАГ карбонатный коллектор насыщен нефтью с водой.

В интервале 369,6-1374,8м упинского горизонта уровень газопоказаний по данным частичной дегазации буровой промывочной жидкости до 0,0585% абс; удельная газонасыщенность шлама 0,849 см<sup>3</sup>/дм<sup>3</sup>; люминесценция хлороформных вытяжек шлама – 3 БГ ЛБ. По данным РАГ карбонатный коллектор, насыщен водой.

Для определения и подтверждения характера насыщения залежей по данным газового каротажа сделан расчет общего показателя углеводородного состава по формуле ОПУС<sub>4</sub>. Полученные значения представлены в таблице 1.

Таблица 1 - Расчет значений по формуле ОПУС<sub>4</sub>

| Возраст                 | Интервал       | Расчетные значения | Граничные      | Тип флюида              |
|-------------------------|----------------|--------------------|----------------|-------------------------|
| пласта                  | расчета, м     | по формуле         | значения ОПУС4 |                         |
| C <sub>2</sub> cm-pk    | 845-846,9      | 41132-52630        | 700-250000     | Нефть                   |
| C <sub>2</sub> cm-pk    | 848,5-849,4м   | 46057              | 700-250000     | Нефть                   |
|                         |                | 93143              |                |                         |
| C <sub>1</sub> tl       | 1307,4-1308,6  | 193765             | 700-250000     | Нефть+                  |
|                         |                | 506762             | >250000        | Окисленная (остаточная) |
|                         |                |                    |                | нефть                   |
| C <sub>1</sub> bb       | 1325,2-1329,5м | 96679              | 700-250000     | Нефть+                  |
|                         |                | 325606             | >250000        | Окисленная (остаточная) |
|                         |                |                    |                | нефть                   |
| C <sub>1</sub> kz-cr-up | 1368,6-1369,6  | 257473             | >250000        | Окисленная (остаточная) |
|                         |                | 287270             |                | нефть                   |
| C <sub>1</sub> up       | 1369,6-1374,8  | 313635             | >250000        | Окисленная (остаточная) |
| _                       |                | 407684             |                | нефть                   |

Заключение. В данной работе ассмотрена методика геологических исследований, изучение разреза механическим каротажем и определения пластов-коллекторов - газовым каротажом, методиками ОПУС и палеткой раздельного анализа газа.

По данным геолого-геохимических исследований, а также по данным газового каротажа были выделены объекты:

- черемшано-прикамского горизонта в интервале 845 846,9м пластколлектор, насыщенный нефтью с водой; в интервале: - 848,5 - 849,4м - пластколлектор, насыщенный водой;
- тульского горизонта в интервале: 1307,4 1308,6м пласт-коллектор, насыщенный нефтью с водой;
- бобриковского горизонта в интервале: 1325,2 1329,5м пласт-коллектор, насыщенный водой;
- кизеловского-черепетского-упинского горизонта в интервале: 1368,6 1369,6м пласт-коллектор, насыщенный нефтью с водой;
- упинского горизонта в интервале: 1369,6 1374,8м пласт-коллектор, насыщенный водой.

При интерпретации показаний газового каротажа, ОПУС и ГИС результаты показали расхождение в определении характер насыщения пластов-коллекторов.