МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г.ЧЕРНЫШЕВСКОГО»

Кафедра нелинейной физики

Исследование миниатюрного ЛБВ-усилителя миллиметрового диапазона длин волн с замедляющей системой типа сдвоенная гребенка в прямоугольном волноводе

АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ

Студента 4 курса 4011 группы

направления 03.03.01 «Прикладные математика и физика»

код и наименование направления

Института физики

наименование факультета, института, колледжа

Абрамова Олега Романовича

фамилия, имя, отчество

Научный руководитель доцент, к.ф.-м.н. должность, уч. степень, уч. звание

ата, подпись

дата, подпись

Р.А. Торгашов инициалы, фамилия

Заведующий кафедрой нелинейной физики <u>к.ф.-м.н., доцент</u> должность, уч. степень, уч. звание

Е.Н. Бегинин инициалы, фамилия

Саратов 2025 год

ВВЕДЕНИЕ

Микроволновая электроника является одной из больших и быстроразвивающихся отраслей науки и техники, имеющих важную роль в сфере телекоммуникационных систем, радиоастрономии, ускорительной техники, термоядерного синтеза, медицины, радиолокационной борьбы и др. [1]

На сегодняшний день разработка миниатюрных генераторов и усилителей когерентного электромагнитного излучения коротковолновой части миллиметрового диапазона длин волн является актуальной задачей сверхвысокочастотной (СВЧ) электроники. Частотный диапазон свыше 60 ГГц, соответствующий длинам волн менее 5 мм, является наименее освоенным. Обусловлено это тем, что с ростом рабочих частот происходит заметное снижение выходных мощностей приборов вакуумной и твердотельной электроники. Однако вакуумные приборы способны обеспечить более высокие выходные мощности на более высоких рабочих частотах в сравнении с другими источниками миллиметрового излучения [2,3].

Лампа бегущей волны (ЛБВ) является перспективным прибором для освоения миллиметрового диапазона благодаря возможности широкополосного усиления и высоким выходным мощностям при компактных размерах самого устройства [3,4]. Однако ввиду повышения рабочих частот уменьшаются характерные размеры ключевых элементов ЛБВ, в связи с чем для производства таких приборов требуется разработка новых технологий, способных обеспечить высокую точность изготовления [5]. Таким образом, создание мощных устройств когерентного излучения миллиметрового диапазона является перспективным и значимым.

Ключевым элементом ЛБВ является замедляющая система (3C) – электродинамическая структура, в которой могут распространяться медленные электромагнитные волны с выраженной продольной компонентой электрического поля [2, 6-8]. В 3С реализуется эффект синхронизма – примерного равенства фазовой скорости электромагнитной волны и скорости электронного пучка (ЭП) – за счет чего происходит эффективная передача энергии от свободных электронов бегущей электромагнитной волне.

В связи с сокращением поперечных размеров ключевых элементов приборов с ростом рабочих частот, в том числе и размеров электродинамических структур, применение классических спиральных ЗС в миллиметровом диапазоне оказывается невозможным в силу трудностей их изготовления, а также в силу критического увеличения плотности тока цилиндрических электронных пучков до значений порядка 500 A/cm² и выше, что вызывает трудности в их формировании и фокусировке. Поэтому при создании электровакуумных СВЧ усилителей О-типа миллиметрового диапазона для повышения КПД и выходной перспективным оказывается использование пространственномощности развитых ЗС, в которых возможно взаимодействие с высокоаспектными электронными пучками, в том числе ленточными электронными пучками с адекватными значениями плотности тока до 200 А/см² [9,10]. Одной из наиболее распространенных конструкций ЗС миллиметрового и субмиллиметрового диапазона длин волн является сдвоенная гребенка ввиду ряда преимуществ: широкая полоса усиления частот ЛБВ и простота в производстве, с помощью, например, микрофрезерования [11]. Также цельнометаллическая конструкция системы позволяет эффективно рассеивать тепло, возникающее в процессе работы устройства. Такие конструкции разрабатываются для приборов с рабочей частотой вплоть до 300 ГГц. В последние годы над созданием аналогичных ЗС также работает ряд авторов [12-14]. Таким образом, тема выпускной квалификационной работы является актуальной.

Целью выпускной работы является теоретическое и численное исследование электродинамических характеристик миниатюрной ЗС типа сдвоенная гребенка, а также моделирование процессов электронно-волнового взаимодействия в миниатюрной ЛБВ W-диапазона (75-110 ГГц) с ленточным электронным пучком.

Основными задачами для достижение поставленной цели являлись:

 Моделирование электродинамических характеристик 3С (дисперсионные характеристики, частотные зависимости сопротивления связи, напряжения синхронизма, коэффициента затухания).

- Численное моделирование процессов электронно-волнового взаимодействия с использованием одномерной теории ЛБВ, расчет выходных характеристик.
- Моделирование электронно-волнового взаимодействия с использованием метода «частица в ячейке», анализ устойчивости режимов усиления, расчет выходных характеристик.
- Разработка конструкции вакуумного окна для миниатюрной ЛБВ Wдиапазона с замедляющей системой типа сдвоенная гребенка в прямоугольном волноводе.

Результаты выпускной квалификационной работы показывались на студенческих конференциях Института Физики СГУ (2023, 2024, 2025), на конкурсе-школе имени Игоря Тамма (2024, 2025), на Всероссийской научной конференции молодых ученых «Наноэлектроника, нанофотоника и нелинейная физика» (2023, 2024), на XII международном симпозиуме по оптике и биофотонике Saratov Fall Meeting (2023), на международной конференции «Актуальные проблемы электронного приборостроения» (АПЭП) (2024), и опубликованы в работах [19-22]

КРАТКОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении описывается актуальность работы, перечислены основные цели и задачи, представлена научная значимость работы.

Глава 1 посвящена моделированию процессов распространения электромагнитных волн в замедляющей системе типа сдвоенная гребенка в прямоугольном волноводе для миниатюрной ЛБВ W-диапазона с ленточным электронным пучком.

В п. 1.1 приведены результаты расчета электродинамических характеристики ЗС типа сдвоенная гребенка. На Рис. 1 представлено схематичное изображение ЗС с указанием геометрических параметров. Размеры системы приведены в Таблице 1. На Рис. 2 представлены электродинамические характеристики ЗС, полученные с использованием программного пакета COMSOL Multiphysics [15]. На дисперсионной характеристике также нанесена

линия пучка при напряжении 14,6 кВ. Полученные зависимости представляют собой две кривые, соответствующие симметричной и антисимметричной моде, которые смыкаются на π-виде колебаний в силу наличия в системе скользящей плоскости симметрии [Ошибка! Источник ссылки не найден.]. Синим цветом показана прямая гармоника, а красным – обратная. Синхронизм при напряжениях ниже 20 кВ возможен с +1-ой прямой пространственной гармоникой, что соответствует сдвигу фазы на период структуры $\varphi \in [2\pi, 4\pi]$. Нижняя составляют 81 ГГц И верхняя частоты отсечки И 115 ГГц соответственно. Моды высших порядков находятся вне рабочего диапазона и не пересекаются с основной модой ЗС В рабочем диапазоне напряжение 14,6-14,8 кВ, синхронизма составляет а сопротивление связи при взаимодействии с ленточным ЭП принимает значения свыше 1 Ом на прямой +1-ой пространственной гармонике, что на два порядка больше, чем на обратной -2-ой гармонике.

Рис. 1. Конструкция ЗС типа сдвоенная гребенка с прямоугольным ленточным электронным пучком

Таблица 1. Геометрические параметры ЗС и электронного пучка.

Параметр	Значение, мм
р	0,95
b	1,85
S	0,25
l	0,78
2 <i>a</i>	0,3
$w_b imes h_b$	0.15×0.5

П. 1.2 посвящен исследованию процессов распространения электромагнитных волн в полноразмерной структуре 3С W-диапазона с устройствами ввода/вывода СВЧ-энергии. Моделирование проводилось в пакете CST Studio Suite [16], исследовалась система длиной в 70 регулярных периодов гребенки. В качестве материала на границах была выбрана медь с эффективной проводимостью 2×10⁷ См/м. На Рис. За представлена полноразмерная модель 3С с устройствами ввода/вывода СВЧ-энергии. График зависимости *S*-параметров

от частоты полноразмерной модели ЗС приведены на Рис. Зб. Разработанная конструкция обеспечивает широкополосное согласование ЗС с прямоугольным волноводом стандартного сечения WR-10 по уровню S11 ≤ -20 дБ.

Рис. 2. Электродинамические характеристики ЗС типа сдвоенная гребенка W-диапазона: (a) – дисперсионная характеристика, (b) – зависимость коэффициента замедления от частоты, (b) – зависимость напряжения синхронизма от частоты, (c) – зависимость усредненного по поперечному сечению ЭП сопротивления связи от частоты.

Рис. 3. (*a*) – 3D модель 3C с устройствами ввода/вывода энергии, согласованными с прямоугольным волноводом WR-10, (*б*) – зависимость S11 и S21 от частоты.

В главе 2 приведены результаты исследования режимов электронноволнового взаимодействия в ЛБВ W-диапазона с разработанной конструкцией ЗС типа сдвоенная гребенка и ленточным электронным пучком. Моделирование проводилось с использованием как уравнений нелинейной теории взаимодействия в ЛБВ [17], так и с помощью трехмерного PIC-метода, реализованного в программном пакете CST Studio Suite.

П. 2.1 посвящен моделированию режимов усиления с помощью одномерной нелинейно теории. Представлены графики зависимости коэффициента усиления от частоты в режиме малого входного сигнала (входная мощность составляла 5 мВт) при различных значениях напряжения пучка (Рис. 4*a*). При этом предполагалось, что взаимодействие происходит в системе длиной 74 периода (70,3 мм) с ЭП током 100 мА, что соответствует плотности тока 133 А/см². Наибольшая полоса равномерного усиления достигается при напряжении синхронизма 14,65 кВ. Максимальное значение коэффициента усиления 27 дБ достигается на частотах 89 ГГц и 100 ГГц. Полоса усиления по уровню –3 дБ составляет 15,5 ГГц (86-101,5 ГГц). Исследовались также режимы электронно-волнового взаимодействия при больших значениях входной мощности. Графики зависимостей выходной мощности от входной (Рис. 46) при различных значениях частоты входного сигнала демонстрируют возможность получения в системе выходной мощности до 50 Вт при входной мощности менее 1 Вт.

Рис. 4. (*a*) – Зависимость коэффициента усиления от частоты в линейном режиме работы для различных напряжений синхронизма в случае одномерной нелинейной теории, (*б*) – Зависимость выходной мощности от входной в случае одномерного моделирования на частоте 92 ГГц (синий), 94 ГГц (зеленый) и 100 ГГц (красный).

В п. 2.2. приведены результаты трехмерного моделирования при аналогичных параметрах ЭП и ЗС. При этом предполагалось, что фокусировка пучка осуществляется однородным продольным магнитным полем 0,7 Тл. Аналогичная полоса усиления в режиме малой входной мощности достигается при напряжении 14,6 кВ. На Рис. 5*а* приведена зависимость мощности в режиме насыщения и соответствующей ей входной мощности на различных частотах. Видно, что с ростом частоты от 85 ГГц выходная мощность растет и насыщается на частоте свыше 100 ГГц. Максимальная выходная мощность достигается на частоте 104 ГГц и составляет 94,67 Вт при входной мощности 2,07 Вт. Рис. 56 демонстрирует, что максимальный коэффициент усиления в режиме насыщения величиной 20 дБ достигается на частоте 102 ГГц.

П. 2.3. посвящен исследованию процессов электронно-волнового взаимодействия в режиме максимальной выходной мощности. Показано, что время установления колебаний составляет примерно 4-5 нс, а усиление в таком режиме происходит без самовозбуждения. Зависимость энергии электронов от продольной координаты z (Рис. 6) демонстрирует эффективную группировку электронов в сгустки и передачу кинетической энергии электромагнитной волне.

Рис. 5. (*a*) – зависимость выходной мощности в режиме насыщения и соответствующей ей входной мощности, (б) – зависимость коэффициента усиления в режиме насыщения от частоты.

На Рис. 7 приведена картина движения частиц в пролетном канале ЛБВ. Показано, что по мере приближения к коллекторному концу системы пучок довольно сильно закручивается и деформируется, однако магнитного поля достаточно для транспортировки ЭП без оседания на ламели гребёнки. По мере движения края пучка оказываются ближе к горизонтальным границам пролетного канала, что локально повышает сопротивление связи ближе к концу системы.

Рис. 6. Энергетическая диаграмма пучка при частоте входного сигнала 104 ГГц при входной мощности 2,07 Вт, токе пучка 100 мА и напряжении 14,6 кВ.

Рис. 7. Пространственная картина распространения электронного пучка в пролетном канале 3C.

Глава 3 посвящена разработке конструкции вакуумного окна для миниатюрной ЛБВ W-диапазона, исследуемой в гл. 1 и 2. Разрабатываемая конструкция должна обеспечить минимально возможный уровень отражений в рабочем диапазоне частот. Данная система представляет собой участок Нобразного волновода, В середине которого присутствует вставка ИЗ прямоугольного волновода с диэлектрической пластиной прямоугольного работе были подобраны геометрические размеры сечения. В данной конструкции для применения в ЛБВ W-диапазона. Схема исследуемой системы в проекциях на плоскости xz и yz приведена на Рис. 8. В качестве диэлектрика выступает сапфир с показателем диэлектрической проницаемости $\varepsilon = 8,5$.

Исследование проводилось в трехмерном программном пакете COMSOL Multiphysics.

Были подобраны геометрические параметры структуры, при которых достигается наибольшая полоса пропускания в W-диапазоне. Геометрические размеры конструкции приведены в Таблице 2.

Рис. 8. Конструкция вакуумного окна.

Таблица 2. Геометрические параметры конструкции вакуумного окна.

Параметр	Значение, мм
Сечение волновода, <i>а×b</i>	2,54×1,27
Размер выреза, <i>wg</i> × <i>hg</i>	0,4×0,4
Толщина окна, <i>td</i>	0,45
Сечение окна, <i>wd×hd</i>	3×1,4
Сечение полостей, wr×hr	2,54×1,27
Длина полостей, <i>lr</i>	0,1

Получено, что при указанных в Таблице 2 параметрах коэффициент отражения S11 принимает значения по уровню менее –20 дБ в диапазоне 85-102 ГГц. Данному уровню отражений соответствует КСВН по уровню менее 1,22. Однако при указанных параметрах возникают резонансы на частотах 80 ГГц и 102,5 ГГц. Высокочастотный резонанс ограничивает стабильную работу ЛБВ, т.к. вблизи данной частоты возможны как высокие значениях коэффициента усиления, так и высокие значения выходной мощности. На Рис. 9 приведено распределение модуля напряженности электрического поля на

данных частотах. В объеме диэлектрика на частоте 80 ГГц возбуждается объемная мода TE₃₀₁, частоте 102,3 ГГц соответствует объемная мода TE₂₂₁.

Рис. 9. Распределение модуля поля в конструкции вакуумного окна на частоте: (*a*) – 80 ГГц, (б) – 102,3 ГГц.

Т.к. указанные резонансы возникают в области диэлектрической вставки, то очевидно, что их положение в частотной области определяются размерами диэлектрической пластины. Поэтому в дальнейшем проводилось исследование влияния параметров системы на положение резонансов в частотной области. Была проведена оптимизация геометрических характеристик диэлектрика. Исследовалось влияние размеров на положение резонансов в частотной области. Оказалось, что наибольшее влияние на частоты возникающих резонансов оказывает толщина диэлектрика. Было получено, что оптимальным значением является толщина 400 мкм. В таком случае резонансы находятся на частотах 83 ГГц и 105,7 ГГц На частоте 104 ГГц коэффициент отражения принимает значение по уровню менее –25 дБ, а коэффициент отражения по уровню –20 дБ достигается в полосе 87-105 ГГц (Рис. 10).

Рис. 10. Зависимость (*a*) – коэффициента отражения, (б) – КСВН от частоты при толщине диэлектрической пластины 400 мкм.

В п. 3.2. приведены результаты моделирования процессов распространения электромагнитных волн в конструкции вакуумного окна, согласованной с прямоугольным волноводом стандартного сечения WR-10 Согласование было проведено путем линейного увеличения высоты гребня H-образного волновода. Получено, что данная конструкция обеспечивает отражения по уровню менее –20 дБ, что соответствует КСВН 1,2 в рабочей полосе частот.

Аналогичное моделирование было проведено для полноразмерной 3С типа сдвоенная гребенка с предложенной в п. 3.1. конструкцией вакуумного окна (Рис. 11*a*). На Рис. 11*б* приведен график зависимости S11 от частоты. Разработанная система вакуумного окна обеспечивает широкополосное согласование с отражениями по уровню порядка –20 дБ, что соответствует КСВН порядка 1,2. Также в системе наблюдаются резонансы, которые были описаны в п. 3.1. Однако в случае оптимизированных размеров они находятся вне полосы усиления.

Рис. 11. (*a*) – трехмерная модель системы ввода/вывода СВЧ энергии, согласованного с конструкцией вакуумного окна, (*б*) – зависимость S11 от частоты для полноразмерной ЗС с устройствами ввода/вывода СВЧ-энергии и конструкцией вакуумного окна.

ЗАКЛЮЧЕНИЕ

В ходе выполнения выпускной квалификационной работы бакалавра были получены следующие основные результаты:

1. С помощью трехмерного конечно-элементного программного пакета COMSOL Multiphysics были исследованы электродинамические характеристики 3С типа сдвоенная гребенка в прямоугольном волноводе для миниатюрной ЛБВ

W-диапазона (75-110 ГГц) с ленточным электронным пучком. Получено, что исследуемая система обладает полосой пропускания в диапазона 81-115 ГГц, при этом широкополосный синхронизм с электронным пучком в такой системе возможен при напряжениях порядка 14,6 кВ. Также показано, что в такой системе для прямой +1-ой пространственной гармоники возможны высокие значения сопротивления связи порядка 1-2 Ом и выше. При этом сопротивление связи обратной гармоники принимает значения на 1-2 порядка меньше.

2. Исследованы процессы распространения электромагнитных волн в полноразмерной конструкции ЗС типа сдвоенная гребенка W-диапазона с устройствами ввода-вывода СВЧ-энергии. Показано, что такая конструкция обеспечивает широкополосное прохождение входного сигнала с коэффициентом отражения по уровню менее –20 дБ. Уровень омических потерь составляет 0,057-0,1 дБ/период при значениях эффективной проводимости меди 2×10⁷ См/м. Показано, что результаты, полученные с использованием различных методик, находятся в хорошем соответствии.

3. Проведено моделирование процессов электронно-волнового взаимодействия с использованием одномерной нелинейной теории ЛБВ. Предполагалось, что взаимодействие в системе происходит с ленточным электронным пучком током 100 мА при напряжениях 14,6-14,75 кВ. Получено, что в линейном режиме работы исследуемая ЛБВ W-диапазона способна обеспечить высокие значения коэффициента усиления ДО 30 дБ. При напряжениях порядка 14,6 кВ возможно получение широкой однородной полосы усиления до 27 дБ. При этом полоса усиления по уровню -3 дБ составляет 15,5 ГГц (86-101,5 ГГц).

4. Проведено моделирование процессов электронно-волнового взаимодействия с использованием трехмерного PIC-метода, реализованного в программном пакете CST Studio Suite. Предполагалось, что взаимодействие в системе происходит с ленточным электронным пучком током 100 мА при напряжении 14,6 кВ. Фокусировка пучка осуществлялась однородным продольным магнитным полем величиной 0,7 Тл. Показано, что в системе

возможно усиление свыше 27 дБ. Выходная мощность в режиме насыщения может достигать значений до 95 Вт при входной мощности порядка 2 Вт. Исследована динамика электронного пучка при взаимодействии с высокочастотным полем 3С и постоянным внешним магнитным полем. Показано, что за счет вращения электронного пучка в скрещенных полях в процессе взаимодействия происходит улучшение условий электронно-волнового взаимодействия ближе к коллекторному концу системы.

5. Разработана конструкция широкополосного вакуумного окна ДЛЯ миниатюрной ЛБВ W-диапазона. Система представляет собой сверхразмерную диэлектрическую пластину в форме параллелепипеда, расположенную между двумя прямоугольными полостями в Н-образном волноводе, согласованным с стандартным волноводом WR-10. Исследована структура резонансов на частотах 82 ГГц и 102,3 ГГц. Получено, что при оптимизированных геометрических параметрах в полноразмерной структуре ЗС возможно прохождение сигнала в диапазоне 85-106 ГГц с коэффициентом отражения по уровню –20 дБ, что соответствует КСВН порядка 1,2. Проведено моделирование полноразмерной конструкции ЗС с вакуумным окном и получено, что разработанная система вакуумного окна обеспечивает широкополосное согласование с отражениями по уровню порядка –20 дБ, что соответствует КСВН порядка 1,2.

СПИСОК ЛИТЕРАТУРЫ

- Tani M., Rieh J.-S., Park S. Y. Advances in Terahertz Source Technologies // ed. by Park G.-S., S.: Jenny Stanford Publishing Pte. Ltd. 2024. 773 p.
- Григорьев А. Д., Иванов В. А., Молоковский С. И. Микроволновая электроника: Учебник // Под ред. А. Д. Григорьева. — СПб.: Издательство «Лань», 2016. — 496 с.: ил. — (Учебники для вузов. Специальная литература).
- Paoloni C., Gamzina D., Letizia R. et al. Millimeter wave traveling wave tubes for the 21st century // Journal of Electromagnetic Waves and Applications, 2021. Vol. 35, No. 5, pp. 567-603.

- Armstrong C. M., Snively E. C., Shumail M. et al. Frontiers in the Application of RF Vacuum Electronics // IEEE Trans. on Elec. Dev., 2023. Vol. 70, No. 6, pp. 2643-2655.
- 5. *Ryskin N.M.* Advances in Development of Microfabricated Sub-Terahertz Vacuum Electron Devices // Springer Proceedings in Physics, 2025, pp. 215–226.
- *Цимринг Ш.Е.* Введение в высокочастотную вакуумную электронику и физику электронных пучков // Н.Н.: Институт прикладной физики РАН, 2012. 576 с.
- 7. Силин Р.А. Периодические волноводы. // М.: Фазис, 2002. 438 с.
- *Трубецков Д.И., Храмов А.Е.* Лекции по СВЧ электронике для физиков в 2-х т. // М.: Физматлит, 2003.
- Рожнёв А.Г., Рыскин Н.М., Каретникова Т.А. и др. Исследование характеристик замедляющей системы лампы бегущей волны миллиметрового диапазона с ленточным электронным пучком // Изв. вузов. Радиофизика. 2013. Т. 56, № 8-9. С. 601.
- 10.*Titov V., Ploskih A., Ryskin N.* Study of Beam–Wave Interaction in a Sub-THz Traveling Wave Tube with a Converging Sheet Electron Beam Focused by a Uniform Magnetic Field // Electronics 2022, Vol. 11, pp. 4208.
- 11.*Starodubov A, Torgashov R, Galushka V., et al.* Microfabrication, Characterization, and Cold-Test Study of the Slow-Wave Structure of a Millimeter-Band Backward-Wave Oscillator with a Sheet Electron Beam // Electronics, 2022; Vol. 11, pp. 2858.
- 12.Zhigang L., Ruidong W., Weihua G., et al. Design of a low-gain high-power W band sheet-beam traveling wave tube using a double-staggered grating slow wave structure // Journal of Electromagnetic Waves and Applications. 2019, Vol. 33, pp. 1996-2008.
- 13.Guoxiang S., Jiacai L., Junchen R., et al. Dispersion and Dielectric Attenuation Properties of a Wideband Double-Staggered Grating Waveguide for Subterahertz Sheet-Beam Traveling-Wave Amplifiers // IEEE Transactions on Electron Devices. 2021, Vol. 68, No. 11, pp. 5826-5833.

- 14.Shengkun J., Guang Y., Zhanliang W., et al. Experimental Investigation of a Shape-Optimized Staggered Double-Vane Slow-Wave Structure for Terahertz Traveling-Wave Tubes // IEEE Transactions on Electron Devices. 2022, Vol. 69, No. 8, pp. 4632-4637.
- 15.Comsol Multiphysics Engineering Simulation Software. COMSOL Inc., Burlington, MA USA. <u>http://www.comsol.com/products/multiphysics/</u>
- 16.CST Studio Suite Electromagnetic Field Simulation Software 2024. https://www.3ds.com/productsservices/simulia/products/cst-studiosuite/2024
- 17. Кац А.М., Ильина Е.М., Манькин И.А. Нелинейные явления в СВЧ приборах О-типа с длительным взаимодействием. // М.: «Сов. радио» – 1975 – 296 с.
- 18.Gangxiong W., Hairong Y., Zhun X., et al. Design and Experimental Measurement of Input and Output Couplers for a 6-18-GHz High-Power Helix Traveling Wave Tube Amplifier // IEEE Transactions on Electron Devices. 2020, pp. 1826 – 1831.
- 19. Абрамов О.Р., Торгашов Р.А. Разработка конструкции вакуумного окна для миниатюрной ЛБВ W-диапазона // «Наноэлектроника, нанофотоника и нелинейная физика»: тез. докл. XVIII Всерос. конф. молодых ученых. С.: Изд-во «Техно-Декор», 2023. 227 с.
- 20. Абрамов О.Р., Торгашов Р.А., Титов В.Н. Разработка миниатюрной ЛБВ Wдиапазона с ЗС типа сдвоенная гребенка и ленточным электронным пучком // тез. докл. XIX Всерос. конф. молодых ученых. – С.: Изд-во «Техно-Декор», 2024. – 152 с.
- 21.*Abramov O.R., Torgashov R.A.* Numerical Simulation of a Sheet–Beam W-band Traveling-Wave Tube with a Double-Grating Slow-Wave Structure // 2024 International Conference on Actual Problems of Electron Devices Engineering (APEDE), Saratov, Russian Federation, 2024, pp. 11-14.
- 22. *Титов В.Н., Чистяков И.А., Навроцкий И.А., и др.* Разработка лампы бегущей волны W-диапазона с ленточным электронным пучком и замедляющей системой типа сдвоенная гребенка // Радиотехника и электроника. 2024, Т. 69, № 7, С. 648-655.