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ВВЕДЕНИЕ 

 

Проблема безопасного и надёжного хранения конфиденциальной 

информации, такой как криптографические ключи, биометрические данные или 

государственные секреты, остаётся одной из фундаментальных задач 

криптографии на протяжении десятилетий. Традиционный подход с хранением 

секрета в единственном месте создаёт критическую уязвимость – «единую точку 

отказа», компрометация которой ведёт к полной потере защищаемых данных. 

Исторически предпринимались попытки решения через механические аналогии, 

однако они приводили к комбинаторному взрыву сложности, делающему их 

непригодными на практике. 

Решением стали пороговые схемы разделения секрета, обеспечивающие 

совершенную секретность и устранение комбинаторного взрыва сложности. 

Однако на практике требование совершенной безопасности часто вступает в 

конфликт с требованиями к вычислительной и хранимой избыточности, 

особенно при работе с большими объемами данных. В связи с этим в последние 

десятилетия значительный интерес вызвали рамп-схемы, предлагающие 

управляемый компромисс между уровнем защищённости и эффективностью. 

Актуальность и новизна работы обусловлена растущей потребностью в 

практичных криптографических примитивах для распределённого хранения 

больших данных (например, ключевых материалов, биометрических шаблонов, 

конфиденциальных документов). Рамп-схемы, предлагая настраиваемый баланс 

между безопасностью и производительностью, представляют собой 

перспективное направление развития криптографии. В данной работе 

проводится систематический анализ и реализация линейных рамп-схем на 

основе классических конструкций Шамира и Блэкли, что позволяет не только 

углубить теоретическое понимание их свойств, но и оценить их практическую 

применимость. 

Данная работа опирается на фундаментальные результаты Шамира [2] и 

Блэкли [3], а также на последующие исследования в области рамп-схем, в 
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частности, работы Блэкли и Медоуза [4] и унифицированный алгебраический 

подход Котари [6]. Практическая часть работы развивает идеи, изложенные в 

учебных пособиях [5] и руководствах по реализации [8]. 

Целью работы является систематическое исследование, формализация и 

практическая реализация рамп-схем разделения секрета на базе классических 

конструкций Шамира и Блэкли. 

Для достижения поставленной цели решаются следующие задачи: 

1. Провести анализ классических пороговых схем разделения секрета и 

выявить их ограничения. 

2. Исследовать теоретические основы (𝑑, 𝑘, 𝑛) рамп-схем. 

3. Исследовать жёсткие линейные рамп-схемы разделения секрета на базе 

конструкций Шамира и Блэкли. 

4. Разработать программный пакет на языке Python, с помощью которого 

можно провести протокол разделения секрета на основе рамп-схемы 

исследуемых рамп-схем на языке Python с веб-интерфейсом для наглядной 

демонстрации их работы. 

Дипломная работа состоит из введения, 3 разделов, заключения, списка 

использованных источников и 1 приложения. Общий объем работы – 57 страниц, 

из них 49 страниц – основное содержание, включая 20 рисунков и 1 таблицу, 

список использованных источников из 10 наименований. 
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КРАТКОЕ СОДЕРЖАНИЕ 

 

В разделе 1 рассматривается фундаментальная проблема разделения 

секрета и пороговые (𝑘, 𝑛) схемы, в частности схемы Шамира и Блэкли, которые 

служат основой для развития более общей концепции – (𝑑, 𝑘, 𝑛) рамп-схем 

разделения секрета. 

Пусть имеются несколько участников схемы, между которыми требуется 

разделить некоторый секрет 𝑠, и некоторый доверенный участник 𝑇, называемый 

дилером, который разделяет 𝑠 на множество долей секрета 𝑆 = {𝑠1, … , 𝑠𝑛} 

размерности 𝑛. Назовём порогом натуральное число 𝑘, не большее чем 𝑛 (т.е.  

1 ≤ 𝑘 ≤ 𝑛). Каждый участник получает от дилера некоторое число долей 𝑠𝑖, 

которые неизвестны остальным участникам.  

Определение 1.1. Система называется (𝑘, 𝑛) пороговой схемой разделения 

секрета, если выполнены следующие условия [5]: 

 условие корректности: секрет 𝑠 легко может быть вычислен по 

произвольному 𝑘-элементному подмножеству множества 𝑆; 

 условие совершенности: секрет 𝑠 нельзя вычислить ни по какому       

(𝑘 − 1)-элементному подмножеству множества 𝑆. 

Замечание 1.1. Стоит отметить, что условие совершенности 

подразумевает также, что любое (𝑘 − 1)-элементное подмножество множества 

𝑆, не должно раскрывать абсолютно ничего о секрете. Более очевидно это 

описывается через функцию энтропии в труде Котари: 

 условие корректности: 𝐻(𝑠|𝑠𝑖1 , 𝑠𝑖2 , … , 𝑠𝑖𝑘) = 0; 

 условие совершенности: 𝐻(𝑠) = 𝐻(𝑠|𝑠𝑖1 , 𝑠𝑖2 , … , 𝑠𝑖𝑘−1). 

Раздел 2 посвящён формализации их ключевого свойства – относительной 

по Шеннону секретности, отличающей эти схемы от классических пороговых. В 

нём вводится и обобщается математическое определение рамп-схемы. 

Основное соображение безопасности в линейной пороговой схемы – это 

«всё или ничего», то есть совершенная по Шеннону секретность, а именно 



5 

 

никакой объём знаний о долях ниже порогового значения 𝑘 не позволяет 

байесовскому противнику уточнить априорную догадку относительно 

защищаемого секрета. 

Основное соображение безопасности в (𝑑, 𝑘, 𝑛) рамп-схеме – это 

относительная по Шеннону секретность. При этом каждая доля частично 

сокращает пространство возможных секретов, однако внутри оставшегося 

подпространства априорные предположения противника не могут быть 

скорректированы – распределение вероятностей для допустимых значений 

секрета остаётся равномерным. 

Определение 2.1. (𝑑, 𝑘, 𝑛) рамп-схемы, где 1 ≤ 𝑑 ≤ 𝑘 ≤ 𝑛, определяются 

следующим образом. Пусть 𝑉 – пространство сокрытия и 𝑊 – пространство 

секретов таких, что 

log|𝑉|

log|𝑊|
=
𝑘

𝑑
. 

Пусть 𝜑:𝑉 → 𝑊 – сюрьективное отображение, то есть такое отображение, что 

для ∀𝑤 ∈ 𝑊 ∃𝑣 ∈ 𝑉 такой, что 𝜑(𝑣) = 𝑤. Мы будем называть 𝜑 раскрывающим 

отображением. Для заданного секрета 𝑤 в 𝑊 мы выбираем точку 𝑦 ∈ 𝜑−1(𝑤), 

называемую точкой сокрытия. С этой точкой 𝑦 мы связываем набор из 𝑛 долей 

{𝑌(1), 𝑌(2),… , 𝑌(𝑛)}, 

где каждая доля 𝑌(𝑖) является подпространством 𝑉 таким, что 

a) пересечение ∩ любых 𝑘 долей равно {𝑦}; 

b) существует целое число 𝜆, зависящее от 𝑑 и 𝑘, такое, что 

i) 1 ≤ 𝜆 ≤ 𝑘; 

ii) ограничение 𝜑 на объединение 𝜆 долей является сюрьективным; 

iii) знание о 𝑤 = 𝜑(𝑦) возрастает некоторым регулярным образом с 

получением каждой новой доли после 𝜆 долей. 

В разделе 3 изложен основной результат работы: рассмотрены жесткие 

линейные рамп-схемы разделения секрета, а также разработан программный 

пакет, с помощью которого возможна корректная работа со схемами. 
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В подразделе 3.1 приведено описание генерации публичных параметров, 

алгоритмов разделения и восстановления для рамп-схемы разделения секрета 

Шамира.  

Генерация публичных параметров схемы: 

Пусть 𝐹𝑝 – конечное поле, где 𝑝 – некоторое простое число, 𝑑, 𝑘, 𝑛 ∈ ℕ/{0} 

– параметры схемы, причём 𝑑 ≤ 𝑘 ≤ 𝑛 и 𝑛 + 𝑑 < 𝑝. Случайным образом 

выбираются попарно различные 𝑞1, … , 𝑞𝑛 ∈ 𝐹𝑝/{0} и 𝑔1, … , 𝑔𝑑 ∈ 𝐹𝑝/{0}. 

Обозначим пространство сокрытия 𝑉 = 𝐹𝑝
𝑘 и пространство секретов      

𝑊 = 𝐹𝑝
𝑑 и линейное отображение 𝜑:𝑉 → 𝑊, заданное матрицей Вандермонда 

𝐺𝑑×𝑘 составленной из 𝑔1, … , 𝑔𝑑, 𝜑(𝑣̅) = 𝐺𝑑×𝑘 ∙ 𝑣̅
𝑇, где 𝑣̅ ∈ 𝑉. 

Алгоритм разделения: 

Вход: секретный вектор 𝑤̅ = (𝑤1, … , 𝑤𝑑) ∈ 𝑊. 

Выход: набор из 𝑛 долей {𝑐1, … , 𝑐𝑛}, где ∀𝑐𝑖 ∈ 𝐹𝑝, для 𝑖 = 1, 𝑛. 

Шаг 1. Дилер выбирает точку сокрытия 𝑦̅ = (𝑎0, … , 𝑎𝑘−1) ∈ 𝑉, где 

𝑎𝑑 , … , 𝑎𝑘−1 выбираются случайно, такую что 𝐿(𝑔̅𝑖) = 𝑤𝑖, где 𝑔̅𝑖 =

(1, 𝑔𝑖 , 𝑔𝑖
2, … , 𝑔𝑖

𝑘−1), 𝐿(𝑣̅) = 〈𝑦̅, 𝑣̅〉 – линейный функционал. В контексте 

многочленов, дилер должен выбрать точку сокрытия такую, что 

{
 
 
 

 
 
 𝑎0 + 𝑎1𝑔1 + 𝑎2𝑔1

2 +⋯+ 𝑎𝑑𝑔1
𝑑 = 𝑤1 −∑ 𝑎𝑡𝑔1

𝑡
𝑘−1

𝑡=𝑑

𝑎0 + 𝑎1𝑔2 + 𝑎2𝑔2
2 +⋯+ 𝑎𝑑𝑔2

𝑑 = 𝑤2 −∑ 𝑎𝑡𝑔2
𝑡

𝑘−1

𝑡=𝑑

⋮

𝑎0 + 𝑎1𝑔𝑑 + 𝑎2𝑔𝑑
2 +⋯+ 𝑎𝑑𝑔𝑑

𝑑 = 𝑤𝑑 −∑ 𝑎𝑡𝑔𝑑
𝑡

𝑘−1

𝑡=𝑑

. 

Шаг 2. Для всех 𝑖 = 1, 𝑛 дилер вычисляет смещения 𝑐𝑖 = 𝐿(𝑞̅𝑖) = 〈𝑦̅, 𝑞̅𝑖〉, 

где 𝑞̅𝑖 = (1, 𝑞𝑖 , 𝑞𝑖
2, … , 𝑞𝑖

𝑘−1). 

Шаг 3. Дилер раздаёт 𝑐𝑖 держателям долей и удаляет закрытые данные, а 

именно точку сокрытия 𝑦̅ и секретный вектор 𝑤̅. 

Временная сложность 𝑂(𝑑2 + 𝑛𝑘). 

Алгоритм восстановления: 
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Вход: набор долей {𝑐1, … , 𝑐𝑧}, где 1 ≤ 𝑧 ≤ 𝑛. 

Выход: секретный вектор 𝑤̅ = (𝑤1, … , 𝑤𝑑) ∈ 𝑊  или сообщение об ошибке 

восстановления. 

Шаг 1. При наличии 𝑧 ≥ 𝑘 долей участники вычисляют систему линейных 

уравнений для неизвестной точки сокрытия 𝑦̅. 

{
〈𝑦̅, 𝑞̅1〉 = 𝑐1

⋮
〈𝑦̅, 𝑞̅𝑧〉 = 𝑐𝑧

, 

или в контексте многочленов решить 

{
𝑎0 + 𝑎1𝑞1 + 𝑎2𝑞1

2 +⋯+ 𝑎𝑘−1𝑞1
𝑘−1 = 𝑐1

⋮
𝑎0 + 𝑎1𝑞1 + 𝑎2𝑞1

2 +⋯+ 𝑎𝑘−1𝑞1
𝑘−1 = 𝑐2

. 

Так как векторы 𝑞̅𝑖 линейно независимы, система имеет единственное 

решение. В контексте многочленов решить систему, согласно предложению 1.1, 

можно с помощью интерполяции полиномов. Вернуть 𝜑(𝑦̅) = 𝐺𝑑×𝑘 ∙ 𝑦̅
𝑇 = 𝑤̅. 

Шаг 2. При наличии 𝑧 < 𝑘 долей, участники не смогут восстановить секрет 

ни коим образом. Вернуть сообщение об ошибке восстановления. 

Временная сложность 𝑂(𝑘2 + 𝑑𝑘). 

В подразделе 3.2 приведено описание генерации публичных параметров, 

алгоритмов разделения и восстановления для рамп-схемы разделения секрета 

Блэкли.  

Протокол рамп-схемы разделения секрета Блэкли: 

Генерация публичных параметров: 

Пусть 𝐹𝑝 – конечное поле, где 𝑝 – некоторое простое число, 𝑑, 𝑘, 𝑛 ∈ ℕ/{0} 

– параметры схемы, причём 𝑑 ≤ 𝑘 ≤ 𝑛. Выбираются 𝑛 + 𝑑 векторов 

{𝑔̅1, … , 𝑔̅𝑑 , 𝑞̅1, … , 𝑞̅𝑛} ∈ 𝐹𝑝
𝑘, такие, что любые 𝑘 из них линейно независимы. 

 Обозначим пространство сокрытия 𝑉 = 𝐹𝑝
𝑘 и пространство секретов      

𝑊 = 𝐹𝑝
𝑑 и линейное отображение 𝜑:𝑉 → 𝑊, которое задаётся как                                         

𝜑(𝑣̅) = (〈𝑣̅, 𝑔̅1〉, … , 〈𝑣̅, 𝑔̅𝑑〉). 

Алгоритм разделения: 
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Вход: секретный вектор 𝑤̅ = (𝑤1, … , 𝑤𝑑) ∈ 𝑊. 

Выход: набор из 𝑛 долей {𝑐1, … , 𝑐𝑛}, где ∀𝑐𝑖 ∈ 𝐹𝑝, для 𝑖 = 1, 𝑛. 

Шаг 1. Дилер выбирает точку сокрытия 𝑦̅ = (𝑎̅1, … , 𝑎̅𝑘) ∈ 𝑉, такую что 

выполняется 

𝜑(𝑦) = 𝑤. 

Шаг 2. Для 𝑖 = 1, 𝑛 дилер вычисляет смещения 𝑐𝑖 = 〈𝑦̅, 𝑞̅𝑖〉. 

Шаг 3. Дилер раздает доли 𝑐𝑖 участникам схемы и удаляет закрытые 

данные, а именно точку сокрытия 𝑦̅ и секретный вектор 𝑤̅. 

Временная сложность 𝑂(𝑑𝑘 + 𝑛𝑘). 

Алгоритм восстановления: 

Вход: набор долей {𝑐1, … , 𝑐𝑧}, где 1 ≤ 𝑧 ≤ 𝑛. 

Выход: секретный вектор 𝑤̅ = (𝑤1, … , 𝑤𝑑) ∈ 𝑊  или сообщение об ошибке 

восстановления. 

Шаг 1. Если 𝑧 ≥ 𝑘 участники решают систему линейных уравнений 

относительно неизвестного 𝑦̅ 

{
〈𝑦̅, 𝑞̅1〉 = 𝑐1

⋮
〈𝑦̅, 𝑞̅𝑧〉 = 𝑐𝑧

. 

Поскольку любые 𝑘 векторов 𝑞̅𝑖 линейно независимы, система имеет 

единственное решение 𝑦̅. Вернуть 𝜑(𝑦̅) = (〈𝑦̅, 𝑔̅1〉, … , 〈𝑦̅, 𝑔̅𝑑〉) = 𝑤̅. 

Шаг 2. Если 𝑧 < 𝑘 вернуть сообщение об ошибке восстановления. 

Временная сложность 𝑂(𝑘3 + 𝑑𝑘). 

В подразделе 3.3 описан программный пакет «Ramp Sharing» на языке 

Python. Его архитектура обеспечивает выполнение основных этапов работы 

жёстких линейных рамп-схем: генерацию публичных параметров, разделение 

секретов на доли и восстановление секретов из долей. 

Программный пакет состоит из 2 частей: 

1. Ядро, содержащее всю необходимую алгебраическую логику и 

реализации рамп-схем. 
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2. Пользовательское веб-приложение с интерфейсом (webUI), 

обеспечивающее удобную работу со схемами через браузер. 

Экспериментальная проверка подтвердила корректность 

функционирования пакета на всех этапах обработки данных в рамках жёстких 

линейных рамп-схем. 
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ЗАКЛЮЧЕНИЕ 

 

В ходе выполнения работы проведено комплексное исследование рамп-

схем разделения секрета – криптографических примитивов, представляющих 

собой обобщение классических пороговых схем. Основным результатом 

является преодоление ключевого ограничения пороговых схем – низкой 

эффективности при работе с большими объёмами данных – за счёт 

контролируемого компромисса между совершенной секретностью и ресурсными 

затратами. 

На основе анализа классических схем Шамира и Блэкли подтверждено, что 

их свойство совершенной секретности по Шеннону ведёт к 𝑘-кратному росту 

объёма обрабатываемых данных на этапе восстановления, что становится 

критичным при высоких порогах 𝑘 и больших секретах. 

Исследована теоретическая модель (𝑑, 𝑘, 𝑛) рамп-схем. Показано, что 

введение параметра 𝑑 позволяет кодировать несколько независимых секретов в 

одной схеме. Доказано, что безопасность таких схем характеризуется понятием 

относительной секретности по Шеннону, при которой информация о секрете 

раскрывается постепенно по мере накопления долей, от полной 

неопределённости до полного восстановления. 

В рамках унифицированного алгебраического подхода Котари дано 

строгое описание и доказаны свойства безопасности жёстких линейных рамп-

схем на базе конструкций Шамира и Блэкли. Ключевым преимуществом жёстких 

схем является фиксация публичных параметров (направляющих векторов), что 

позволяет хранить и передавать только скалярные смещения, значительно 

экономя ресурсы. 

Разработан программный пакет на языке Python, включающий: 

 Библиотеку с реализацией алгебры конечных полей и трёх вариантов 

рамп-схем. 
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 Веб-приложение с графическим интерфейсом, обеспечивающее 

интуитивно понятное выполнение всех этапов работы схемы: 

генерацию параметров, разделение секрета и его восстановление. 

Экспериментальная проверка на тестовых данных подтвердила полную 

корректность реализаций: исходные данные однозначно восстанавливаются при 

предъявлении не менее 𝑘 долей, соответствующей схеме; при предъявлении 

меньшего числа долей восстановление невозможно. Программный пакет служит 

наглядным инструментом для изучения и демонстрации свойств рамп-схем. 

Все поставленные задачи решены в полном объёме. Проведён 

теоретический анализ, дано формальное обоснование, разработана и 

протестирована практическая реализация. 

Рамп-схемы демонстрируют значительный выигрыш в эффективности по 

сравнению с классическими пороговыми схемами. Так, для параметров (𝑑, 𝑘, 𝑛) 

общий объём хранимых долей и данных, требуемых для восстановления, 

уменьшается примерно в 𝑑 раз по сравнению с (1, 𝑘, 𝑛) пороговой схемой. 

Реализованные жёсткие схемы минимизируют накладные расходы на передачу и 

хранение долей. Таким образом, работа вносит вклад в развитие практико-

ориентированных криптографических методов, предлагая сбалансированное 

решение для современных задач защиты информации. 

Теоретические результаты и строгие формулировки могут быть 

использованы в учебном процессе при изучении современных 

криптографических протоколов. Разработанный программный комплекс готов к 

использованию как демонстрационный и исследовательский инструмент для 

анализа параметров и свойств рамп-схем. Архитектура и алгоритмы реализации 

могут служить основой для построения реальных систем распределённого 

безопасного хранения данных в условиях, где абсолютная совершенная 

секретность избыточна, а на первый план выходят требования к эффективности 

и управляемому уровню риска. 


