МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н. Г. ЧЕРНЫШЕВСКОГО»

Кафедра геологии и геохимии горючих ископаемых

Геологическое обоснование разведки залежи мелекесского горизонта Наумовского месторождения

(Саратовская область)

АВТОРЕФЕРАТ ДИПЛОМНОЙ РАБОТЫ

студента 6 курса, 611 группы, заочной формы обучения	
специальности 21.05.02 «Прикладная геология»	
специализация «Геология нефти и газа»	
геологического факультета	
Абдулгамидова Имама Байрамбековича	
Научный руководитель	
старший преподаватель	А.В.Чуваев
Зав. кафедрой	
доктор геолмин. наук, профессор	Д.А.Коробов

Введение

Наумовское месторождение открыто в 2012 г. в результате бурения поисково-оценочной скважины №1-Наумовская, залежь нефти выявлена в терригенных мелекесских отложениях среднего карбона.

Волго-Уральская нефтегазоносная провинция, к которой относится изучаемая территория, находится в зрелой стадии освоения ресурсов. Здесь проведен большой объем поисково-оценочных и разведочных работ: геологическая съемка, структурное бурение, геофизика (гравиразведка, сейсморазведка, магниторазведка), поисковое и разведочное бурение. В последние годы на изучаемой территории открываются мелкие по запасам нефти и газа месторождения, которые и позволяют частично восполнять ресурсную базу углеводородов Саратовской области. К таким объектам относится и Наумовское нефтяное месторождение, расположенное в пределах Балаковского района Саратовской области.

Целью дипломной работы является геологическое обоснование разведки залежи мелекесского горизонта Наумовского месторождения.

Для достижения указанной цели, необходимо решить следующие задачи:

- собрать и проанализировать весь имеющийся геолого-геофизический материал, характеризующий геологическое строение и оценку запасов нефти Наумовского месторождения;
 - выбрать приоритетные направления дальнейших разведочных работ;
 - определить цели и задачи разведочного этапа на месторождении;
 - выработать рекомендации на проведение разведочного бурения.

В административном плане структура расположена в пределах Балаковского района Саратовской области.

Дипломная работа состоит из введения, 5 глав и заключения и содержит 53 страницы текста, 6 рисунков, 5 графических приложений и 8 таблицы. Список использованных источников состоит из 9 наименований.

Основное содержание работы

Геолого-геофизическая изученность территории начата в 40-е годы. В работ проводились геологическая съемка, вариометрические исследования (Зыков В.И., 1946г.), геофизические исследования методами гравиразведки (Каплун В.С., 1945г.) и электроразведки (Фролович Г.М., 1946г.) с целью изучения строения палеозойского комплекса в пределах Балаковской вершины Пугачевского свода И выявления нефтегазоперспективных объектов.

Структурное бурение по реперам в верхнем карбоне на Чапаевской площади проводилось в 1947-1950 гг. По данным проведенного бурения было выявлено поднятие, свод которого располагался в 4 км к востоку от с. Бол. Кушум.

В период 1950-1990 гг. непосредственно в пределах Больше-Чалыклинского участка и на прилегающих к нему площадях: Западно-Пылковской, Чапаевской и Марьевской проводилось структурное бурение до кровли московских отложений среднего карбона, а затем до верейского горизонта. Полученный материал позволил установить, что геофизическими работами везде зафиксирована эрозионно-тектоническая поверхность палеозоя, которая не отображает глубинной структуры напластований палеозойских пород.

С 2006г. в пределах данной территории сейсмические работы МОГТ-2D проводились филиалом «СГЭ». В результате этих работ выявлены структурные объекты для постановки дальнейших работ.

В 2009 г. на площади работ филиалом «Саратовской геофизической экспедиции» ФГУП «НВНИИГГ» закончены детализационные сейсморазведочные работы МОГТ-2D в объеме 140 пог. км, проводимые с целью подготовки объектов под глубокое бурение. Методика проведения MOΓT-2D, кратность K=60: работ максимальная использовалась телеметрическая система сбора данных «Прогресс-Т2» и вибрационные источники возбуждения. Всего отработано 11 профилей МОГТ.

В 2011 г. ООО «НПК «Геопроект» выполнило переобработку и переинтерпретацию сейсморазведочных материалов на лицензионном участке Больше-Чалыклинский-4 в объёме 1100 пог.км. По результатам работ уточнено строение Чапаевской приподнятой зоны, в пределах которой выявлен ряд структур: Быковская, Наумовская и Успенская и на южном её склоне Южно-Наумовская структура [3].

Так как на слабо изученном и сложно построенном Наумовском месторождении пробурена только одна поисково-оценочная скважина 1- Наумовская, литолого-стратиграфический разрез составлен на основании данных, полученных при ее бурении, с учетом информации по близкорасположенным поисково-оценочным скважинам 1-Быковская и 1- и 2- Успенские, пробуренным в северной части изучаемой площади.

Описание литолого-стратиграфического разреза месторождения ведётся снизу-вверх согласно системе стратиграфического расчленения осадочного чехла Саратовской области, утверждённой Поволжской секцией регионального межведомственного стратиграфического комитета, 2000 г.

Геологический разрез месторождения представлен осадочными породами следующих систем: четвертичной, неогеновой, юрской, каменноугольной, залегающих на отложениях девонской системы. Забой скважины № 1 Наумовской располагается в кровле башкирских отложений среднего карбона [4].

Осадочный чехол Наумовского месторождения представлен как карбонатными, так и терригенными комплексами. Отмечается перерывы в осадконакоплении и невыдержанность пластов по простиранию, наличие зон фациального замещения пород. По условиям образования преобладают отложения морские и прибрежно морские.

Из анализа описанного разреза можно сделать вывод о том, что на исследуемой территории были созданы благоприятные условия для формирования пластов коллекторов и флюидоупоров в средне-

каменноугольных отложениях для образования промышленных залежей углеводородов [4].

В тектоническом отношении Наумовская структура расположена в зоне сочленения Балаковской и Марьевской вершин Пугачевского свода [5].

Пугачевский свод является элементом древнего девонского времени формирования, заложившемся на рифейском основании Пачелмского авлакогена, и унаследовано развивавшимся в верхнем палеозое и, возможно в предакчагыльскую фазу тектогенеза, постепенно утрачивая морфологическую выраженность, что следует связать с усилением регионального наклона на юг. Пути миграции углеводородов проходят в направлении, воздымающегося Пугачевского свода со стороны прогибающейся Прикаспийской впадины.

Балаковская вершина наиболее четко выражена в разрезе осадочного чехла по горизонтам девона и менее четко - карбона. В пределах Балаковской вершины на предфаменский срез выходят отложения нижнего рифея (татищевская свита) и верхнего рифея (иргизская свита). Из чего можно предположить, что в региональном плане в досреднедевонское время происходили восходящие тектонические движения, сопровождавшиеся крупными размывами древних толщ девона и рифея. В средне- и позднедевонское время территория, видимо, сохранила положительные тектонические тенденции, что сопровождалось размывами ранее накопленных отложений территенного девона, вплоть до полного их уничтожения на наиболее приподнятых частях свода (скважина № 36 Балаковская). Таким образом, над Балаковской и Марьевской вершинами установлены наибольшие относительно смежных территорий последствия предфаменского размыва в разрезе девона из-за постоянной тенденции к воздыманию с начала среднего девона до конца фанерозоя.

По кровле мелекесского горизнота Наумовское поднятие характеризуется сложно построенной структурной складкой субширотного простирания. Амплитуда структуры 25 м, площадь структуры - 25,0 км2;

размеры поднятия составляют 6,5 км x 3,9 км; оконтуривающие изогипсы минус 510 м как показано на рисунке 4 и в приложении Г.

По отражающему горизонту nC2ks предельно глубокая изогипса с отметкой минус 440 м оконтуривает Наумовскую структуру. Площадь структуры – 18,4 км2, размеры поднятия составляют 4,9 х 3,8 км, амплитуда – 25 м.

Наумовское нефтяное месторождение расположено в Жигулёвско-Пугачевском нефтегазоносном районе Средневолжской нефтегазоносной области Волго-Уральской нефтегазоносной провинции [2,7].

На Наумовском месторождении в разрезе осадочного чехла выделен один продуктивный нефтегазоносный комплекс - мелекесско-верейский, преимущественно терригенный.

На рассматриваемом месторождении он представлен преимущественно терригенными отложениями мелекесского горизонта верхнебашкирского подъяруса среднего карбона и верейского горизонта нижнемосковского подъяруса, которые обычно не расчленялись на отдельные горизонты, пласты и пачки [2].

Данные комплекса ГИС, а также керновый материал по скважине № 1 Наумовская, позволили выделить в этом комплексе 5 литологических пачек, к которым приурочены проницаемые пласты-коллекторы. Флюидоупорами для пластов-коллекторов служат внутриформационные глинистые образования.

На Наумовском месторождении промышленная нефтеносность связана с мелекесской частью мелекесско-верейского нефтегазоносного комплекса. По результатам бурения, интерпретации комплекса ГИС и испытания скважины № 1 Наумовская промышленная нефтеносность выявлена в песчаных отложениях пласта-коллектора C2mlk-2, залегающего в кровельной части литологической Пачки II.

Оперативный подсчёт запасов нефти выполнен объёмным методом по данным поисково-оценочного бурения и детализационной сейсморазведки МОГТ 2Д. По состоянию на 01.01.2025 утверждённые ГКЗ начальные запасы

нефти Наумовского месторождения составляют (геологические / извлекаемые) [7]:

С1 -641/192 тыс.т;

C2 - 3981/1195 тыс.т

C1+C2-4622/1387 тыс.т.

Запасы растворенного газа не подсчитывались в связи с отсутствием представительных пластовых проб, это планируется сделать на этапе разведки месторождения.

Таким образом, процентное соотношение запасов категории С1 к С2: геологические запасы нефти 16/84 %, извлекаемые, также 16/84 % соответственно.

На Наумовском месторождении пробурена одна поисково-оценочная скважина, давшая промышленный приток нефти. Скважина расположена на северо-восточной переклинали месторождения, а юго-западная часть месторождения бурением не изучена. При этом, строение продуктивного горизонта, ФЕС и другие параметры, определены по керну, отобранному только из поисково-оценочной скважины № 1 Наумовской, что говорит о достаточно неравномерном изучении свойств продуктивных отложений. Запасы углеводородов мелекесского продуктивного горизонта в условном контуре нефтеносности оцениваются в основном по категори С2.

Таким образом, Наумовское месторождение нуждается в проведении комплекса разведочных работ. Для уточнения строения продуктивного интервала, детализации промысловых характеристик и определения точного положения водонефтяного контакта залежи рекомендуется бурение одной независимой разведочной вертикальной скважины № 2 с проектной глубиной 615 м и одной зависимой скважины №3 с проектной глубиной 615 м. Проектный горизонт — черемшано-прикамские отложения башкирского яруса среднего карбона. Решение о необходимости бурения зависимой разведочной скважины № 3 принимается по результатам бурения и испытания независимой скважины № 2.

Основой для заложения скважин послужили структурная карта по кровле пласта C2mk, а также материалы бурения и испытания пробуренной ранее поисково-оценочной скважины № 1 Наумовской.

пласта C2mk Цель бурения скважин: подтверждение залежи мелекесского горизонта в западной части Наумовского месторождения, дополнительной информации по подсчетным получение параметрам, промысловых установление основных характеристик залежи закономерностей её строения, получение промышленных притоков нефти при испытании и определение положения водонефтяного контакта (ВНК).

Для решения задач, поставленных перед скважинами в процессе бурения, рекомендуется провести оптимальный комплекс геологогеофизических исследований на современном техническом и методическом уровне: отбор керна и шлама, промыслово-геофизические исследования $(\Gamma \text{ИС}),$ геолого-технологические исследования $(\Gamma T \Pi)$, опробование, испытание перспективных горизонтов, гидродинамические исследования, лабораторные исследования керна и пластовых флюидов.

Независимая скважина 2-Наумовская закладывается на пересечении сейсмических профилей 060807-256 и KSN-128 в пределах контура запасов категории C2 с забоем в черемшано-прикамских отложениях глубиной 615 м, как показано в приложениях Г, Д.

Зависимая от результатов бурения скважины № 2 Наумовская разведочная скважина № 3 Наумовская закладывается на пересечении сейсмических профилей KSN-258 и KSN-128. в пределах контура запасов категории С2 с забоем в черемшано-прикамских отложениях, с проектной глубиной 615 м, как показано в приложении Г.

Отбор кернового материала и шлама в процессе бурения разведочных скважин осуществляется с целью определения и подтверждения наличия нефтенасыщенных пород-коллекторов в разрезе скважины, изучения их литологического состава и основных промысловых характеристик, в том числе фильтрационно-емкостных и петрофизических свойств.

Отбор керна предусматривается только в продуктивных интервалах с учетом изучения покрывающих и подстилающих пород (3 м над кровлей проницаемой части пласта и 5 м ниже последнего проницаемого пропластка).

Для изучения характера насыщения и динамических параметров продуктивных горизонтов предусматривается испытание перспективных объектов в эксплуатационной колонне разведочных скважин. В открытом стволе в процессе бурения испытание пластов на трубах не планируется в связи с небольшой глубиной разведочных скважин.

Выбор объектов испытания производится по результатам анализа керна и промыслово-геофизических исследований. Проектные интервалы испытаний 535-540 метров, 522-527 метров, 516-520 метров.

Все объекты, подлежащие испытанию в эксплуатационной колонне, должны быть испытаны раздельно на приток пластовой жидкости с целью определения дебитов на различных режимах работы скважины, суточного рабочего дебита нефти по замерам фактической непрерывной суточной добычи, коэффициентов продуктивности, статических уровней, пластовых и забойных давлений, пластовых температур.

Заключение

Несмотря на комплекс проведённых ранее геолого-геофизических исследований, залежь продуктивного пласта мелекесского горизонта Наумовского месторождения является не разведанной в западной части месторождения. Положение ВНК и размеры залежи имеют условный характер и нуждаются в детализации. Соотношение запасов по категориям С1 к С2 составляет 16 к 84%, что указывает на необходимость проведения комплекса разведочных работ для подготовки месторождения к промышленному освоению.

На основании анализа имеющихся геолого – геофизических материалов, результатов бурения и испытания поисково-оценочной скважины № 1 Наумовской рекомендуется провести разведку Наумовского месторождения с заложением 2 разведочных скважин: № 2 Р с проектной глубиной 615 м и проектным горизонтом – черемшано-прикамским, и зависимой скважины №3 Р,

с проектной глубиной - 615 м и проектным горизонтом — черемшаноприкамским. В процессе бурения рекомендуется современный комплекс геолого — геофизических и гидродинамических исследований, позволяющий получение дополнительной информации, необходимой для уточнения модели строения залежи пласта мелекесского горизонта. Получение промышленных притоков нефти в разведочных скважинах позволит прирастить запасы нефти по категории С1 — 641 тыс. тонн, подготовить месторождение к промышленному освоению. Разведочные скважины могут быть переведены в эксплуатационный фонд и в дальнейшем участвовать в разработке месторождения.

Список использованных источников:

- 1. Голиченко Е.И. Проект поисков и оценки залежей нефти и газа на Наумовской площади в пределах Больше-Чалыклинского лицензионного участка. / Е.И. Голиченко. ООО ППП «Горняк», Саратов, 2010. 179 с.
- 2. Пороскун В.И. Построение геологической модели и подсчёт запасов нефти и газа Наумовского месторождения Саратовской области. / В.И. Пороскун, С.М. Френкель ООО «ВНИГНИ-2/2», Москва, 2015. 167 с.
- 3. Серебряков В.Ю. Переобработка и переинтерпретация сейсморазведочных материалов на лицензионном участке Больше-Чалыклинский в объёме 1100 пог. км. / В.Ю. Серебряков ООО «НПК «ГЕОПРОЕКТ», Саратов, 2012. 78с.
- 4. Солоницин С.Н. Переинтерпретация сейсморазведочных данных МОГТ-2Д на Больше-Чалыклинском лицензионном участке в объёме 663 пог. км. / С.Н. Солоницин ООО «ГИЦ», Москва, 2014 г. 133 с.
- 5. Солоницин С.Н. Проект разведочных работ на Наумовском нефтяном месторождении Саратовской области. / С.Н. Солоницин ООО «ГИЦ», Москва, 2016 г. 105 с.
- 6. Шебалдин, В.П. Тектоника и перспективы нефтегазоносности Саратовской области. / В.П. Шебалдин, Ю.И. Никитин, С.В. Яцкевич, М.Г. Шебалдина, Саратов, фонды ОАО « Саратовнефтегеофизика», 1993. 40 с.

- 7. Временное положение об этапах и стадиях геологоразведочных работ на нефть и газ. Временная классификация скважин, бурящихся при геологоразведочных работах и разработке нефтяных и газовых месторождений (залежей). Утверждены приказом Минприроды России от 07.02.2001 № 126. Москва, 2001г. 21 с.
- 8. Инструкция по применению классификации запасов месторождений перспективных и прогнозных ресурсов нефти и горючих газов. Приказ МПР РФ № 477 от 01.11.2013 г. Требования к составу и правилам оформления представляемых на государственную экспертизу материалов по подсчету запасов нефти и горючих газов. Приказ МПР РФ № 564 от 28.12.2015 г. 33 с.
- 9. Правила подготовки проектной документации на проведение геологического изучения недр и разведки месторождений полезных ископаемых по видам полезных ископаемых. Приказ МПР РФ № 352 от 14.06.2016 г. 42 с. 5. Межгосударственный стандарт ГОСТ 32358-2013 «Геофизические исследования и работы в скважинах», / М: Стандартинформ.
- Москва, 2014 г. -17 с.