МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г.ЧЕРНЫШЕВСКОГО»

Кафедра геологии и геохимии горючих ископаемых

Геологическое обоснование поисково-оценочного бурения на Сакмовской структуре (Саратовская область)

АВТОРЕФЕРАТ ДИПЛОМНОЙ РАБОТЫ

студента 6 курса 612 группы заочной формы с	обучения		
геологического факультета			
специальности 21.05.02 «Прикладная геология	«R		
специализация «Геология нефти и газа»			
Молчанова Юрия Сергеевича			
Научный руководитель			
кандидат геолмин.наук, доцент		М.П.	Логинова
Зав. кафедрой			
доктор геолмин.наук, профессор		А.Д.	Коробов

ВВЕДЕНИЕ

Сакмовская структура является перспективной для нефтегазовой Саратовской области. Несмотря отрасли на многолетние геологогеофизические исследования региона, включая сейсморазведку МОГТ, структурное и глубокое бурение, нижние нефтегазоносные комплексы палеозойских отложений остаются слабо изученными из-за незначительного Глубокие количества глубоких скважин. отсутствуют скважины непосредственно на территории Больше-Чалыклинского-1 лицензионного участка (ЛУ), где подготовлена Сакмовская структура. [1].

Актуальность дипломной работы обусловлена необходимостью расширения минерально-сырьевой базы Волго-Уральской нефтегазоносной провинции, где девонские отложения являются основным генерационным комплексом, обеспечивающим до 85% ресурсного потенциала региона [2].

Перспективы обнаружения промышленной нефтегазоносности на Сакмовской площади связываются с бийскими и воробьевскими отложениями среднего девона.

Структура подготовлена к поисково-оценочному бурения в 2009 г. по следующим отражающим горизонтам:

- D₂vb кровля воробьевского горизонта;
- PR кровля протерозойской акротемы.

Целью данной дипломной работы является геологическое обоснование поисково-оценочного бурения на Сакмовской структуре. Для достижения поставленной цели в работе были решены следующие задачи:

- сбор информации по геологическому строению Сакмовской структуры и ближайших месторождений;
- анализ геолого-геофизической изученности территории, включая результаты сейсмических исследований и структурного бурения;
- изучение литолого-стратиграфического разреза с выделением породколлекторов и флюидоупоров;

- изучение тектонического строения исследуемой территории и структуры;
- оценка перспектив нефтегазоносности структуры на основе данных сопредельных месторождений;
 - рекомендации на заложение первой поисково-оценочной скважины.

Дипломная работа состоит из 5 глав, введения, заключения и содержит 43 страницы текста, 4 рисунка, 2 таблицы, 6 графических приложений. Список использованных источников включает 12 наименование.

Основное содержание работы

В административном отношении Больше-Чалыклинский-1 ЛУ, расположен в Краснопартизанском районе Саратовской области [1].

Рельеф местности представляет собой холмистую равнину. Абсолютные отметки рельефа изменяются от + 65 м до + 90 м.

Ближайшей водной артерией является река Сакма, протекающая в 3,8 км северо-западнее площади. В 2,7 км западнее изучаемого района, расположен Саратовский канал.

Среднегодовая температура воздуха +6,5°С. Среднемесячная температура января составляет минус 11,5°С с минимумом до минус 40°С. Температура июля +21,1°С с максимумом до +42°С. Среднегодовое количество осадков -480 мм.

Автомобильная дорога регионального значения Самара-Волгоград в 30 км на север.

Ближайшие месторождения: Балаковское, Марьевское, Коптевское.

Территория ЛУ характеризуется слабой и неравномерной геологогеофизической изученностью [3]. В 40-е годы прошлого века здесь проводились геологическая съемка, геофизические исследования методами гравиразведки и электроразведки с целью изучения основных черт строения палеозойского комплекса и выявления нефтегазоперспективных объектов в пределах Балаковской вершины Пугачевского свода и сопредельных с ней районов. В разрезе Сакмовской структуры установлены следующие ОГ:

- –PR кровля протерозоя;
- -D₂vb кровля воробьёвского горизонта;
- -nD₂k- подошва карбонатных отложений верхнего девона;
- nC2mk+vr- подошва мелекесско-верейских отложений.
- $-nC_1$ аl подошва алексинского горизонта.

Подготовлена же Сакмовская структура к поисково-оценочному бурению по ОГ D_2 vb, PR. На неё составлен паспорт и подсчитаны ресурсы категории D_0 .

Проектный литолого-стратиграфический разрез Сакмовской структуры представлен отложениями протерозойской акротемы, девонской, каменноугольной, пермской, юрской, неогеновой и четвертичной систем, Отложения представлены преимущественно карбонатным составом пород.

Протерозойская акротема представлена крепкими, массивными песчаниками, местами трещиноватыми с прослоями алевролитов. Вскрытая мощность акротемы — 33 м.

С кровлей протерозоя отождествляется отражающий горизонт PR.

Палеозойская эратема представлена девонской, каменноугольной и пермской системами.

Девонская система представлена нижним, средним и верхним отделами.

Нижний отдел девонской системы сложен глинисто-песчаными породами, мощностью 30 м.

Средний отдел девонской системы представлен аргиллитами, песчаниками и известняками, мощностью 160 м.

Верхний отдел девонской системы сложен известняками с прослоями доломитов и аргиллитов, песчаниками с различной степенью глинистости. мощностью 300 м.

Каменноугольная система представлена нижним, средним и верхним отделами.

Нижний отдел сложен известняками, аргиллитами и песчаниками мощностью 325 м.

Средний отдел представлен известняками и глинами; мощность -615 м.

Верхний отдел сложен известняками с маломощными прослоями глин; мощность — 300 м.

Пермская система, представленная нижним отделом, сложена ангидритами и известняками; мощность – 200 м.

Мезозойская эратема представлена юрской системой, которая сложена глинами, алевритами с прослоями алевролитов, мощность системы — 80 м.

Кайнозойская эратема представлена неогеновой и четвертичной системами.

Неогеновая система сложена глинами, с различной степенью песчанитости, мощность — 127 м.

Четвертичная система сложена суглинками, песками с прослоями глин, мошностью 20 м.

Общая мощность разреза составляет 2200 м. В перспективной девонско-нижне-среднекаменноугольной части разреза, присутствуют породы-коллекторы и породы-покрышки, представленные разнообразным составом отложений. В разрезе присутствуют многочисленные несогласия в залегании слоёв, что свидетельствует о сложной истории тектонического развития изучаемой территории.

В тектоническом отношении Сакмовская структура находится в зоне перехода юго-восточного склона Балаковской вершины в Милорадовский прогиб.

Балаковская вершина наиболее четко выражена в разрезе осадочного чехла по горизонтам девона и менее четко — карбона. В пределах Балаковской вершины выходят на поверхность отложения нижнего рифея, окруженные отложениями иргизской свит верхнего рифея [1]. Это указывает на восходящие тектонические движения в досреднедевонское время и последующие подъемы, сопровождавшиеся размывами. На юго-восточном

склоне Балаковской вершины увеличивается толщина карбонатнотерригенных отложений нижнего карбона и девона.

Милорадовский прогиб фиксируется как крупная отрицательная структура, характеризующаяся сравнительно полным разрезом средневерхнедевонских отложений, на фоне резко сокращенных (размытых) разрезов Клинцовской и Балаковской вершин. Заполняющие прогиб отложения верхнего девона, карбона и перми залегают с преимущественным наклоном на юг в сторону Прикаспийской впадины [1].

По поверхности протерозоя (ОГ PR) Сакмовская структура – асимметричная брахиантиклинальная складка с размерами 16,0 х 2,8 км и амплитудой 150 м в контуре изогипсы -2240 м.

По кровле воробьевского горизонта (ОГ D_2 vb) структура сохраняется в контуре изогипсы -2080 с размерами 15,1 х 3,4 км и амплитудой 110 м.

По подошве карбонатного девона (ОГ nD_3k) структура в контуре изогипся -1920 имеет три вершины с размерами 14,0 х 4,8 км и амплитудой 80 м.

нефтегазогеологического Согласно схеме районирования Волго-Уральской нефтегазоносной провинции Больше-Чалыклинский-1 лицензионный участок, на территории которого находится Сакмовская структура, относится к Жигулевско-Пугачевскому НГР Средневолжской нефтегазоносной области. В пределах Больше-Чалыклинского-1 лицензионного участка месторождений углеводородного сырья не выявлено. О потенциале палеозойских отложений свидетельствуют результаты испытаний скважин, находящихся на сопредельных территориях.

В пределах проектного разреза Сакмовской структуры, выделяются следующие перспективные в нефтегазогеологическом отношении отложения:

- верейско+мелекесские терригенные;
- черемшанско+прикамские карбонатные;
- косьвинско+радаевско+бобриковские терригенные;
- черепетско+кизеловские карбонатные;

- тиманско+пашийские терригенные;
- ардатовские терригенные;
- воробьевские терригенные;
- мосоловские карбонатные;
- бийские карбонатные.

Ближайшими месторождениями к Сакмовской структуре являются Балаковское, Марьевское, Коптевское, др [4].

О потенциальной продуктивности палеозойского разреза в пределах Сакмовского поднятия свидетельствуют следующие показатели:

- 1) Уверенное картирование Сакмовской структуры, находящейся на юге Волго-Уральской нефтегазоносной провинции, где девонские отложения являются доминирующим комплексом, на долю которого приходится около 80-85% суммарного генерационного потенциала всего осадочного чехла, что доказывается открытием многочисленных месторождений нефти и газа, причем приуроченных к различным геотектоническим зонам. Отложения терригенного девона являются регионально нефтегазоносными.
- 2) Многочисленные нефтегазопроявления, зафиксированные при бурении глубоких скважин (Чапаевская, Марьевская, Южно-Марьевская, Клинцовская, Красно-Ярская площади) на сопредельных территориях и открытие месторождений УВ (Коптевское, Балаковское) свидетельствуют о высоких перспективах палеозойской части разреза данного региона.

При оценке подготовленных ресурсов углеводородов категории D_0 Сакмовской структуры ПО бийским отложениям среднего использовались параметры одновозрастной газовой залежи Коптевского месторождения, расположенного на Марьевской вершине Пугачевского свода. При оценке подготовленных ресурсов углеводородов категории ${\bf D}_0$ воробьевского объекта использовались подсчетные параметры одновозрастной залежи Мечеткинского месторождения, расположенного на крайнем востоке Степновского сложного вала [1].

Суммарные подготовленные ресурсы УВ категории D_0 по Сакмовской структуре составляют:

- извлекаемые нефти 2730,8 тыс. т.;
- извлекаемые газа, растворенного в нефти -453.9 млн м³;
- свободного газа -5394,8 млрд м^3 .

Исходя вышеизложенного, Сакмовская структура ИЗ является перспективной нефтегазоносном отношении. Потенциально В перспективными являются отложения от среднего девона до среднего карбона включительно, но основные перспективы связаны с отложениями девона (бийскими И воробьёвскими), поэтому опоискования Сакмовской структуры, рекомендуется заложение поисковооценочный скважины №1.

Обоснованием поисково-оценочного бурения на Сакмовской структуре является следующее:

- изученность структуры детальной сейсморазведкой МОГТ-2D, она фиксируется по ОГ D_2 vb и ОГ PR.
- в девонской части разреза присутствуют породы-коллекторы и породы покрышки, представленные терригенным и карбонатным составом;
- исследуемая структура находится в пределах Жигулёвско-Пугачёвского НГР, где установлены многочисленные месторождения нефти и газа.
 - оценка подготовленных ресурсов категории D_0 .

Рекомендуемое местоположение скважины №1, определено с учетом геологического строения структуры. Скважина закладывается на пересечении профилей KSN-228, 030807-173, в наилучших структурных условиях. Проектная глубина - 2200 м. Проектный горизонт — протерозой. За основу для заложения скважины №1 приняты структурные карты по отражающим горизонтам PR и D_2 vb.

Для решения задач, стоящих перед скв. №1 в ней необходимо провести комплекс геолого-геофизических исследований: отбор керна и шлама, ГИС,

опробование, испытание, лабораторные исследования керна и пластовых флюидов.

Бурение скважины №1 уточнит геологическое строение изучаемого объекта, подсчетные параметры выявленных залежей и позволит подсчитать запасы категорий C_1 и C_2 . Полученные данные станут основой для дальнейшей доразведки и подготовки к разработке открытого месторождения.

ЗАКЛЮЧЕНИЕ

Сакмовская структура обладает высоким потенциалом для обнаружения промышленных залежей углеводородов в девонских и нижнесреднекаменноугольных отложениях.

Анализ геолого-геофизической информации по строению Сакмовской структуры позволил обосновать необходимость поисково-оценочного бурения на Сакмовской структуре, расположенной в зоне перехода юговосточного склона Балаковской вершины Пугачевского свода в Милорадовский прогиб. Результаты исследований в дипломной работе заключаются в следующем:

- геолого-геофизическая изученность территории подтвердила наличие перспективных объектов в палеозойских отложениях, однако глубокое бурение ранее не проводилось. Анализ данных сейсморазведки МОГТ-2D и структурного бурения позволил оценить Сакмовскую структуру как многоярусную антиклиналь, перспективную в нефтегазоносном отношении.
- перспективы нефтегазоносности палеозойских отложений подтверждаются открытием соседних месторождений (Балаковское, Марьевское, Коптевское и др.). Продуктивными могут являться бийские, воробьевские и другие выше залегающие отложения девона, нижнего и среднего карбона, где установлены промышленные притоки нефти и газа на указанных месторождениях и бликих территориях. Подготовленные ресурсы углеводородов категории D₀ на Сакмовской структуре составляют 2730,8 тыс т нефти и 5394,8 млн м³ газа.

С целью опоискования Сакмовской структуры рекомендуется бурение скважины №1 на пересечении профилей KSN-228 и 030807-173, проектная глубина - 2200 м, проектный горизонт — протерозой. Комплекс скважинных геолого-геофизических исследований: отбор керна и шлама в перспективных интервалах, ГИС, опробование и испытание пластов, лабораторное изучение керна и пластовых флюидов позволит решить поисково-оценочные задачи скважины №1.

Бурение скважины $Nollow{0}1$ уточнит геологическое строение, подсчетные параметры выявленных залежей и подсчитать запасы категорий C_1 и C_2 .

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1 Резепова, О. П. Паспорт на Сакмовскую структуру, подготовленную к поисковому бурению на нефть и газ /О. П. Резепова, А.Ю. Харькова Саратов: ФГУП «НВНИИГГ», 2009. 129 с.
- 2 Багаманова, С.В. Геология Волго-Уральской нефтегазоносной провинции: учебное пособие /С.В. Багманова, А. С. Степанов, А. В. Коломоец, М. П. Трифонова Оренбург: ОГУ, 2019. 127 с.
- 3 Иванова, Е. А. Сейсморазведочные работы МОГТ-2D на Больше-Чалыклинском-1 лицензионном участке с целью поиска нефтегазоперспективных объектов по горизонтам в отложениях палеозоя : отчет по договору № 0907 / Е.А. Иванова Саратов: ФГУП «НВНИИГГ», 2008. 98 с.
- 4 Клещев, К. А. Нефтяные и газовые месторождения России: Справочник в двух книгах. Книга первая европейская часть России / К.А. Клещев, В.С. Шеин М. : ВНИГНИ, 2010. 832 с.
- 5 Малышев, Н. А. Тектоника, эволюция и нефтегазоносность осадочных бассейнов Европейского севера России /Н.А. Малышева Екатеринбург, 2002. 270 с.