МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г.ЧЕРНЫШЕВСКОГО»

Кафедра дискретной математики и информационных технологий

ОПТИМИЗАЦИЯ ФАКТОРИНГОВОЙ СИСТЕМЫ: МАШИННОЕ ОБУЧЕНИЕ, МИКРОСЕРВИСЫ, ЧИТАЕМЫЙ КОД И АВТОМАТИЗИРОВАННОЕ ТЕСТИРОВАНИЕ

АВТОРЕФЕРАТ МАГИСТЕРСКОЙ РАБОТЫ

студента 2 курса 271 группы	I	
Направление 09.04.01 — Ин	форматика и вычислитель	ная техника
факультета КНиИТ		
Бурчуладзе Левана Александ	дровича	
Научный руководитель		
профессор		Л.В. Кальянов
Заведующий кафедрой		
доцент, к.фм.н		Л.Б. Тяпаев

ВВЕДЕНИЕ

Актуальность темы.

Современный бизнес всё больше зависит от технологических решений, которые позволяют оптимизировать процессы, повышать эффективность и снижать издержки. В сфере факторинга, где ключевую роль играют точность прогнозирования, скорость обработки данных и надёжность систем, внедрение современных технологий становится необходимым условием для конкурентоспособности. Оптимизация факторинговой системы требует комплексного подхода, включающего не только улучшение бизнеспроцессов, но и модернизацию технической инфраструктуры.

Одним из ключевых направлений такой модернизации является переход от монолитной архитектуры к микросервисной. Микросервисы позволяют повысить гибкость системы, упростить поддержку и масштабируемость, а также ускорить внедрение новых функций. Однако такой переход требует тщательной проработки архитектуры, улучшения читаемости кода и внедрения автоматизированного тестирования для обеспечения стабильности и качества продукта.

Ещё одним важным аспектом оптимизации является использование машинного обучения для анализа данных и прогнозирования. Машинное обучение позволяет выявлять скрытые закономерности в данных, автоматизировать процессы принятия решений и повышать точность прогнозов, что особенно важно в факторинге, где ключевыми являются оценка рисков и управление финансовыми потоками.

Автоматизированное тестирование играет crucial роль в обеспечении качества и надёжности системы. Оно позволяет выявлять ошибки на ранних этапах разработки, минимизировать риски при внедрении новых функций и обеспечивать стабильную работу системы под нагрузкой. Внедрение практик тестирования, таких как модульное, интеграционное и нагрузочное тестирование, способствует повышению устойчивости системы и снижению затрат на поддержку.

Цель магистерской работы — оптимизация факторинговой системы за счёт перехода к микросервисной архитектуре, улучшения читаемости кода, внедрения машинного обучения для анализа данных и автоматизированного тестирования для повышения качества продукта.

Для достижения данной цели были поставлены следующие задачи:

- 1. Изучить применение машинного обучения для анализа данных и оптимизации процессов факторинга.
- 2. Исследовать возможности перехода от монолитной к микросервисной архитектуре
- 3. Разработать подходы к улучшению читаемости кода.
- 4. Внедрить автоматизированное тестирование (модульное, интеграционное и нагрузочное) для повышения качества и надёжности системы.

Теоретическая значимость работы заключается в систематизации и развитии методов оптимизации систем за счет интеграции современных технологий, таких как машинное обучение, микросервисная архитектура и автоматизированное тестирование. Работа дополняет существующие исследования в области анализа данных для оценки рисков, а также предлагает новые подходы к проектированию и рефакторингу сложных финансовых систем.

Практическая значимость работы внедрением подтверждается разработанных решений в реальную факторинговую систему. Результаты, производительности 300% обработке включая повышение на при документов, улучшение масштабируемости и надежности системы, а также снижение рисков за счет прогнозирования банкротств (AUC = 0.9375), эффективность предложенных Внедрение демонстрируют методов. модульного и интеграционного тестирования обеспечило повышение качества кода и устойчивости системы, что имеет существенное значение для финансового сектора.

Структура и объём работы. Магистерская работа состоит из введения, 4 разделов, заключения, списка использованных источников и 4 приложений.

Общий объем работы — 67 страниц, из них 58 страниц — основное содержание, включая 18 рисунков, список использованных источников информации — 20 наименований.

КРАТКОЕ СОДЕРЖАНИЕ РАБОТЫ

Первый раздел «Факторинг: что это и для чего используется?» В этом разделе автор подробно раскрывает суть факторинга как финансового инструмента, который помогает компаниям управлять дебиторской задолженностью и улучшать ликвидность. Основные моменты:

Определение факторинга: Это комплексный инструмент, позволяющий компаниям получать финансирование под уступку денежных требований. Пример: поставщик электроники с отсрочкой платежа 90 дней использует факторинг для покрытия текущих расходов.

Виды факторинга:

- С правом регресса: Риск неоплаты лежит на продавце.
- Без права регресса: Риск берет на себя фактор (например, банк).
- Агентский факторинг: Покупатель финансирует своих поставщиков.
- Открытый и закрытый: Отличаются уровнем прозрачности для дебиторов.

Преимущества:

- Улучшение ликвидности.
- Контроль сроков погашения задолженности.
- Снижение рисков неплатежей.

Вывод: Факторинг особенно полезен для компаний, работающих с отсрочкой платежа, так как предотвращает кассовые разрывы и способствует стабильности бизнеса.

Второй раздел «Машинное обучение» посвящен применению методов анализа данных и машинного обучения в факторинге. Были расммотрены основы машинного обучения, включая линейную и логистическую регрессию, деревья решений и метод опорных векторов. Особое внимание

уделено анализу датасета СПАРК для прогнозирования банкротства компаний.

Датасет СПАРК:

- Содержит данные о банкротствах компаний за 2021–2023 гг.
- Объем: 600 тыс. строк, 136 столбцов.
- Целевая переменная: default (индикатор банкротства/ликвидации).

Анализ данных:

- Обнаружен дисбаланс классов: 185 тыс. наблюдений для класса 0 (не банкрот) против 10 тыс. для класса 1 (банкрот).
- Для балансировки данных использованы методы обработки и удаления выбросов.

Разработана модель логистической регрессии с AUC = 0.9375, что подтвердило её эффективность для оценки рисков.

Выводы: машинное обучение позволяет повысить точность прогнозирования в факторинговых операциях.

Третий раздел «Разработка» посвящен переходу от монолитной к микросервисной архитектуре и улучшению структуры проекта.

Проект был реорганизован с разделением на две основные директории:

- src содержит исходный код приложения.
- test включает модульные и интеграционные тесты.

Проведен рефакторинг файловой системы, внедрен Feature Sliced Design (FSD) для организации кода.

Особое внимание уделено разработке и интеграции новых микросервисов: электронной подписи, генерации отчетов, генерации водяных знаков и сервису единой авторизации и аутентификации.

Для обеспечения взаимодействия между сервисами использованы:

- REST API для синхронных операций.
- Apache Kafka для асинхронной обработки событий.

Описаны преимущества микросервисной архитектуры, включая гибкость и масштабируемость.

Переход на микросервисную архитектуру и оптимизация процессов обработки данных позволили достичь значительных улучшений в производительности, масштабируемости и эффективности разработки.

Ключевые результаты:

- Ускорение разработки печатных форм:
 - о Время на модификацию существующих отчетов сократилось в 2,7 раза (с 16 до 6 чел./часов).
 - Время на создание новых отчетов уменьшилось в 2 раза (с 24 до 12 чел./часов).
- Рост производительности критичных операций:
 - \circ Скорость подписания документов увеличилась на 300% (с \sim 500 до \sim 1500 операций в час).
 - \circ Генерация водяных знаков также ускорилась в 3 раза (с \sim 500 до \sim 1500 операций в час).
- Оптимизация хранения данных:
 - Объем базы данных сократился на 75\%, что значительно уменьшило нагрузку на инфраструктуру.
 - Время резервного копирования сократилось с более чем суток до 2–3 часов.
- Повышение масштабируемости и гибкости системы:
 - Независимое масштабирование сервисов позволило
 эффективно распределять ресурсы под пиковые нагрузки.

- Асинхронная обработка через Kafka устранила блокировки UI при массовых операциях.
- Упростилось внедрение новых функций и обновлений благодаря декомпозиции системы.

Так же была проведена оптимизация фронтенд-части факторинговой системы, включающая следующие ключевые изменения:

Переход от монолитной к микросервисной архитектуре:

- Фронтенд был разделён на три отдельных приложения для разных групп пользователей: клиенты, дебиторы и менеджеры.
- Для клиентов создан Единый Личный Кабинет Клиента (ЕЛКК) с использованием API-GATEWAY.
- Для дебиторов выделено отдельное фронтенд-пространство debtor.rowi.com.
- Для менеджеров создано внутреннее пространство factoringmanager.rowi.com, доступное только из корпоративной сети.

Повышение безопасности:

- Разделение пользовательских интерфейсов минимизировало риски утечки данных.
- Для менеджеров внедрена аутентификация через Keycloak-Internal, что упростило управление учётными записями.

Улучшение поддержки и разработки:

- Устранены зависимости между модулями, что ускорило внедрение изменений.
- Упрощён код за счёт удаления избыточного функционала.

Выводы: переход на микросервисы и улучшение структуры кода повысили эффективность и поддерживаемость системы.

Четвертый раздел «Тестирование» посвящен внедрению автоматизированного тестирования для повышения качества продукта. Тестирование программного обеспечения является критически важным этапом разработки, направленным на обеспечение качества, надежности и стабильности системы. В данном разделе рассматриваются ключевые виды тестирования, примененные в проекте:

Нагрузочное тестирование позволило оценить производительность системы при различных уровнях нагрузки, выявить узкие места и оптимизировать работу компонентов. Были проверены сценарии с высокой нагрузкой, что подтвердило устойчивость системы в условиях реальной эксплуатации.

Модульное тестирование обеспечило проверку корректности работы отдельных модулей в изоляции. На примере генерации паролей продемонстрирована эффективность использования фреймворка Xunit для создания и выполнения тестов, что повысило надежность кода.

Интеграционное тестирование подтвердило корректность взаимодействия между компонентами системы. С помощью инструментов, таких как FluentAssertions и Моq, были протестированы сценарии работы API, включая создание компаний, что гарантировало согласованность работы всех модулей.

Внедрение практики тестирования в проект позволило систематизировать процессы контроля качества, минимизировать риски ошибок и обеспечить стабильность системы. Реализованные тесты охватили как отдельные функции, так и комплексные сценарии, что способствовало повышению доверия к продукту.

ЗАКЛЮЧЕНИЕ

В ходе выполнения данной магистерской работы была проведена комплексная оптимизация факторинговой системы, включающая внедрение современных технологий и методологий разработки. Основной акцент был сделан на переход от монолитной архитектуры к микросервисной, что позволило значительно повысить гибкость, масштабируемость и надежность системы.

Были исследованы и применены методы анализа данных для прогнозирования банкротства и ликвидации компаний. Использование логистической регрессии показало высокую эффективность (AUC = 0.9375), что подтвердило возможность применения машинного обучения для оценки рисков в факторинге.

Разработана и внедрена новая архитектура, включающая специализированные сервисы (электронной подписи, генерации отчетов, работы с файлами и др.). Это позволило улучшить производительность, упростить поддержку и обеспечить независимое масштабирование компонентов.

Проведен рефакторинг файловой структуры проекта с использованием принципов Feature Sliced Design (FSD), что улучшило организацию кода и упростило его понимание для разработчиков.

Внедрены модульные и интеграционные тесты, что повысило качество кода и снизило риски возникновения ошибок. Особое внимание уделено генерации паролей, для которой были разработаны и успешно протестированы соответствующие модули.

Реализованные решения позволили достичь поставленных целей: повысить эффективность работы системы, снизить издержки на поддержку и обеспечить стабильность при высоких нагрузках. Дальнейшее развитие проекта может включать углубленное использование машинного обучения

для анализа данных, расширение функционала микросервисов и дальнейшую автоматизацию процессов тестирования.

Проделанная работа демонстрирует, что современные технологии и подходы к разработке играют ключевую роль в оптимизации финансовых систем, обеспечивая их конкурентоспособность и устойчивость в условиях динамично развивающегося бизнес-ландшафта.

Отдельные части магистреской работы были представлены на студенческой научной конференции 24.04.2025 в очном формате на факультете КНИиТ.

Основные источники информации:

- 1. Stenvall, J., Syväjärvi, A. Data mining in public and private sectors. New York: Information Science Reference, 2010.
- 2. Рашка С. Python и машинное обучение. Москва: ДМК Пресс, 2017.
- 3. Кузнецов, М.А. От монолита к микросервисам: стратегии миграции. М.: ДМК Пресс, 2022.
- 4. Ричардсон, К. Микросервисы: Паттерны для масштабируемых и надежных приложений. М.: ДМК Пресс, 2019.
- Расолько, А.М., Тонкович, И.Н. Автоматизация функционального тестирования веб-приложений с использованием фреймворка // Актуальные проблемы науки ххі века, № 7, 2018. С. 19-25.