МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г.ЧЕРНЫШЕВСКОГО»

Кафедра общей и неорганической химии

наименование кафедры

<u>Коллоидные квантовые точки AgInS/ZNS: получение, физико-</u> <u>химические свойства и применение в анализе</u>

АВТОРЕФЕРАТ МАГИСТЕРСКОЙ РАБОТЫ

студентки 2 курса	<u>251</u> группы	
направления <u>04.04.01</u> «Х	ИМИЯ» код и наименование направления	
	Института химии	
	наименование факультета	
	Дрозд Арины Вадмовна	
	фамилия, имя, отчество	
Научный руководитель:		
доцент, к.х.н.		А.М. Абрамова
должность, уч. степень, уч. звание	дата, подпись	инициалы, фамилия
Зав. кафедрой:		
д.х.н., профессор		И.Ю. Горячева
должность, уч. степень, уч. звание	дата, подпись	инициалы, фамилия

ВВЕДЕНИЕ

Актуальность исследования. Квантовые точки (КТ) – общее название целого люминесцентных полупроводниковых нанокристаллов, ряда различающихся между собой по составу, структуре и свойствам. Впервые КТ были получены в 1981 году Алексеем Екимовым в стекле. История квантовых точек AgInS тесно связана с общим развитием исследований в области квантовых точек, которые начались в 1980-х годах. В то время как первые квантовые точки были синтезированы из других материалов, таких как CuCl и др. более целенаправленно, получение квантовых точек AgInS связано с развитием нетоксичных альтернатив для квантовых точек, содержащих ионы тяжелых металлов в своем составе. КТ содержащие элементы I, III, VI групп, такие как AgInS и CuInS, способны люминесцировать в широком диапазоне от видимой до ближней ИК-области спектра за счет настраиваемой эмиссии.

Полупроводниковые КТ состава AgInS/ZnS, являются уникальными по своей структуре и свойствам и набирают популярность среди ученых, как альтернативные полупроводники, не содержащие кадмий и свинец в своем составе. Растущий интерес к наноматериалам и их применению в высоких технологиях, подчеркивает важность и актуальность данной темы. Благодаря настраиваемой эмиссии длины волны, за счет изменения размера, высокой фотостабильностью и низкотоксичным химическим составом, используются в фотонике, биохимии, биофизике и других актуальных научных направлений, таких как биоанализ, конструирование солнечных батарей, биовизуализация и квантовые вычисления.

Целью работы является синтез коллоидных квантовых точек состава AgInS/ZnS, определение физико-химических свойств и применение в анализе.

Задачи исследования включали: синтез и характеризация фракций КТ состава AgInS/ZnS, покрытых меркаптопропионовой (МПК) и тиогликолевой кислотой (ТГК); сравнение полученных фракций КТ и выбор оптимальных для аналитического применения; определение возможности применение КТ в

системах тушения аналитом, на примере доксорубицина; определение возможности применения в качестве компонентов субстрата глюкозооксидазы в реакциях ферментативного тушения.

Материалы и методы исследования. Основным чувствительным элементом аналитической системы выступают фракции КТ в качестве наносенсорного элемента. В качестве аналита для анализа прямого тушения фотолюминесценции (ФЛ) был выбран антибиотик антрациклиновго ряда – доксорубицин, для проверки фермента генерируемого тушитель была выбрана глюкозооксидаза.

Структура и объем работы. Выпускная квалификационная работа (ВКР) состоит из раздела обозначений и сокращений, введения, трех глав («Литературный обзор», «Экспериментальная часть», «Результаты и обсуждения»), выводов и списка использованных источников. В тексте работы содержатся таблицы, уравнения и графические иллюстрации. Общий объем ВКР составляет 52 страниц, включая 9 рисунка и 3 таблицы.

Основное содержание работы.

В главе 1 представлен обзор литературы, в котором обсуждаются, коллоидные КТ их свойства и методы их получения, а также механизмы тушения фотолюминесценции, а также потенциальные применения.

В главе 2 описаны материалы и методы, используемые в работе.

В **главе 3** обсуждаются физико-химические характеристики КТ и два основных принципа реализующих применение КТ в качестве наносенсорного элемента, основанного на тушении ФЛ.

Квантовые точки.

КТ — это полупроводниковые нанокристаллы (обычно диаметром 2-10 нм), которые обладают оптическими свойствами, такими как поглощение и ФЛ, зависящими от размера частицы. КТ доказали свою эффективность во многих областях биофотоники и наномедицины, включая визуализацию и

сенсорику [1]. КТ разного размера или состава могут возбуждаться одним источником света, излучая свет отдельных цветов в широком спектральном диапазоне с минимальным спектральным перекрыванием, что делает их особенно привлекательными для мультиплексной визуализации.

Среди этих тройных КТ особо интересны CuInS и AgInS (AIS) КТ [2]. Их привлекательные Φ Л свойства включают высокий квантовый выход Φ Л (KB) $\geq 50\%$ во всем диапазоне от видимого до ближнего инфракрасного излучения от примерно 400 нм до примерно 1000 нм после нанесения оболочки содержащий ZnS [3-5]. Другими особенностями этих тройных квантовых точек [6] являются широкие полосы Φ Л с полной шириной на половине максимума более 100 нм в этом диапазоне длин волн, которые лишь незначительно перекрываются с неструктурированным спектром поглощения. Кроме того, они демонстрируют длительное время жизни Φ Л в несколько сотен наносекунд.

Синтез КТ.

Методы синтеза КТ играют ключевую роль в определении их оптических характеристик, таких как длина волны излучения, квантовый выход и интенсивность ФЛ. Выбор метода синтеза влияет на размер, форму, пассивацию поверхности и состав КТ, которые, в свою очередь, влияют на их оптические свойства. Разные подходы обеспечивают точный контроль над размером и пассивацией поверхности. Оптимизация параметров синтеза и использование структуры ядро-оболочка, может дополнительно улучшить оптические свойства КТ, давая возможность для широкого спектра применений в оптике, электронике и биомедицине.

Особенность синтеза нанокристаллов AIS заключается в различной реакционной способности ионов металлов, это связано с тем, что Ag^+ является мягкой кислотой Льюиса, а In^{3+} — жесткой, поэтому они различаются по своей

реакционной способности по отношению к соединениям серы, которая всегда является мягким основаниям Льюиса [7].

Водный синтез КТ, который все чаще предпочитают из соображений экологичности, представляет собой необходимость участия стабилизатора коллоидной системы. Обычно используются небольшие водорастворимые тиольные лиганды, например МПК и ТГК, образующие комплексы с Ag(I), In(III) и Zn(II), причем стехиометрия комплекса зависит от концентрации лиганда [9-12].

Поскольку МПК и ТГК содержат меркапто- группу, они были выбраны в качестве стабилизатора для фиксации лиганда на поверхности КТ, а наличие карбоксильных групп другой стороне молекулы обеспечило на гидрофильность получаемых КТ. В случае тройных КТ считается, что стабильность коллоидной системы обусловлена электростатическим депротонирования отталкиванием, достигаемого счет свободных за карбоксильных групп на поверхности лиганда. Добавление в раствор КТ изопропанола может сместить кислотно-основное равновесие в сторону незаряженной формы -СООН что приводит к агломерации КТ, которая тем сильнее, чем больше размер нанокристалла. В результате, при поэтапном добавлении осадителя с последующим центрифугированием, фракции, отобранные по размеру, могут быть получены из первоначального КТ раствора КТ, при ЭТОМ средний размер уменьшается мере фракционирования, а распределение по размерам сужается.

В результате данной процедуры были получены фракций КТ в диапазоне свечения от красного до зеленого цвета. Для сравнения свойств КТ AIS/ZnS@MПК и AIS/ZnS@TГК обладали следующими характеристиками, приведенными в таблице 1. С увеличение номера фракции КТ AIS/ZnS полоса ФЛ КТ смещается в коротковолновую область, это явление связано с пассивацией поверхностных дефектных состояний, участвующих в

безызлучательной электронно-дырочной рекомбинации и диффузии ионов Zn^{2+} в решетку КТ.

Как видно из представленных зависимостей, максимум длины волны ФЛ уменьшается с увеличением номера фракций. Это связано с увеличением ширины запрещенной зоны, а следовательно с уменьшением размера наночастиц КТ, и последующим сдвигом полосы максимума ФЛ в коротковолновую область.

	AIS/ZnS@MIIK		AIS/ZnS@ΤΓΚ			
	λ_{max} , HM	КВ ФЛ, %	ВЖ ФЛ, нс	λ_{max} , HM	КВ ФЛ, %	ВЖ ФЛ, нс
Фракция 2	627	25	665	608	33	739
Фракция 3	603	32	604	578	42	617
Фракция 4	597	38	545	557	51	495
Фракция 5	570	41	493	544	39	315
Фракция 6	560	22	334	528	20	250

Таблица 1. Характеристика КТ AIS/ZnS покрытые различными стабилизаторами.

Фракции показали куполообразную зависимость ФЛ и КВ от номера фракции с максимальным значением 41% и 51% для промежуточной фракции, излучающей в желтой области спектра (фракция № 5 AIS/ZnS@MПК и фракция № 4 AIS/ZnS@TГК).

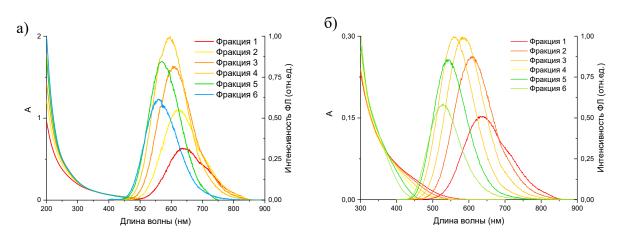


Рисунок 1 - Спектры поглощения и ФЛ (A=0,1 $\lambda_{воз6}$.=360 нм) КТ AIS/ZnS, стабилизированных МПК (a) и ТГК (б)

Существует два основных принципа реализующих применение КТ в качестве наносенсорного элемента, основанного на тушении ФЛ. Первое

реализуется за счет прямого взаимодействия КТ с аналитом, второе подразумевает тушение за счет ферментативной реакции, при взаимодействии аналита с рецептором. Для проверки первого пути выбран антрациклиновый антибиотик — доксорубицин ($\mathbf{Докc}$), в качестве фермента, генерирующего тушитель применяли глюкозооксидазу ($\mathbf{GO}_{\mathbf{x}}$).

В присутствии Докс наблюдали снижении ФЛ пропорциональное увеличению концентрации в диапазоне от 0,2 мкМ до 8,6 мкМ, по полученным данным построенные градуировочные кривые (рисунок 2).

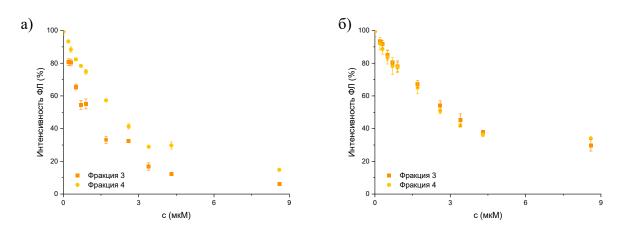


Рисунок 2 - Профили тушения ФЛ смеси фракций КТ AIS/ZnS@МПК (а) и фракций КТ AIS/ZnS@ТГК (б)

Из графика зависимости мы можем заметить, что фракция 4 AIS/ZnS@MПК и фракция 3 КТ AIS/ZnS@TГК имеют более линейный диапазон в интервале концентраций от 0,9 мкМ до 0 мкМ, которая является контрольной точкой КТ в отсутствие тушителя.

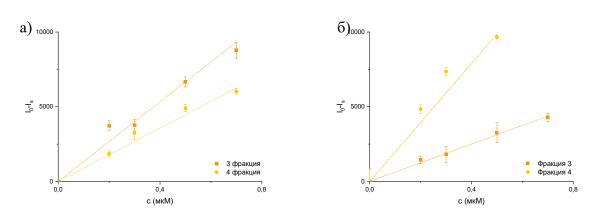


Рисунок 3 - График зависимости $\Delta I = I_0 - I_S$ от концентрации Докс для смеси фракций КТ AIS/ZnS@MПК (а) и фракций КТ AIS/ZnS@TГК (б)

А также определен предел обнаружения для данного метода, который составил 0,19 и 0,34 мкМ для фракции 3, 4 КТ AIS/ZnS@МПК и 0,09 и0,11 мкМ для фракций КТ AIS/ZnS@TГК (табл. 2)

Таблица 2. Предел обнаружения Докс фракций КТ AIS/ZnS@MПК и AIS/ZnS@TГК

	AIS/ZnS@MIIK		AIS/ZnS@ΤΓΚ	
	Фракция 3	Фракция 4	Фракция 3	Фракция 4
Предел обнаружения, мкМ	0,19 R ² =0,99	0,31 R ² =0,99	0,09 R ² =0,99	0,11 R ² =0,99

Предварительные результаты серии экспериментов показали, что КТ покрытые ТГК, дают лучший результат, поэтому они были выбраны для дальнейшего исследования.

В качестве модели ферментативной системы использовали GO_x в концентрации от $5.5*10^{-4}$ до $5.5*10^2$ мкМ в качестве ФЛ субстрата применяли фракции №2, №3 AIS/ZnS@TГК с добавлением глюкозы с 1 мг/мл.

Кинетические кривые затухания представлены на рисунке 4, концентрация увеличивалась $5.5*10^{-4}$ до $5.5*10^2$ мкМ, из представленных графиков можно наблюдать постепенное снижение ФЛ КТ от времени реакции. На графиках наблюдается поэтапное снижение интенсивности, доказывающее эффект тушения.

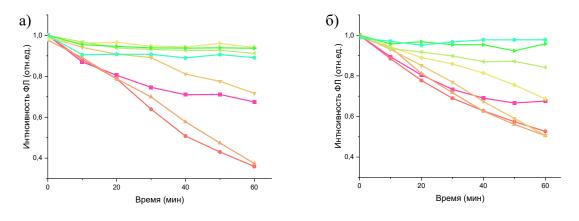


Рисунок 4 — Кинетические кривые затухания ФЛ фракций №2 (а) и №3 (б) КТ $AIS/ZnS@T\Gamma K$

На представленном графике зависимости интенсивности от логарифма концентрации GO_x на 60 минуте видно (рис. 5), что данную систему можно использовать в широком диапазоне концентраций, за счет изменения времени анализа.

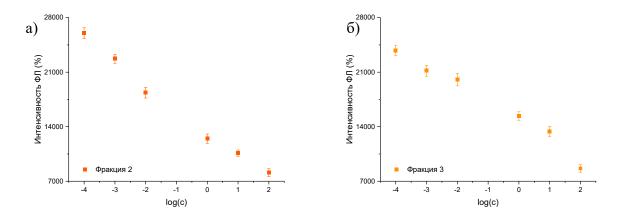


Рисунок 5 – График зависимости интенсивности ФЛ от концентрации GOx фракций №2 (а) и №3 (б) КТ AIS/ZnS@TГК

Из графика зависимости мы можем отметить, что фракции КТ AIS/ZnS@TГК имеют линейный диапазон в интервале концентраций от $5.5*10^{-4}$ мкМ до $5.5*10^2$ мкМ.

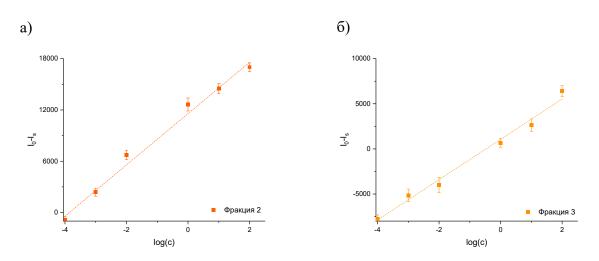


Рисунок 6 – График зависимости $\Delta I = I_0 - Is$ от концентрации GOx на ФЛ фракций №2 (а) и №3 (б) КТ AIS/ZnS@TГК

Рассчитанные значения предела обнаружения представлены в таблице 3. Минимально рассчитанный предел обнаружения составил 0,09 мкМ и 0,04 мкМ для 2 и 3 фракции КТ, соответственно. Данный метод может

являться универсальным для широкого ряда аналитов, в которой механизм взаимодействия детекторной системы и КТ не изменяется в зависимости от определяемого вещества.

Таблица 3. Предел обнаружения GOx фракции КТ AIS/ZnS@TГК

AgInS/ZnS@ΤΓΚ	ПрО, мкМ	R ²
Фракция 2	0,09	0,98
Фракция 3	0,04	0,99

Заключение

- 1. Получены и охарактеризованы наборы фракции КТ AgInS/ZnS@МПК и AgInS/ZnS@ ТГК, с длиной волны максимума ФЛ в диапазоне 530-670 нм, максимальный квантовый выход составил 41% и 51% для фракции $4~(\lambda_{\text{макс}} = 590~\text{нм})~\text{KT AgInS/ZnS@MПК и }4~(\lambda_{\text{макс}} = 560~\text{нм})~\text{AgInS/ZnS@}$ ТГК, соответственно.
- 2. Полученные КТ применены в качестве наносенсорного элемента для определения антрациклинового антибиотика доксорубицина путем прямого взаимодействия с аналитом. Минимальный предел обнаружения составил 0,19 мкМ для КТ AgInS/ZnS@MПК и 0,09 мкМ для AgInS/ZnS@ ТГК.
- 3. КТ AgInS/ZnS@ ТГК применены в модельной системе с ферментативной генерацией тушителя для определения глюкозооксидазы. Предел обнаружения составил 0,04 мкМ для фракции номер 3

Список использованных источников

- Xu G. et al. New Generation Cadmium-Free Quantum Dots for Biophotonics and Nanomedicine // Chem. Rev. 2016. Vol. 116, № 19. P. 12234–12327.
- Kolny-Olesiak J., Weller H. Synthesis and Application of Colloidal CuInS₂ Semiconductor Nanocrystals // ACS Appl. Mater. Interfaces. 2013. Vol. 5, № 23. P. 12221–12237.
- 3. Dai M. et al. Tunable photoluminescence from the visible to near-infrared wavelength region of non-stoichiometric AgInS2 nanoparticles // J. Mater. Chem. 2012. Vol. 22, № 25. P. 12851.
- 4. Chen B. et al. Highly Emissive and Color-Tunable CuInS₂ -Based Colloidal Semiconductor Nanocrystals: Off-Stoichiometry Effects and Improved Electroluminescence Performance // Adv Funct Materials. 2012. Vol. 22, № 10. P. 2081–2088.
- 5. Ko M. et al. Highly Efficient Green ZnAgInS/ZnInS/ZnS QDs by a Strong Exothermic Reaction for Down-Converted Green and Tripackage White LEDs // Adv Funct Materials. 2017. Vol. 27, № 4. P. 1602638.
- 6. Raevskaya A. et al. A Fine Size Selection of Brightly Luminescent Water-Soluble Ag–In–S and Ag–In–S/ZnS Quantum Dots // J. Phys. Chem. C. 2017. Vol. 121, № 16. P. 9032–9042.
- 7. Regulacio M.D. et al. Aqueous synthesis of highly luminescent AgInS2–ZnS quantum dots and their biological applications // Nanoscale. The Royal Society of Chemistry, 2013. Vol. 5, № 6. P. 2322–2327.
- 8. Deng D. et al. High-Quality CuInS₂ /ZnS Quantum Dots for In vitro and In vivo Bioimaging // Chem. Mater. 2012. Vol. 24, № 15. P. 3029–3037.
- 9. Tan S.J. et al. Surface-Ligand-Dependent Cellular Interaction, Subcellular Localization, and Cytotoxicity of Polymer-Coated Quantum Dots // Chem. Mater. 2010. Vol. 22, № 7. P. 2239–2247.

- 10. Hussain S. et al. One-Pot Fabrication of High-Quality InP/ZnS (Core/Shell) Quantum Dots and Their Application to Cellular Imaging // ChemPhysChem. 2009. Vol. 10, № 9–10. P. 1466–1470.
- 11. Gary D.C., Glassy B.A., Cossairt B.M. Investigation of Indium Phosphide Quantum Dot Nucleation and Growth Utilizing Triarylsilylphosphine Precursors // Chem. Mater. 2014. Vol. 26, № 4. P. 1734–1744.
- 12. Erogbogbo F. et al. In vivo targeted cancer imaging, sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystals // ACS Nano. 2011. Vol. 5, № 1. P. 413–423.