МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н. Г. ЧЕРНЫШЕВСКОГО»

Кафедра математической кибернетики и компьютерных наук

РАЗРАБОТКА КЛИЕНТСКОЙ ЧАСТИ ВЕБ-ПРИЛОЖЕНИЯ ДЛЯ АВТОМАТИЧЕСКОЙ ТОРГОВЛИ КРИПТОВАЛЮТОЙ

АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ

студентки 4 курса 451 группы направления 09.03.04 — Программная инженерия факультета КНиИТ Пичугиной Дарьи Николаевны

Научный руководитель	
доцент, к. фм. н, доцент	 Ю. Н. Кондратова
Заведующий кафедрой	
доцент, к. фм. н.	 С. В. Миронов

ВВЕДЕНИЕ

Развитие криптовалютного рынка сопровождается постоянным увеличением объёма данных и числа пользователей, вовлечённых в торговлю цифровыми активами. Для эффективного взаимодействия с этим рынком всё чаще используются автоматизированные системы, обеспечивающие анализ арбитражных возможностей и управление торговыми роботами.

Однако наличие качественной серверной части не гарантирует удобства работы конечного пользователя. Важной составляющей любого программного продукта является клиентская часть, которая обеспечивает визуальное представление данных, доступ к функциональности системы и взаимодействие с пользователем.

Актуальность данной работы обусловлена необходимостью создания современного пользовательского интерфейса для проекта «Arbitoring», реализуемого компанией ООО «Интеллектуальные решения» — аккредитованной IT-компанией, основанной в 2019 году. Интерфейс должен быть адаптивным, мультиязычным, обеспечивать надёжную визуализацию финансовых данных и стабильное взаимодействие с серверной частью.

Целью данной работы является реализация пользовательского интерфейса клиент-серверного приложения, предназначенного для анализа арбитражных ситуаций и управления роботами на криптовалютном рынке с использованием современных веб-технологий для компании ООО «Интеллектуальные решения».

Поставленная цель определила следующие задачи:

- рассмотреть стек технологий, предопределённый в рамках проекта;
- реализовать ключевые пользовательские интерфейсы;
- реализовать поддержку мультиязычного интерфейса (русский и английский);
- организовать клиент-серверное взаимодействие с использованием HTTP и WebSocket;
- визуализировать данные для наглядного представления;
- обеспечить отзывчивость и адаптивность интерфейса для разных устройств.

Теоретическая значимость заключается в освоении современных подходов к разработке веб-интерфейсов, взаимодействию с сервером и использованию библиотек для визуализации и управления состоянием. Реализация проекта

способствовала углублению понимания архитектуры клиент-серверных приложений.

Практическая значимость состоит в создании рабочего интерфейса, внедрённого в деятельность компании ООО «Интеллектуальные решения» и используемого в проекте «Arbitoring» для анализа арбитражных ситуаций и управления торговыми роботами на криптовалютном рынке. Разработанное решение способствует повышению удобства взаимодействия с системой, обеспечивает наглядное отображение аналитических данных и успешно применяется в текущей работе над проектом.

Структура и объём работы. Бакалаврская работа состоит из введения, двух разделов, заключения, списка использованных источников и трех приложений. Общий объем работы – 52 страницы, из них 42 страницы — основное содержание, включая 23 рисунка, цифровой носитель в качестве приложения, список использованных источников информации — 20 наименований.

КРАТКОЕ СОДЕРЖАНИЕ РАБОТЫ

Первый раздел «Описание используемых технологий» посвящён инструментам и библиотекам, применённым при разработке клиентской части вебприложения. В разделе рассмотрены ключевые технологии, обеспечивающие построение интерфейса, взаимодействие с сервером, визуализацию данных, работу с формами и поддержку мультиязычности.

Основой клиентской части выступает фреймворк Next.js, построенный на базе библиотеки React. Его преимущества включают автоматическую маршрутизацию на основе файловой структуры, поддержку серверного рендеринга (SSR) и статической генерации (SSG), типизацию с использованием TypeScript, а также возможность динамической загрузки компонентов. Благодаря этим особенностям Next.js позволяет создавать масштабируемые и производительные веб-приложения, соответствующие современным требованиям, включая SEО-оптимизацию.

Для построения интерфейса используется библиотека Material UI (MUI), основанная на концепции Material Design от Google. MUI предоставляет готовые компоненты (кнопки, формы, таблицы и др.), которые легко настраиваются и интегрируются. В проекте применён механизм ThemeProvider для централизованного управления темами оформления. Это обеспечило визуальную целостность и адаптивность интерфейса на различных устройствах.

Для отображения аналитических данных применена библиотека ECharts, позволяющая строить интерактивные графики — линейные, столбчатые, круговые и диаграммы рассеяния. Графики поддерживают масштабирование, подсказки, выделение областей и взаимодействие с пользователем. Гибкость настройки и высокая производительность делают ECharts подходящим решением для визуализации большого объёма торговой информации.

Работа с формами реализована с помощью библиотеки Formik, которая упрощает управление состоянием полей и обработку событий. Все формы (вход, регистрация, управление роботами и ключами) построены на базе Formik. Для валидации используется библиотека Yup, позволяющая описывать схемы проверки данных декларативно и повторно использовать их в разных частях приложения.

Важной частью интерфейса является поддержка мультиязычности, реализованная с помощью библиотеки next-intl. Локализация осуществляется ав-

томатически на основе URL, а переводы хранятся в отдельных JSON-файлах. Для получения переводов внутри компонентов применяется хук useTranslations. Такой подход обеспечивает гибкую и масштабируемую поддержку нескольких языков — в данном случае русского и английского.

Для работы с датами и форматирования временных значений используется библиотека date-fns, которая поддерживает локализацию и позволяет использовать стандартизированные форматы. В проекте реализованы обёртки для отображения дат в различных форматах и получения дней недели на русском языке.

Взаимодействие с сервером построено на базе библиотеки Axios, предоставляющей удобный API для отправки HTTP-запросов. Axios позволяет централизованно задавать базовый URL, обрабатывать ошибки и добавлять заголовки (в том числе токены авторизации) ко всем запросам. Библиотека используется во всех разделах интерфейса, за исключением случаев, когда необходимо постоянное соединение с сервером.

В таких случаях применяется WebSocket — протокол для двустороннего обмена данными в реальном времени. Он позволяет серверу отправлять данные по мере их готовности, что особенно важно при работе с графиками, где объём информации может быть значительным. В отличие от одностороннего протокола HTTP, WebSocket обеспечивает устойчивое и эффективное соединение (рис. 0.1). В проекте используется защищённый вариант WSS, что соответствует требованиям безопасности.

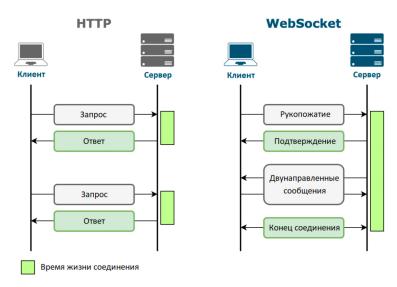


Рисунок 0.1 – Сравнительная схема работы HTTP и WebSocket

Таким образом, в первом разделе обоснован выбор технологического стека, который обеспечил реализацию функционального, гибкого и надёжного пользовательского интерфейса, способного работать с большими объёмами данных и обеспечивать удобное взаимодействие с системой.

Второй раздел «Разработка клиентской части» посвящён практической реализации пользовательского интерфейса веб-приложения для управления торговыми роботами и анализа арбитражных ситуаций на криптовалютном рынке.

В разделе последовательно рассматриваются реализованные экраны и ключевые элементы интерфейса. Работа над клиентской частью включала в себя не только верстку и стилизацию, но и полную интеграцию с серверной частью проекта, настройку визуализации данных, реализацию адаптивности, мультиязычности и взаимодействие с протоколами HTTP и WebSocket. Особое внимание было уделено пользовательскому опыту (UX): проектирование интерфейса велось с учётом потребностей конечных пользователей, их сценариев поведения и требований к удобству работы как на настольных устройствах, так и на мобильных платформах.

В первом подразделе описана реализация форм входа и регистрации. Реализована система авторизации с валидацией данных и обработкой токенов доступа, обеспечивающих безопасное хранение и использование учётных данных. После регистрации пользователь перенаправляется на экран настроек. Все формы созданы с использованием библиотеки Formik и библиотеки Yup для валидации, что позволило централизовать обработку состояний, ошибок и проверок ввода.

Во втором подразделе рассматривается главный экран приложения, отображающий список роботов пользователя в виде слайдера. Такой подход позволил компактно и наглядно представить информацию о текущей торговой активности. Реализована система отображения карточек с основными метриками, такими как прибыль, количество сделок, эффективность и статус роботов. Визуализация сделок и баланса осуществляется с помощью библиотеки ECharts, позволяющей динамически строить графики. Пользователю предоставлены фильтры и выбор временного диапазона для настройки отображаемой информации. Администраторам доступны расширенные функции поиска роботов и фильтрации сделок.

Третий подраздел посвящён экрану управления параметрами роботов. Была разработана форма настройки параметров с пояснениями к каждому полю. Также реализованы состояния загрузки, модальные уведомления и возможность переключения между торговым и аналитическим режимами (доступно админи-

страторам).

Четвёртый подраздел — экран управления АРІ-ключами, в котором пользователь может добавлять, редактировать и удалять ключи от криптобирж. Было реализовано динамическое обновление формы в зависимости от выбранной биржи: некоторые поля скрываются или становятся обязательными, в зависимости от требований конкретной платформы. Асинхронная проверка ключа на валидность происходит через запрос к серверу, результат отображается в виде визуальной индикации статуса (например, зелёная галочка при успехе). Вся работа с формой и её состоянием построена с помощью Formik, что обеспечивает высокую степень повторного использования компонентов и модульность кода.

Пятый подраздел посвящён экрану подписок, который позволяет пользователю выбрать уровень подписки (Starter, Basic, Advanced), а также пополнить баланс через внешнюю платёжную систему. Реализован расчет итоговой стоимости с учётом выбранного тарифа и оставшегося времени действия текущей подписки.

В шестом подразделе настроек пользователь может изменить личные данные, язык интерфейса, способ получения уведомлений и формат отображения даты. Особое внимание уделено синхронизации локализации интерфейса с серверными и клиентскими данными через библиотеку next-intl. Также реализована проверка подключения Telegram и уведомления в случае его отсутствия.

Последние два подраздела посвящены аналитическим графикам. Была реализована система выбора и построения графика по конкретной сделке с возможностью задания временного диапазона. Построенные графики синхронизированы между собой и включают режим отображения дисперсий, область действия сделки и управление округлением значений.

График по монете предназначен для администраторов и отображает все сделки по выбранной валюте за определённый период. В связи с большим объёмом данных реализовано подключение через WebSocket, а не HTTP. Разработана система отображения прогресса загрузки, интерактивную фильтрацию и отображение точек сделок с деталями при наведении. Отдельно реализована система обработки чанков, агрегации данных и восстановления соединения при ошибках.

В результате работы была создана полноценная клиентская часть для реальной платформы. Интерфейс внедрён в рабочую систему компании, соответ-

ствует требованиям, имеет надёжное взаимодействие с сервером, визуализацию аналитики и адаптацию под различные устройства и языки.

ЗАКЛЮЧЕНИЕ

В рамках данной работы была реализована frontend-часть клиент-серверного приложения для анализа арбитражных ситуаций и управления торговыми роботами на криптовалютном рынке.

Разработанный интерфейс отвечает современным требованиям: он адаптивен, мультиязычен, обеспечивает визуализацию сложных финансовых данных и поддерживает взаимодействие с серверной частью как по HTTP, так и по WebSocket-протоколу.

Решение поставленных задач позволило создать функциональный и удобный инструмент, который может быть использован как конечными пользователями, так и специалистами в области алгоритмической торговли.

В процессе работы были получены практические навыки проектирования интерфейсов, организации клиент-серверного взаимодействия, работы с WebSocket-протоколом и библиотеками для построения интерактивных пользовательских интерфейсов.

Дальнейшая разработка проекта будет продолжаться по завершении данной дипломной работы. Например, планируется такое расширение функционала системы, как ведение реферальной программы для клиентов, а также внедрение дополнительных элементов интерфейса с пояснениями и подсказками, которые помогут пользователям лучше ориентироваться в функционале.