МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Кафедра медицинской физики

Изучение динамики тонуса сосудов при изменении положения верхней конечности, перспективы применения в биомедицинской диагностике

АВТОРЕФЕРАТ

БАКАЛАВРСКОЙ РАБОТЫ

студента 4 курса 4021 группы

направления 03.03.02 «Физика»

Института физики

Торопова Артем Анатольевича

Научный руководитель

доцент, к.ф.-м.н.,

должность, уч. ст., уч. зв.

личная подпись, дата

16.06.2 X.A. Сагайдачный инициалы, фамилия

Зав. кафедрой

д.ф.-м.н., профессор

должность, уч. ст., уч. зв.

личная подпись, дата

А.В. Скрипаль

инициалы, фамилия

Введение.

В современной медицине и физиологии сосудистая система занимает одно из центральных мест в изучении механизмов поддержания гомеостаза организма. Сосудистая система обеспечивает гомеостаз организма, регулируя кровяное давление, перфузию тканей и общее кровообращение с помощью нервных, гуморальных и локальных факторов. При смене положения конечностей происходит перераспределение кровотока И адаптация сосудистого тонуса под гравитационной нагрузкой — важный механизм как в физиологии, так и в клинической диагностике. Тем не менее динамика тонуса артерий верхней конечности при её перемещении изучена недостаточно, особенно с использованием неинвазивной фотоплетизмографии (ФПГ). Применение ФПГ для оценки изменений тонуса при смене положения нарушений перспективы раннего выявления регуляции кровообращения и создания доступных диагностических методик.

Актуальность темы:

Фотоплетизмографическая оценка высоко- и низкочастотных колебаний тонуса сосудов верхней конечности при переходе её положения относительно уровня сердца из «опущенного» в «возвышенное», с варьированием времени удержания руки на уровне сердца и температурных условий окружающей среды.

Цель и задачи работы:

Целью данной работы является фотоплетизмографическое исследование динамики тонуса сосудов верхней конечности при изменении ее положения из крайнего положения «вниз» в крайнее положение «вверх».

Для достижения поставленной цели в рамках работы были сформулированы следующие задачи:

- 1. Провести обзор современных работ, посвященных исследованию реакции на ортостатическую и гравитационную пробы.
- 2.Провести регистрацию сигнала ФПГ при проведении пробы с изменением положения верхней конечности из крайнего положения «вниз» в

крайнее положение «вверх».

- 3. Проанализировать высокочастотную и низкочастотную динамику тонуса сосудов в процессе проведения пробы с изменением положения верхней конечности, выявить возможные закономерности и сформулировать соответствующие выводы.
- 4. Описать перспективы практического применения метода для выявления нарушений регуляции тонуса сосудов при артериальной гипертонии.

Основное содержание работы.

Во введении обосновывается актуальность выбранной темы и решаемых задач, формируется цель исследования и определяется научная новизна.

В первой главе рассмотривается физиология сосудистого тонуса и его регуляция.

В разделе один первой главы рассматривается регуляция сосудистого тонуса.

Изучение регуляции сосудистого тонуса традиционно фокусировалось на трёх слоях стенки: интима (эндотелий), медиа (гладкомышечные клетки и эластические пластины) и адвентиция (соединительная ткань с нервными окончаниями) (рис. 1) [7]. Открытие оксида азота в 1980-х годах сместило акцент на эндотелий как паракринную ткань, модулирующую медию напрямую и через нейротрансмиттеры; в то время адвентиция считалась лишь опорной, но недавно выявлен её прямой вклад в регуляцию сосудов, что станет понятнее при развитии методов удаления адвентиции для изучения межслойных взаимодействий [7],[6]. Кроме этого, периваскулярный жир показал антиконстрикторное действие: исследования Сольтиса и Кассиса и последующие работы Лёна адипоцит-зависимый выявили, что релаксирующий фактор (ADRF) ингибирует сосудистые сокращения через тирозинкиназные пути и АТФ-зависимые К+ каналы, подчёркивая роль жировой ткани в регуляции тонуса [7],[11].

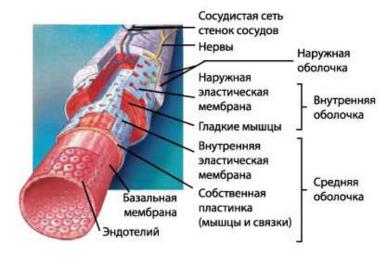


Рис. 1. Строение сосудов

Во втором разделе первой главы рассматривалась микроциркуляция соссудов.

Капилляры — это ключевой элемент кровеносной системы, обеспечивающий обмен веществами между кровью и интерстициальной жидкостью. Такой обмен происходит также в венулах. Вместе с артериолами, метартериолами и венулами капилляры образуют терминальное русло — единую систему, где кровь длительно контактирует с большой поверхностью [4]. «Истинные» капилляры отходят от метартериол под прямым углом, их стенки содержат гладкомышечные элементы, которые убывают к дистальной части, а прекапиллярные сфинктеры и сокращение артериол регулируют кровоток. В терминальном русле присутствуют артериовенозные анастомозы, связывающие артерии с венулами; они особенно обильны в коже акральных зон (например, пальцы, уши) и участвуют в терморегуляции. По структуре стенок капилляры делятся на три типа: с непрерывной стенкой (встречаются в мышцах, жировой ткани, лёгких), фенестрированной (в почечных клубочках, кишечнике) и прерывистой (в костном мозгу, печени, селезёнке) [4],[5].

Рис. 2. Терминальное (микроциркуляторное) русло

В третьем разделе первой главы рассматривалось анатомофизиологические особенности кровообращения верхней конечности.

Кровообращение верхней конечности начинается в левом желудочке: артериальная кровь по восходящей и дуге аорты направляется к плечеголовному стволу или прямо к левой подключичной артерии (рис. 3.).

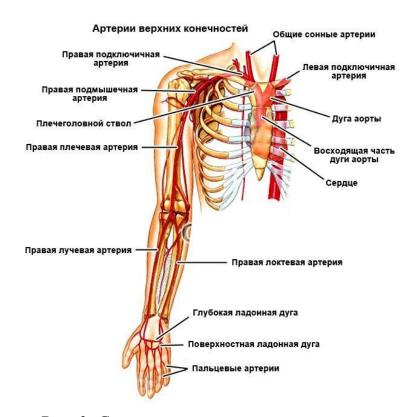


Рис. 3. Схема артерий верхних конечностей.

Подключичная, проходя под ключицей, становится подмышечной артерией, дающей ветви к мышцам и коже плеча, а затем продолжается как плечевая артерия, спускаясь вдоль медиального края плеча и разветвляясь на лучевую и локтевую в области локтевого сгиба [14]. Лучевая артерия по радиальному краю предплечья пальпируется на запястье; локтевая вдоль медиального края, вместе с глубокими пальцевыми ветвями формирует поверхностную ладонную дугу, а лучевая, входя в ладонь, участвует в глубокой ладонной дуге. От обеих дуг отходят пальцевые артерии, питающие ткани пальцев [14].

Венозный отток осуществляется двумя системами: поверхностной (латеральная и медиальная подкожные вены, соединённые средней локтевой) и глубокой (вены, совпадающие с артериями: лучевая, локтевая, плечевые), подмышечную подключичную формируют которые через И вену плечеголовной сток и впадают в верхнюю полую вену. Физиологически кровоток динамично меняется: при мышечной активности растёт потребление кислорода, что вызывает дилатацию артериол и усиление притока крови. Обширная сеть анастомозов (особенно в области локтевого сустава и кисти) обеспечивает непрерывное снабжение при временном пережатии сосудов. Для гомеостаза важна терморегуляция: при тепле расширяются поверхностные сосуды для отдачи тепла, при холоде — сужаются. Венозные клапаны и мышечный «насос» предплечья и плеча обеспечивают однонаправленный ток крови к сердцу, преодолевая гравитацию; их нарушение при длительной неподвижности или компрессии может приводить к застою, отёку и риску тромбоза.

В четвертом разделе первой главы рассматривается основные законы гемодинамики.

Гемодинамика изучает, как кровь движется по сосудам, опираясь на принципы гидродинамики. Главный закон — закон Пуазейля — говорит, что объем крови, проходящий через сосуд, сильно зависит от его радиуса: даже небольшое сужение резко увеличивает сопротивление и уменьшает кровоток. Закон сохранения массы объясняет, что объем крови в системе не меняется, поэтому в узких капиллярах скорость высокая, что помогает обмену веществ, а в широких сосудах, вроде аорты, она ниже, чтобы быстро доставлять кровь. Закон сохранения энергии показывает, как давление падает от аорты к венам из-за сопротивления, особенно в артериолах, которые регулируют кровоток. Кровь может течь упорядоченно, слоями — это ламинарный поток, типичный для большинства сосудов, или хаотично, с вихрями — это турбулентный поток, который появляется при высоких скоростях или сужениях и слышен как шумы при прослушивании.

В пятом разделе первой главы рассматривается частотные диапазоны колебаний кровотока в микрососудах.

Гемодинамическая активность периферических сосудов проявляется в пяти частотных диапазонах [16],[17]:

Низкочастотные (0,005–0,02 Ги): отражают эндотелиальную активность: медленные колебания кровотока, связанные с высвобождением вазоактивных веществ (например, NO) внутренним слоем сосудов.

Среднечастотные $(0,02-0,06\ \Gamma y)$: соответствуют нейрогенной регуляции через симпатическую нервную систему, влияющую на сужение и расширение сосудов.

Высокочастотные $(0,06-0,16\ \Gamma u)$: связаны с миогенной активностью гладкомышечных клеток, реагирующих на изменения давления для поддержания стабильного потока (миогенный ответ).

Дыхательные $(0.16-0.4\ \Gamma u)$: синхронизированы с дыханием: изменения внутригрудного давления влияют на венозный возврат и сердечный выброс, что проявляется в пульсовых изменениях кровотока.

Сердечные (0,4–2 Гц): отражают пульсацию, вызванную частотой сердечных сокращений; в микроциркуляции эти колебания менее выражены, но обусловлены изменением градиента давления в мелких артериях и артериолах, определяя мгновенный объём крови через сечение сосуда.

Такое частотное разложение позволяет раздельно оценивать вклад эндотелия, нервной системы, миогенного механизма, дыхательных и сердечных факторов в регуляцию периферического кровотока [16],[17].

В шестом разделе первой главы рассматривается влияние положения верхней конечности на сосудистый тонус.

Изменение положения верхней конечности влияет на сосудистый тонус за счёт гравитации, венозного возврата и рефлекторных механизмов. Венозное растяжение при опускании руки увеличивает давление в венах и активирует афферентные волокна III и IV групп в адвентиции мелких вен, что вызывает рефлекторную **MSNA** симпатическую активацию, повышение И артериального давления, как показано при инфузии физиологического раствора в вены предплечья во время артериальной окклюзии [18]. Введение лидокаина устраняет этот эффект, подтверждая роль венозных афферентов и системный характер реакции, отличающийся OT локального веноартериолярного рефлекса. При опущении руки растяжение вен сначала может снижать сосудистый тонус механически, но затем рефлекторная вазоконстрикция поддерживает среднее артериальное давление и перфузию органов. В поднятом положении снижение венозного давления уменьшает стимуляцию афферентов, что через миогенные и симпатические механизмы повышает тонус артериол. Горизонтальное положение даёт базовые условия с минимальным гравитационным влиянием и относительно стабильным венозным давлением, делая описанный венозно-растяжной рефлекс менее выраженным.

Во второй главе рассматривается метод фотоплетизмографии (ФПГ).

Фотоплетизмография (ФПГ) — неинвазивный метод измерения изменений объема крови в микрососудах кожи, основанный на оптических свойствах тканей: поглощении, рассеянии и пропускании света определённой длины волны. В 1937 году Херцман показал, что интенсивность отражённого от кожи света изменяется в зависимости от сердечной активности, предложив использовать ФПГ для оценки кровенаполнения.

Метод регистрирует изменения интенсивности света, проходящего через ткани, что связано с пульсацией крови и объясняется законом Бугера—Ламберта—Бера: ослабление света зависит от коэффициента поглощения, концентрации веществ и длины оптического пути.

Свет, проходя через кожу, взаимодействует с тканями, венами и артериями, а затем фиксируется фотодетектором. Интенсивность зарегистрированного сигнала зависит от объема крови, диаметра артерии и концентрации гемоглобина, изменяющихся в течение сердечного цикла. В диастолу объём крови минимален, поглощение снижается, и детектор фиксирует максимум света. В систолу — наоборот, сигнал ослабевает.

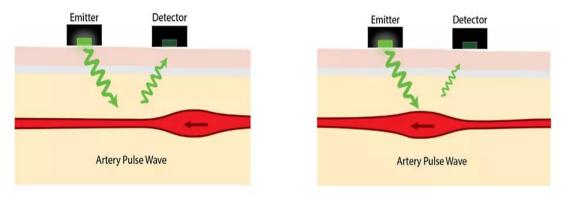


Рис. 4. Регистрация сигнала ФПГ (на рисунке слева - фаза систолы (пульсовая волна): артериальный сосуд расширен, в нём больше крови. Поглощение света возрастает, на детектор попадает меньше отражённого света — амплитуда сигнала падает. На рисунке справа - фаза диастолы: сосуд сужен, объём крови в нём меньше. Свет проходит ближе к кожной поверхности, меньше поглощается кровью и больше отражается к детектору — амплитуда сигнала растёт.)

В первом разделе второй главы рассматривается устройство ФПГ.

Устройство ФПГ включает светодиод (LED), испускающий свет, и фотодетектор. В зависимости от их расположения различают пропускающие и отражающие типы датчиков. В пропускающем типе фотодетектор находится напротив светодиода, свет проходит через ткани (например, на пальцах или мочках ушей). Такие датчики обеспечивают более стабильные измерения (рис. 5).

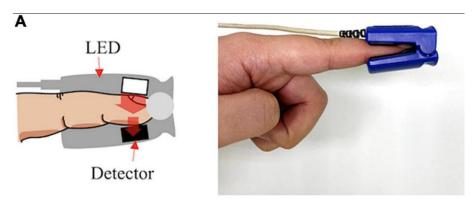


Рис. 5. Устройство ФПГ, работающее в режиме «на пропускание».

В отражающем типе фотодетектор расположен рядом со светодиодом и регистрирует рассеянный свет, что даёт меньшую интенсивность сигнала, но позволяет проводить измерения на лбу, запястье и других зонах с толстыми тканями (рис. 6).

В

Рис. 6. Устройство $\Phi\Pi\Gamma$, работающее в режиме «на отражение».

Клиническое применение PPG включает измерение насыщения крови кислородом (пульсоксиметрия), тонуса сосудов и изменений кровотока при дыхании. Оксигенация рассчитывается как отношение оксигемоглобина к общему гемоглобину, при этом используют две длины волн: красную (~660 нм) и инфракрасную (~880 нм), так как они по-разному поглощаются формами гемоглобина.

Индекс перфузии, определяемый как отношение пульсирующего и непульсирующего компонентов сигнала, используется для оценки сосудистого тонуса, особенно при гипертонии и ишемической болезни сердца.

Во втором разделе второй главы разбирается структура фотоплетизмограммы.

Пульсовая волна возникает, когда левый желудочек выбрасывает кровь в аорту во время сокращения. Ее скорость зависит от просвета сосуда, эластичности и толщины его стенок, а также силы сердечного толчка. Фотоплетизмография помогает выявлять сужение и склероз сосудов, оценивать их тонус и работу сердца. На фотоплетизмограмме волна делится (систолу) на анакротическую фазу дикротическую (диастолу). Дикротический пик образуется за счет отражения крови, возвращающейся из периферии в аорту. У здорового человека подъем волны крутой, а отраженная волна высокая, но при сужении артерий подъем сглаживается, дикротическая фаза удлиняется, а отраженная волна снижается или пропадает (рис. 7).

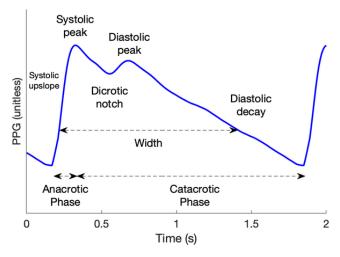


Рис. 7. Разбор пульсовой волны на фотоплетизмограмме.

Ключевые параметры фотоплетизмограммы — индекс жесткости и индекс отражения. Индекс жесткости отражает сужение крупных артерий и эластичность их стенок, косвенно указывая на кальциевый обмен. Индекс отражения показывает тонус мелких сосудов; его рост может говорить о высокой вязкости крови или атеросклерозе. Нарушения на пульсовой волне проявляются по-разному: дополнительные волны могут указывать на отклонения гемодинамики или тромб, крутой подъем с быстрым спадом и слабым дикротическим пиком — на аортальную недостаточность, отсутствие дикротического зубца — на диабет, атеросклероз или гипертонию, а длинная анакротическая фаза с пологим подъемом и заметным дикротическим зубцом — на повышенный тонус сосудов, начальный атеросклероз или гипертонию. При облитерирующем эндартериите амплитуда волн падает на пораженной конечности, а у больных ревматизмом при погодных изменениях или магнитных бурях усиливаются реакции, связанные с расширением сосудов.

В третьем разделе второй главы рассматриваются компоненты сигнала фотоплетизмограммы.

Сигнал фотоплетизмографии (PPG) включает два основных компонента: постоянную (DC) и переменную (AC) составляющие, вместе формирующие полную картину кровотока(рис. 8).

DC-компонента — это стабильный базовый уровень, отражающий среднее кровенаполнение тканей. Она зависит от количества гемоглобина, толщины кожи и интенсивности света. Также в ней присутствуют низкочастотные колебания, связанные с дыханием, активностью симпатической нервной системы и терморегуляцией. DC используется для оценки общего объёма крови и калибровки устройств, например, пульсоксиметров [21], [25].



Рис. 8. Пульсирующая (переменная, AC) составляющая сигнала фотоплетизмографии (PPG) и соответствующая электрокардиограмма (ЭКГ). Переменная составляющая на самом деле наложена на гораздо большую квазипостоянную (квазипостоянного тока, DC) составляющую. На практике форма сигнала PPG часто инвертируется.

АС-компонента показывает пульсации, синхронизированные с сердечным циклом: увеличивается в систолу, уменьшается в диастолу. Её частота соответствует пульсу (примерно 1 Гц у здорового человека), а амплитуда зависит от сосудистого тонуса. АС используется для измерения частоты сердечных сокращений, анализа ритма и оценки состояния периферических сосудов [23].

Отношение АС к DC называется пульсационным индексом (PI) — он отражает силу пульсового сигнала относительно общего объёма крови. Высокий PI указывает на хорошую перфузию, низкий — на сосудистые нарушения. PI особенно важен при расчёте насыщения крови кислородом (SpO₂) в пульсоксиметрии.

Для разделения компонентов используют фильтрацию: высокочастотные фильтры выделяют АС, а низкочастотные — DC; также применяются усилители для слабых сигналов. В клинике DC применяется для оценки базового кровенаполнения и настройки приборов, а АС — для анализа пульса, сосудистой функции и ритмики [23], [26].

В четвертом разделе второй главы рассматриваются перспективы применения метода в области диагностики гипертонии.

Метод фотоплетизмографии (ФПГ) активно применяется в современной функциональной диагностике, особенно в контексте изучения регуляции сосудистого тонуса у пациентов с артериальной гипертонией. Современные исследования подтверждают высокую чувствительность ФПГ-сигнала к изменениям в гемодинамике и влиянию вегетативной нервной системы, что делает этот метод перспективным для оценки сосудистой адаптации в различных условиях.

В [24] была исследовании продемонстрирована высокая ФПГ-сигнала к чувствительность изменению положения конечности относительно уровня сердца. Подъём и опускание руки вызывали заметные изменения как в постоянной (DC), так и в пульсовой (AC) составляющей сигнала. Эти изменения свидетельствуют о том, что ФПГ способен фиксировать гидростатические эффекты и включение локальных сосудистых рефлексов, таких как венуло-артериолярный рефлекс, при изменении положения конечности (рис. 9).

Аналогичные результаты получены в исследовании [30], где изучалась амплитуда АС-составляющей в различных частотных диапазонах при фиксированных положениях руки. Исследование подтвердило, что амплитуда пульсовой волны существенно изменяется при подъёме или опускании руки, отражая перераспределение кровотока и регуляторные сосудистые реакции. Таким образом, авторы сделали вывод, что ФПГ-сигнал информативен не только для оценки состояния сердечно-сосудистой системы, но и для анализа механизмов адаптации периферического кровообращения (рис. 13).

В клиническом исследовании [31], проведённом на пациентах с гипертонией, была показана высокая чувствительность ФПГ-сигнала к действию сосудорасширяющих препаратов. После введения нитроглицерина наблюдалось улучшение формы сигнала, особенно в его диастолической фазе, что свидетельствует об улучшении перфузии тканей и повышении

эластичности сосудов. Изменения в параметрах ФПГ-сигнала, по мнению авторов, отражают функциональные сдвиги в микроциркуляции, а не необратимые анатомические изменения. Это позволяет использовать анализ формы ФПГ-сигнала как чувствительный индикатор эффективности антигипертензивной терапии и состояния сосудистой регуляции.

В третьей главе подробно описывается экспериментальная часть и анализ динамики тонуса сосудов верхней конечности.

Эксперимент проводился с использованием отражающего ФПГ-датчика на указательном пальце (рис. 9) . Прибор состоит из центральной части — аналого-цифрового преобразователя, и двух каналов, выходящих из него. Они в свою очередь состоят из светодиода красной длины волны и фотодатчика. Были разработаны два протокола. Первый (7 минут): 1 минута на уровне сердца, по 1 минуте при опускании, 1 минута на уровне сердца, по 1 минуте при поднятии, и 1 минута на уровне сердца, при 24°С. Во втором протоколе (10 минут) были увеличены фазы, когда рука находилась на уровне сердца (до 2 минут), и эксперимент проводился при примерно 30°С для усиления вазодилатации. Испытуемые адаптировались к условиям 15—20 минут, сидя, с левой рукой на столе в начальной позиции.

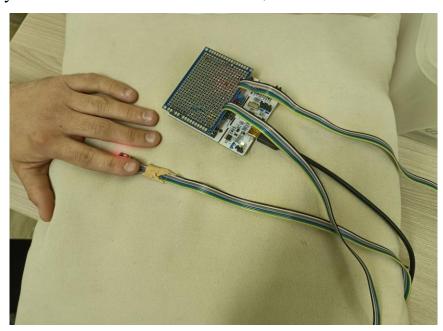


Рис. 9. Проведение эксперимента: запись ФПГ – сигнала.

В результате эксперимента были получены данные регистрации объемных изменений кровообращения, представленных в виде текстового файла со значениями, записанными сенсором устройства. Для дальнейшего анализа полученные данные необходимо обработать в программе Mathcad 14.

Рис. 10. Обработка данных в Mathcad.

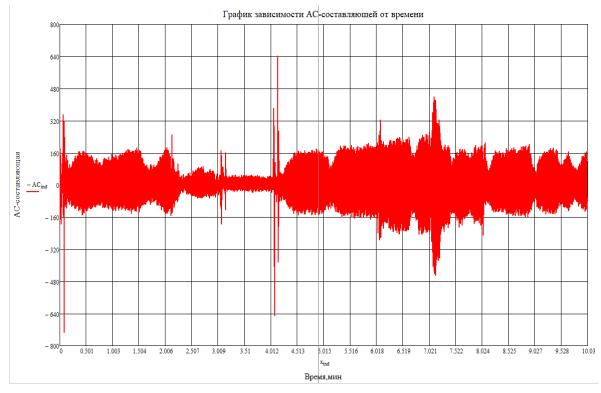


Рис. 19. Пример графика зависимости АС-составляющей сигнала от времени.

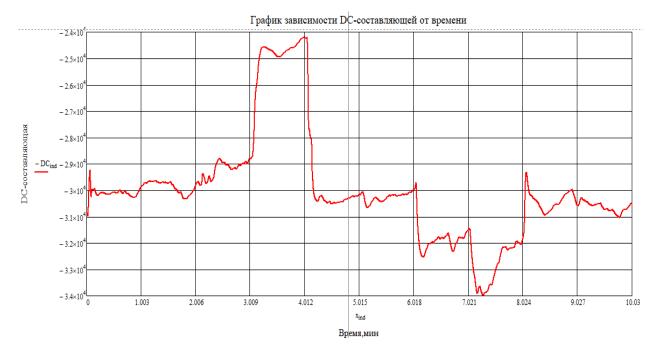


Рис. 20. График зависимости DC составляющей сигнала от времени.

В программе TBF Converter 1.6 из полученного АС-сигнала мы строили кривую пиков, для более простого дальнейшего анализа (рис. 13)

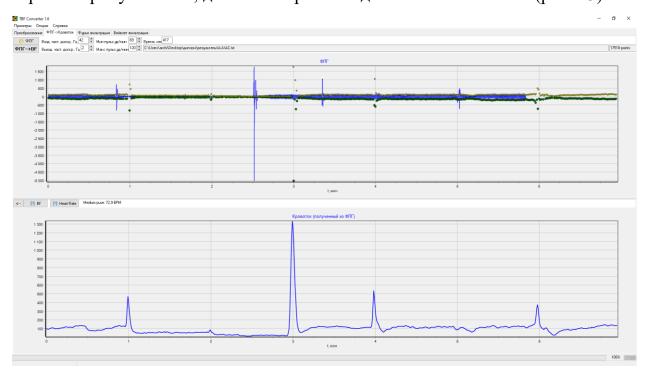


Рис.13. Кривая пиков, построенная в ТВF Converter 1.6.

На последнем этапе обработки данных был написан код в Python, который позволял строить медианы на протяжении всей кривой пиков (рис. 14)

```
import numpy as np
import matplotlib.pyplot as plt
 ‡ Загружаем данные из файла, заменяя запятые на точки def replace_comma_with_dot(s):
    if isinstance(s, bytes):
              s = s.decode('utf-8')
       return float(s.replace(',', '.'))
  values = np.loadtxt('пики AC A.A2.txt', converters={0: replace_comma_with_dot}) print(f"Воего значений: {len(values)}") |
 # Временные параметры
total_minutes = 7
total_seconds = total_minutes * 60
time_per_value = total_seconds / len(values) # Время на одно значение в секундах
  # Разделяем данные по минутам и считаем медианы
 median = np.median (minute_data)
medians.append(median)
minute_centers.append (minute + 0.5)  # Середина минуты
print(f"Минута (minute + 1): (len(minute_data)) значений, медиана = (median)")
else:
  # Если данных нет, добавляем NaN, чтобы сохранить место для минуты
medians.append(np.nan)
minute_centers.append(minute + 0.5)
print(f"Минута (minute + 1): нет данных")
  time_seconds = np.arange(len(values)) * time_per_value
time_minutes = time_seconds / 60
 minute values.append(medians[minute])
  † Добавляем последиее значение медианы, чтобы соответствовать количеству границ minute_values.append(medians[-1])
 # Строим трафик
plt.figure(figsize=(8, 6))
plt.plot(time_minutes, values, label='Значения пиков', color='blue', alpha=0.5)
plt.step(minute_boundaries, minute_values, where='post', label='Медиана по минутам', color='red', linewidth=2)
plt.xlabel('Зремя, мин')
plt.ylabel('Значение пика')
  plt.title('Значения пиков и медианы по минутам') plt.legend()
plt.grid(True)

# Устанавливаем пределы оси X, чтобы гарантировать полный диапазон
plt.xlim(0, total_minutes)

plt.show()
```

Рис. 14. Код в Python для построения медиан на кривой.

Такое решение наглядно иллюстрирует общую динамику сигнала и позволяет сразу увидеть, как меняется центральная тенденция (медиана) в разных фазах эксперимента (рис. 15). Аналогичным образом процесс проходит и для данных DC-составляющей. (рис. 16.)

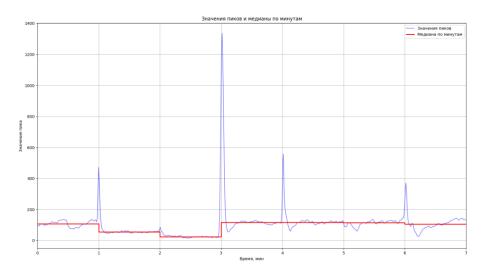


Рис. 15. Итоговый график с медианами, наложенными на кривую пиков AC (первый протокол).

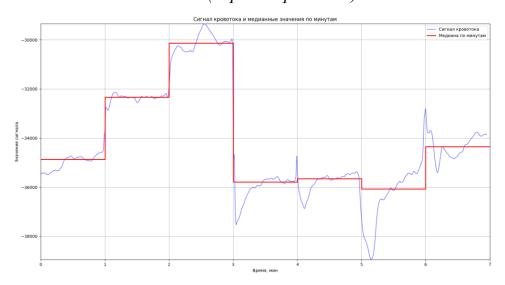


Рис. 16. Итоговый график с медианами, наложенными на сигнал DC (первый протокол).

Помимо этого, код выводил числовое значение медиан на каждом промежутке в течение всего протокола (рис. 17). Для более детального анализа, данные по всей контрольной группе были собраны в таблицы.

Рис. 17. Вывод численного значения медианы на каждой минуте протокола.

Заключение.

В исследовании показано, что при изменении положения руки устойчивую относительно уровня сердца ФПГ-сигнал демонстрирует реакцию: опускание вызывает рост медленной (DC) и падение пульсовой (AC) составляющих, при подъёме — обратную динамику, отражающую сочетание механических и рефлекторных механизмов регуляции тонуса. Удлинение нейтральной фазы и повышение температуры усиливают эти реакции за счёт активации компенсаторных механизмов микроциркуляции и подчёркивают индивидуальную сосудистую реактивность. Полученные результаты соответствуют данным литературы И подтверждают, ЧТО метод фотоплетизмографии в сочетании с позиционной пробой, контролем температуры и анализом АС/DС-компонент служит простым, неинвазивным и высокочувствительным инструментом для оценки состояния сосудистой При стандартизации углов наклона, длительности системы. температурных условий, а также разработке нормативных значений, этот подход может быть использован для массового скрининга нарушений микроциркуляции, раннего артериальной выявления гипертонии, диабетической ангиопатии, вегетативной дисфункции и других патологий, а мониторинга эффективности терапии также ДЛЯ И индивидуальных особенностей сосудистой адаптации.

Список литературы.

- [1]. Photoplethysmogram Analysis and Applications: An Integrative Review / Junyung Park, Hyeon Seok Seok, Sang-Su Kim, Hangsik Shin / «Frontiers». 2016. -Vol. 12, №2021.
- [2]. Photoplethysmography for the Assessment of Arterial Stiffness / Parmis Karimpour, James M. May, Panicos A. Kyriacou / «Sensors». − 2023. − Vol. 23(24), № 9882.
- [3]. Photoplethysmography in Wearable Devices: A Comprehensive Review of Technological Advances, Current Challenges, and Future Directions / Kwang Bok Kim, Hyun Jae Baek / «Electronics». 2023. -Vol. 12(13), № 2923.
- [4]. Физиология человека, том 2 / Р.Шмидт, Г.Тевс; пер. с англ. Под ред. Акад. П.Г. Костюка / изд. «Мир». -1996.
- [5]. Regulation of vascular tone, molecular mechanisms / R. Clinton Webb, David F. Bohr / «Progress in Cardiovascular Diseases». 1981. Vol. 24 (3), p. 213-242
- [6]. Regulation of vascular tone by adipocytes / Nele Maenhaut, Johan Dan De Voorde / «BMC Medicine». 2011. Vol. 9 (25)
- [7]. Regulation of Vascular Tone / Maria S. Fernandez Alfonso / «Hypertension». 2004. Vol. 44 (3), P. 255-256
- [8]. Poor Agreement between Respiratory Variations in Pulse Oximetry Photoplethysmographic Waveform Amplitude and Pulse Pressure in Intensive Care Unit Patients / S.A. Landsverk, Lars O. Hoiseth, Per Kvandal, Jonny Hisdal, Oivind Skare, Knut A.Kirkeboen / «Anesthesiology». 2008. Vol. 109, P. 849-855.
- [9]. The Efficacy of Perfusion Index as an Indicator for Intravascular Injection of Epinephrine-Containing Epidural Test Dose in Propofol-Anesthetized Adults / Hany A. Mowafi / Salah A. Ismail, Mohammed A. Shafi, Abdulmoshin A. Al-Ghamdi / «Anesthesia & Analgesia». 2009. Vol. 108(2), P. 549 553.
- [10]. Plethysmographic pulse wave amplitude is an effective indicator for intravascular injection of epinephrine-containing epidural test dose in sevoflurane-anesthetized pediatric patients / Hany A. Mowafi, Samer A. Arab, Salah A. Ismail, Abdulmohsin A. Al-Ghamdi, Roshdi R. Al-Metwalli / «Anesthesia & Analgesia».

- 2008. Vol. 107 (5), P 1536 1541.
- [11]. Textbook of Angiology / John B. Chang / published by «Springer». 2000.
- [12]. Основы ангиологии: учебное пособие / Р.Е. Калинин, А.С. Пшенников, И.А. Сучков / изд. «ГЭОТАР-Медиа». 2018. 112 с.
- [13]. Гемодинамика. Функциональные показатели кровообращения в вопросах и ответах : учебно-методическое пособие [для студентов факультета иностранных учащихся] / А.И. Кубарко, Д.А. Александров, Н.А. Башкаревич / Министерство здравоохранения Республики Беларусь, Белорусский государственный медицинский университет, Кафедра нормальной физиологии. Минск : БГМУ. 2012. 26 с.
- [14]. Gray's Anatomy for Students / L. Drake, A. Wayne Vogl, W. Adam, M. Mitchell / « Elsevier». 2019.
- [15]. Physiology, Cardiovascular Hemodynamics / Joshua D. Pollock; Ian V. Murray, etc. / «StarPearls». 2023.
- [16]. Low-frequency oscillations of the laser Doppler perfusion signal in the frequency interval 0.0095–2.0 Hz / P. Kvandal, A. Stefanovska, M. Bracic, H. Kvernmo, K.-A Kirkeboen / «Microvascular Research». 2006. Vol. 72 (3). P. 120–127.
- [17]. Wavelet analysis of laser Doppler microcirculatory signals / P. Gratz, A. Asbach, M. Rudiger, U. Walter, A. Stefanovska, D. Pittman / «Journal of Biomedical Optics». 2023.
- [18]. Limb venous distension evokes sympathetic activation via stimulation of the limb afferents in humans / Jian Cui, Patrick M. McQuillan, etc. / «Am J Physiol Heart Circ Physiol», 2012. Vol. 303, P. 457–463.
- [19]. Teaching the principles of hemodynamics / Francis L. Belloni / «Advances In Physiology Education» 1999. Vol. 22 (1). P. 1043 1046.
- [20]. Hemodynamics: New Diagnostic and Therapeutic Approaches /Ali Nasimi / « IntechOpen». -2012.-164 c.
- [21]. AC/DC Ratio Enhancement in Photoplethysmography Using a Pinned Photodiode / Antonino Caizzone, Assim Boukhayama, Christian Enz / «IEEE

- Electron Device Letters». 2019. Vol. 40 (11), P. 1828 -1831.
- [23]. Pulse Oximeter Concept for Vascular Occlusion Test / Fatanah M. Suhaimi, J.
 Geoffrey Chase, etc. / «International Journal of Medical Science and Engineering».
 2013. Vol.7 (11). P. 63 67.
- [24]. The effect of vascular changes on the photoplethysmographic signal at different hand elevations / M Hickey, J P Phillips and P A Kyriacou / « Physiological Measurement». 2015. Vol. 36 (3) P. 425 440.
- [25]. Spectral analysis of AC and DC components of the pulse photoplethysmograph at rest and during induction of anaesthesia / Peter D. Larsen, Murray Harty, Mohana Thiruchelvam & Duncan C. Galletly / «International journal of clinical monitoring and computing». -2016. Vol. 14 P. 89 95.
- [26]. Photoplethysmography and its application in clinical physiological measurement / John Allen / « Physiological Measurement». 2007. Vol. 28 (3). P. 1-39.
- [27]. Quantifying tissue mechanical properties using photoplethysmography / Tony J. Akl, Mark A. Wilson, M. Nance Ericson, Gerard L. Coté / «Biomedical Optics Express». 2014. Vol. 5 (7). P. 2362 2375.
- [28]. Contour analysis of the photoplethysmographic pulse measured at the finger / Millasseau Sandrine, James Ritter, Kenji Takazawa, Philip Chowienczyk / «Journal of Hypertention». 2006. Vol. 24 (8). P. 1449 1456.
- [29]. Thermography based blood flow imaging in human skin of the hands and feet: A Spectral Filtering Approach / A.A. Sagaidachnyi, A.V. Fomin, D.A. Usanov, A.V. Skripal / «Physiological measurement».- 2017. Vol. 38(2). P. 272.
- [30]. Влияние сосудистых изменений на сигналы периферического кровотока при разном положении руки / Е.М. Рожнов, И.Д. Жучков, Г.В. Красников / «Известия ТулГУ».— 2020. Вып. 4. с. 152 162.
- [31]. Comparative study of photoplethysmographic waveforms with application of antihypertensive medication in hypertensive patients / Yanchun Hu, Anming Hu, Shenju Song / «Annals of Noninvasive Electrocardiology». 2022. Vol. 27 (3). P. 1-8.