МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н. Г. ЧЕРНЫШЕВСКОГО»

Кафедра системного анализа и автоматического управления

МОДЕЛИРОВАНИЕ ОДНОРАНГОВЫХ БЕСПРОВОДНЫХ СЕНСОРНЫХ СЕТЕЙ И ИССЛЕДОВАНИЕ ИХ НАДЕЖНОСТИ

АВТОРЕФЕРАТ МАГИСТЕРСКОЙ РАБОТЫ

студента 2 курса 271 группы направления 09.04.01 — Информатика и вычислительная техника факультета компьютерных наук и информационных технологий Ульянова Никиты Сергеевича

Научный руководитель	
доцент, к. фм. н.	 Е. С. Рогачко
Заведующий кафедрой	
к. фм. н., доцент	 И. Е. Тананко

ВВЕДЕНИЕ

Актуальность темы. В современном мире беспроводные сенсорные сети играют важную роль во многих областях, включая мониторинг окружающей среды, военные приложения, здравоохранение и промышленность. Одноранговые беспроводные сенсорные сети представляют собой перспективное направление благодаря своей гибкости, масштабируемости и отказоустойчивости. Однако, обеспечение надежности таких сетей является сложной задачей, требующей разработки эффективных методов моделирования и анализа.

Исследование надежности одноранговых беспроводных сенсорных сетей связано с разработкой методов оценки надежности сетей. Использование вероятностных моделей и методов имитационного моделирования позволяет лучше понять факторы, влияющие на надежность беспроводных сенсорных сетей, и предложить более эффективные алгоритмы управления сетями.

Цель магистерской работы – разработка моделей для одноранговых беспроводных сенсорных сетей и исследование их надежности.

Поставленная цель определила следующие задачи:

- Разработать имитационную модель для оценки надежности одноранговой беспроводной сенсорной сети в среде OMNeT++.
- Разработать математическую модель для оценки надежности одноранговой беспроводной сенсорной сети.
- Провести исследование влияния различных параметров сети, таких как количество сенсорных узлов, емкость батарей и площадь сети, на ее надежность.

Методологические основы исследования надежности одноранговых беспроводных сенсорных сетей представлены в работах А. Мајіd [1], Д.А. Мигова [2], J.-M. Won [3], Т.М. Татарниковой [4], М. Catelani [5], В.В. Шахова [6].

Теоретическая значимость магистерской работы. Была построена имитационная модель одноранговой беспроводной сенсорной сети в программе OMNeT++ с использованием библиотеки INET, которая позволяет получить основные характеристики сети и оценить ее надежность. Были сформулированы преимущества и особенности применения OMNeT++ при моделировании беспроводных сенсорных сетей, что может быть

полезным специалистам, занимающимся имитационным моделированием информационно-вычислительных сетей и телекоммуникационных систем.

Практическая значимость магистерской работы. Результаты исследования могут быть использованы для проектирования и развертывания надежных одноранговых беспроводных сенсорных сетей в различных областях, таких как мониторинг протяженных трубопроводов, управление сельскохозяйственными угодьями и охрана окружающей среды. Разработанные модели могут помочь в оптимизации параметров сетей, таких как количество сенсорных узлов, емкость батарей узлов, для обеспечения требуемого времени жизни и уровня надежности сетей.

Структура и объем работы. Магистерская работа состоит из введения, четырех разделов, заключения, списка использованных источников и трех приложений. Общий объем работы — 86 страниц, их них 71 страница — основное содержание, включая 34 рисунка и 15 таблиц, список использованных источников информации — 41 наименование.

КРАТКОЕ СОДЕРЖАНИЕ РАБОТЫ

Первый раздел «Описание одноранговых беспроводных сенсорных сетей и обзор методов анализа надежности сетей» посвящен описанию одноранговых беспроводных сенсорных сетей, а также обзору методов анализа и управления надежностью сетей.

В подразделе 1.1 приведено описание структуры и архитектуры одноранговой беспроводной сенсорной сети (БСС), а также примеры использования и особенности БСС.

Подраздел 1.2 посвящен обзору основных работ, в которых предлагаются методы анализа надежности беспроводных сенсорных сетей.

В подразделе 1.3 рассматриваются методы диагностики неисправностей в беспроводных сенсорных сетях, включая централизованные, распределенные и гибридные подходы.

В подразделе 1.4 описана постановка задачи исследования надежности одноранговой беспроводной сенсорной сети. В качестве характеристики надежности сети используется время её жизни. Для построения вероятностной модели рассматриваются следующие основные характеристики одноранговой беспроводной сенсорной сети: время жизни (lifetime definition), модель

потребления энергии (energy consumption model) и модель трафика в сети (network traffic model).

Время жизни сети определяется как время, в течение которого сеть способна выполнять свои задачи. Для анализа времени жизни сети используется определение, основанное на отношении количества вышедших из строя сенсорных узлов к общему количеству узлов в сети.

Модель потребления энергии описывает энергию, расходуемую узлами сети для выполнения различных операций, таких как передача, прием, обработка данных и др. В общем объеме потребляемой энергии обычно преобладает энергия, необходимая для передачи данных. Требуемая энергия для передачи данных от сенсорного узла i может быть определена следующим образом [7]:

$$e(d_i) = l(e_t d_i^{\alpha} + e_o) = k d_i^{\alpha} + c,$$

где l означает размер пакета в битах, d_i обозначает расстояние между узлом i и базовой станцией, α представляет собой показатель потери пути, e_t показывает коэффициент потерь, а e_o — это затраты энергии, связанные с отправкой, получением и обработкой данных. Типичное значение α для БСС составляет от 2 до 4.

Модель трафика в сети описывает поток данных, который генерируется узлами сети. В работе рассматривается модель трафика, основанная на распределении Пуассона [8]. Это означает, что поток данных генерируется случайным образом, и среднее количество пакетов, генерируемых каждым узлом в единицу времени, постоянно и равно λ .

Второй раздел «Имитационное моделирование одноранговых беспроводных сенсорных сетей» посвящен описанию и построению имитационной модели одноранговой беспроводной сенсорной сети в программе OMNeT++.

В подразделе 2.1 описывается ряд программ для имитационного моделирования одноранговых беспроводных сенсорных сетей. После изучения всех преимуществ и недостатков этих программ был сделан выбор программы OMNeT++.

Подраздел 2.2 посвящен описанию беспроводной сенсорной сети в среде имитационного моделирования OMNeT++. Основные особенности

рассматриваемой сети:

- Протокол передачи данных IEEE 802.11, также известный как Wi-Fi, который представляет собой набор стандартов, описывающих беспроводные локальные сети (WLAN).
- Заряд батареи сенсорного узла фиксированный, батарея со временем не может заряжаться и узел выключается при нулевом значении заряда. Заряд батареи тратится на отправку пакета к базовой станции и затрачиваемая энергия вычисляется по формуле $kd_i^{\alpha}+c$, где k коэффициент потерь, который равен 1.3 пикоджоуля на \mathbf{M}^4 ; d_i расстояние от узла сети до базовой станции; α (константа) показатель потери зависит от рельефа местности и определяется эмпирическими измерениями, типичное значение α для беспроводных сенсорных сетей составляет 4; c дополнительная энергия для передачи пакета, которая равна 50 микроджоулей.
- Площадь беспроводной сенсорной сети фиксированная, на площади соответственно равномерному распределению располагаются узлы и в центре базовая станция, на которую посылаются пакеты.

Исследуется время жизни сети, которое определяется как длительность времени, в течение которого сеть способна выполнять свои функции и задачи до достижения определенного критерия β – процента неработоспособных узлов, вышедших из строя в следствие разрядки батареи. В контексте исследования время жизни сети определяется как длительность времени до момента, когда определенное количество узлов в сети исчерпают свои энергетические ресурсы и становятся недоступными для передачи данных или выполнения других функций. Это понятие времени жизни сети является важным при проектировании беспроводных сенсорных сетей, так как позволяет оценить надежность сети и оптимизировать параметры с учетом требуемого времени работы сети.

В подразделе 2.3 приводится алгоритм установки программы имитационного моделирования OMNeT++ и библиотеки INeT, которая предназначена для работы с беспроводными сенсорными сетями.

В подразделе 2.4 описываются основные параметры сети, а также необходимые для работы имитационной модели модули, к которым относятся:

— visualizer: IntegratedCanvasVisualizer – модуль, предназначенный для

- визуализирования разных показателей узлов сети, в данном случае он показывает заряд батареи узла;
- configurator: Ipv4NetworkConfigurator этот модуль назначает IPv4-адреса и настраивает статическую маршрутизацию для сети IPv4;
- radioMedium: Ieee80211ScalarRadioMedium модуль, который позволяет использовать различные режимы работы узлов, например, спящий режим, выключенный и т.д.;
- host[numHost]: AdhocHost и hostDest: AdhocHost беспроводной узел, содержащий компоненты маршрутизации, мобильности и энергопотребления. Adhoc режим позволяет подключать устройства между собой напрямую (p2p).

Основные параметры сети, которые в дальнейшем будут называться стандартными, следующие:

- Время моделирования 100 часов;
- Количество узлов, которые посылают пакеты, 20. Базовая станция только принимает пакет, никак не отвечая;
- Емкость батареи узла 11 миллиджоулей;
- Каждый из узлов посылает пакет на базовую станцию в среднем раз в 1
 час соответственно распределению Пуассона;
- Размер посылаемого пакета 1000 бит(125 байт);
- Пропускная способность канала (битрейт) при отправке пакета 1 мегабит в секунду;
- Площадь БСС 100π м², при этом узлы равномерно располагаются на данной области с базовой станцией в центре.

Подраздел 2.5 посвящен тестированию имитационной модели беспроводной сенсорной сети со стандартными параметрами. По результатам моделирования из 20 узлов было доставлено в среднем 1786 пакетов к базовой станции, отношение числа оставшихся работоспособными узлов к общему числу узлов при этом равно 0, 25, что говорит о том, что в данном случае только 25% узлов смогут выполнять свою работу (доставлять пакеты к базовой станции) в течение времени моделирования.

Третий раздел «Метод анализа времени жизни одноранговой беспроводной сенсорной сети» посвящен описанию математической вероятностной модели, разработанной на языке программирования Python, для

анализа времени жизни рассматриваемой сети.

В подразделе 3.1 описывается математическая вероятностная модель одноранговой беспроводной сенсорной сети. Для оценки времени жизни сети используется следующая теорема.

Теорема 1 [9]. Предполагая, что N узлов с одинаковой энергией расположены на области R равномерно, вероятность того, что время жизни сети превысит заданный порог τ , равна:

$$P(L \ge \tau) = Q\left(\sqrt{N} \frac{1 - \beta - \mu}{\sigma}\right),\tag{1}$$

где Q — дополнительная кумулятивная функция нормального распределения. Данная функция выражает вероятность того, что определенное количество узлов в сети останутся функционирующими в течение времени L.

В формуле (1) используются переменные μ и σ , которые вычисляются с помощью формул (2) и (3) соответственно:

$$\mu = \int_{R} \left(1 - \frac{\gamma(x, \lambda \tau)}{\Gamma(x)} \right) f_p(x) dx, \tag{2}$$

$$\sigma = \sqrt{\mu - \mu^2}. (3)$$

Здесь γ – неполная гамма-функция, которая вычисляется по формуле (4), Γ – гамма-функция, которая вычисляется по формуле (5), функция $f_p(x)$ определяется в зависимости от формы области покрытия сети [9]:

$$\gamma(a,x) = \int_0^x t^{a-1}e^{-t}dt,$$
 (4)

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt. \tag{5}$$

Таким образом, по теореме 1 можно вычислить вероятность того, что в беспроводной сенсорной сети будет меньше β вышедших из строя узлов за заданное время τ .

Подраздел 3.2 посвящен описанию программы для оценки надежности одноранговой беспроводной сенсорной сети, разработанной на языке программирования Python. Подробно излагается алгоритм работы программы по блокам кода.

В подразделе 3.3 приведены примеры работы программы на основе математической вероятностной модели при стандартных параметрах одноранговой беспроводной сенсорной сети.

Четвертый раздел «Результаты исследования надежности одноранговой беспроводной сенсорной сети» посвящен исследованию влияния различных параметров на надежность беспроводной сенсорной сети.

В подразделе 4.1 рассматривается беспроводная сенсорная сеть с исходными, называемыми стандартными, параметрами, которые приведены в подразделе 2.4, но в этом случае будет изменяться такой параметр, как пороговое значение времени жизни сети, в имитационной модели определяемое временем функционирования модели (временем моделирования).

Из результатов моделирования заданной беспроводной сенсорной сети с помощью имитационной модели в программе OMNeT++, а также математической модели, разработанной на языке программирования Python, можно сделать выводы о том, что в случаях времени моделирования равного 100 и 90 часов, результаты довольно сильно различаются. Так, для 100 часов разница составила 35%, а для 90 часов – 25%, но при этом результаты почти совпадают с максимальным значением (65%). Только в случае с 80 часами результаты оказались довольно близки. Такие различия можно объяснить тем, что в математической модели нельзя задавать расположение узлов в сети.

Результаты имитационного моделирования при времени симуляции равном 80 часов, следующие: среднее значение процента оставшихся работоспособными узлов — 89%; среднее количество доставленных к базовой станции пакетов — 1582,2. Таким образом, в ходе экспериментов было установлено, что параметр β при времени симуляции 80 часов равен — 11%, что является хорошим результатом для данной беспроводной сенсорной сети.

Результаты аналитического моделирования при τ равном 80 часов, представлены в таблице 1.

Таблица 1 – Результаты моделирования при изменении порогового значения времени жизни равном 80 часов

Форма области рассматриваемой сети	μ	σ	$P(L \ge \tau)$
Квадратная область	0.8063	0.3952	0.8693
Круглая область	0.8209	0.3835	0.8988

Как видно из приведенных результатов, изменение параметра au имеет значительное влияние на надежность сети, а именно, при его уменьшении обеспечивается высокое значение выживаемости сенсорных узлов сети.

Подраздел 4.2 посвящен исследованию зависимости времени жизни от начального заряда батарей узлов. Рассматривается беспроводная сенсорная сеть со стандартными параметрами, но в этом случае будет изменяться такой параметр, как начальный заряд батарей узлов, который имеет базовое значение равное 11mJ, будет изменяться на значения 11.6mJ, а также 12mJ.

По результатам экспериментов с моделями можно сделать вывод, что увеличение начального заряда батареи узла даже на малое значение производит значительное влияние на рассматриваемую сеть, а из-за такого незначительного увеличения емкости батареи её стоимость также повысится незначительно. Это значит, что надежность сети можно сильно повысить при малых затратах на батареи большей емкости.

В подразделе 4.3 приводятся результаты исследования зависимости времени жизни сети от ее площади. Рассматривается беспроводная сенсорная сеть со стандартными параметрами, но в этом случае будет изменяться такой параметр, как площадь сети, а именно в случае круга его радиус будет изменен с 10м до 9.5м и 10.5м, а в случае квадрата его стороны будут изменены с 17.7м до 17м и 18.4м.

По результатам экспериментов можно сделать выводы о том, что при фактическом отсутствии затрат на дополнительное оборудование или замену комплектующих сенсорных узлов сети, с уменьшением площади сети можно добиться существенных увеличений надежности рассматриваемой сети.

В подразделе 4.4 приводятся результаты исследования зависимости времени жизни сети от количества сенсорных узлов. Рассматривается беспроводная сенсорная сеть со стандартными параметрами, но в этом случае будет изменяться такой параметр, как количество сенсорных узлов. Так как у программы имитационного моделирования OMNeT++ есть ограничения на количество сенсорных узлов, то будут проведены эксперименты с 10 и 40 узлами. В математической модели нет таких ограничений, поэтому количество узлов будет равно 10, 40, 500 и 1000.

По результатам экспериментов можно сделать вывод о том, что при повышении количества сенсорных узлов в сети также повышается и надежность,

но при этом она не возрастает пропорционально количеству сенсорных узлов и имеет предельное значение. При этом значительное увеличение количества сенсорных узлов является несоразмерно затратным по сравнению с получаемым результатом, поэтому имеет смысл адекватно увеличивать количество узлов.

ЗАКЛЮЧЕНИЕ

В результате выполнения поставленных в магистерской работе задач были получены следующие результаты:

- Разработана имитационная модель одноранговой беспроводной сенсорной сети в среде OMNeT++ с использованием библиотеки INeT.
- Реализована программа на языке Python для оценки надежности БСС на основе математической модели.
- Проведено исследование влияния различных параметров сети (количество узлов, емкость батарей, площадь сети) на ее надежность с использованием разработанных моделей и программ.

В ходе выполнения работы были созданы модели и программные инструменты, позволяющие оценивать и оптимизировать надежность одноранговых беспроводных сенсорных сетей. Это обеспечивает возможность более эффективного проектирования и развертывания таких сетей в различных приложениях, требующих высокой надежности и отказоустойчивости.

Данная работа имеет практическую значимость для специалистов в области информационных технологий и инженеров, занимающихся проектированием и администрированием БСС. Результаты и рекомендации, представленные в работе, могут быть использованы при создании и управлении одноранговыми беспроводными сенсорными сетями на практике.

Отдельные части магистерской работы были представлены на конференции и опубликованы:

- Научная конференция "ИТО-Саратов" 2024 (XVI Всероссийская научно-практическая конференция "Информационные технологии в образовании"), Саратов, СГУ имени Н.Г. Чернышевского, 1-2 ноября 2024г, доклад "Имитационное моделирование одноранговых беспроводных сенсорных сетей в среде OMNeT++".
- Ульянов, Н.С. Имитационное моделирование одноранговых беспроводных сенсорных сетей в среде OMNeT++ [Текст] // Информационные технологии в образовании.—2024.—№ 7.—С. 302–307.

Основные источники информации:

- 1 Majid, A. Reliability and Failure Rate Evaluation of Lifetime Extension Analysis of Ad Hoc and Wireless Sensor Networks [Text] // Mathematical Modelling of Engineering Problems. 2020. Vol. 7, no. 3. P. 411–420.
- 2 Мигов, Д. А. Показатель надежности для беспроводных самоорганизующихся сетей [Текст] // Вестник СибГУТИ. 2014. № 3. С. 3–12.
- 3 Won, J.-M. Cumulative update of all-terminal reliability for faster feasibility decision [Text] / Won, J.-M. and Karray, F. // IEEE transactions on reliability. 2010. Vol. 59, no. 3. P. 551–562.
- 4 Татарникова, Т.М. Оценка показателей качества обслуживания беспроводных сенсорных сетей [Текст] / Татарникова, Т.М., Рудых, С.В. и Миклуш, В.А. // Информация и космос. 2022. № 4. С. 21–27.
- 5 Reliability Analysis of Wireless Sensor Network for SmartFarming Applications [Text] / Catelani, M., Ciani, L., Bartolini, A., Del Rio, C., Guidi, G., and Patrizi, G. // Sensors. 2021. Vol. 21, no. 22. P. 1–16.
- 6 К вопросу оценки надежности линейных беспроводных сенсорных сетей [Текст] / Шахов, В. В., Чен, Х., Юргенсон, А. Н. и Лошкарев, А. В. // Проблемы информатики. 2022. Т. 4. С. 1–9.
- 7 Heinzelman, W. Application-Specific Protocol Architectures for Wireless Networks [Text]: Ph. D. thesis; Massachusetts Institute of Technology. Cambridge, MA, USA: [s. n.], 2000.
- 8 Прохоров, Ю. В. Курс лекций по теории вероятностей и математической статистике: учебное пособие [Текст] / Прохоров, Ю. В. и Прохоров, А. В. Москва: МЦНМО, 2020. 144 с.
- 9 Noori, M. A Probability Model for Lifetime of WirelessSensor Networks [Text] / Noori, M. and M., Ardakani // arXiv. 2007. Vol. 1. P. 1–10.