
МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение

высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ

ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Кафедра теоретических основ

компьютерной безопасности и

криптографии

Отслеживание потока данных в исходном коде программ на языке C

АВТОРЕФЕРАТ

дипломной работы

студента 6 курса 631 группы

специальности 10.05.01 Компьютерная безопасность

факультета компьютерных наук и информационных технологий

Сенокосова Владислава Владимировича

Научный руководитель

старший преподаватель __________ A.A. Лобов

 19.01.2026 г.

Заведующий кафедрой

д. ф.-м. н., профессор __________ М.Б. Абросимов

 19.01.2026 г.

Саратов 2026

2

ВВЕДЕНИЕ

Цифровые технологии стали неотъемлемой частью жизни,

трансформируя взаимодействие, работу и доступ к информации. Они

упрощают решение задач, что приводит к росту онлайн-сервисов – от

электронной коммерции до соцсетей. Однако цифровизация сопровождается

серьёзными угрозами безопасности. Ошибки в программной логике могут

стать причиной утечек конфиденциальных данных, наносящих

репутационный и финансовый ущерб.

Особую сложность представляет анализ крупных проектов, где ручной

аудит кода невозможен из-за ограничений по времени и бюджету. Наиболее

эффективным решением являются инструменты статического анализа,

позволяющие автоматизировать поиск уязвимостей на ранних этапах

разработки.

Актуальность работы обусловлена широким использованием языка C в

критически важных системах (ОС, встроенные системы, серверные

приложения). Низкоуровневый характер C даёт разработчику гибкость, но

требует высокой дисциплины работы с памятью, что повышает риск

уязвимостей, включая утечки информации.

Цель работы – исследование и разработка методов обнаружения

потенциальных утечек данных в исходном коде на C.

Задачи работы:

1. Изучить проблему утечек данных и их последствия.

2. Проанализировать теоретические основы статического анализа

кода.

3. Сравнить возможности современных статических анализаторов.

4. Исследовать методы и алгоритмы статического анализа.

5. Изучить особенности языка C, связанные с управлением памятью.

6. Разработать статический анализатор для C-кода, способный

находить утечки в отдельных файлах и проектах.

3

Дипломная работа состоит из введения, 3-x разделов, заключения,

списка использованных источников и 2-x приложения. Общий объем работы

– 108 страниц, из них 50 страниц – основное содержание, включая 21 рисунок,

список использованных источников из 13 наименований.

4

КРАТКОЕ СОДЕРЖАНИЕ

В первом разделе «Актуальность проблемы утечек данных в

современной кибербезопасности» исследуется проблема утечек информации

как устойчивой и значимой угрозы в условиях цифровой трансформации.

Проводится анализ современной цифровой среды, характеризующейся

экспоненциальным ростом информационных систем, онлайн-сервисов и

объёмов обрабатываемых конфиденциальных данных.

Утечка данных определяется как нарушение конфиденциальности

информации, приводящее к её несанкционированному раскрытию или выходу

за пределы контролируемой среды. Источники утечек классифицируются на

внешние (злоумышленники) и внутренние (пользователи, ошибки разработки

и эксплуатации ПО).

Анализируется современный ландшафт киберугроз, где утечки данных

занимают центральное положение наряду с вредоносным ПО и сетевыми

атаками. Устанавливается, что значительная доля инцидентов обусловлена не

целенаправленными атаками, а дефектами программной реализации,

некорректной обработкой данных и нарушениями бизнес-логики.

Подчёркивается, что подобные уязвимости часто латентны на этапе

разработки и манифестируют в фазе эксплуатации.

Исследуются статистические тенденции инцидентов, демонстрирующие

устойчивый рост как количественных показателей, так и масштаба

последствий. Согласно данным, в 4 квартале 2024 года общее число

инцидентов увеличилось на 5% относительно предыдущего квартала и на 13%

в годовом исчислении. Компрометация массивов персональных,

коммерческих и служебных данных приводит к существенным финансовым

потерям, регуляторным санкциям, судебным разбирательствам и длительной

эрозии доверия.

На основе аналитических отчётов InfoWatch проводится обобщение

статистики, подтверждающее, что утечки данных стабильно входят в число

наиболее распространённых инцидентов, причём существенная их часть

5

коррелирует с ошибками программного обеспечения. Отмечается

проблематика позднего обнаружения утечек, многократно увеличивающего

совокупный ущерб.

Отдельный подраздел посвящён критической роли программного

обеспечения на языке C в инфраструктурном контексте. Доказывается его

широкое применение в разработке операционных систем, встроенных

решений и высокопроизводительных компонентов. Устанавливается, что

ошибки управления памятью, работы с указателями и межпроцедурной

передачи данных являются доминирующим источником уязвимостей,

потенцирующих утечки информации. Делается вывод о необходимости

автоматизированных средств статического анализа ввиду низкоуровневой

природы языка, требующей высокой дисциплины разработки.

Во втором разделе исследуются теоретические аспекты возникновения

утечек информации на уровне программной логики и методологии их

обнаружения.

Анализируются основные механизмы детектирования: динамический и

статический анализ. Динамический анализ, основанный на наблюдении за

поведением программы во время выполнения, позволяет выявлять

реализуемые сценарии утечек, но требует наличия тестовых данных и не

обеспечивает полного покрытия путей выполнения. Статический анализ,

осуществляемый без запуска программы путём изучения её исходного кода,

является более эффективным на этапах проектирования и разработки,

поскольку выявляет потенциальные уязвимости.

Вводится понятие статического анализатора кода — программного

средства для выявления дефектов и угроз безопасности путём анализа

исходного кода. Рассматриваются ключевые этапы его работы: парсинг,

построение абстрактного синтаксического дерева (AST), анализ вызовов

функций и отслеживание потоков данных между переменными и модулями.

Определяются преимущества статического анализа: возможность

раннего обнаружения уязвимостей в жизненном цикле ПО, отсутствие

6

необходимости выполнения программы, анализ всех потенциальных путей

выполнения, масштабируемость на большие кодовые базы. Подчёркивается

способность метода выявлять сложно воспроизводимые при тестировании

ошибки, включая транзитивные утечки данных.

Отмечаются ограничения метода: риск ложноположительных

срабатываний, сложность анализа динамических структур данных, указателей

и внешних библиотек (особенно характерная для языка C), а также

зависимость точности от совершенства алгоритмов и полноты описания

опасных источников и приёмников данных.

Проводится обзор существующих решений для поиска утечек,

анализируются их функциональные возможности и ограничения

применительно к языку C. Устанавливается, что многие инструменты не в

полной мере поддерживают обнаружение сложных сценариев утечек,

связанных с транзитивными вызовами и межфайловым взаимодействием, что

снижает их эффективность в реальных проектах.

В заключении раздела рассматриваются фундаментальные подходы

статического анализа:

• анализ потоков данных (Data-Flow Analysis);

• taint-анализ (Taint Analysis);

• построение графов вызовов функций (Call Graph Construction);

• межпроцедурный анализ (Interprocedural Analysis).

Делается вывод, что комбинация указанных подходов позволяет

повысить точность детектирования утечек информации и адекватно учитывать

архитектурные особенности программ, реализованных на языке C.

Третий раздел посвящён практической реализации статического

анализатора для отслеживания потоков данных в исходном коде программ на

языке C.

В начале раздела описываются используемые инструменты разработки

и программные средства. Обосновывается выбор технологий,

7

обеспечивающих корректный разбор исходного C-кода и построение

абстрактного синтаксического дерева.

Абстрактное синтаксическое дерево (AST) – это иерархическое

представление структуры программы, используемое для анализа её логики и

взаимосвязей между элементами кода.

Далее рассматриваются применённые подходы анализа программы.

Подробно описывается алгоритм детектирования опасных функций, анализ их

аргументов и определение источников конфиденциальных данных. Особое

внимание уделяется транзитивному анализу, позволяющему выявлять

цепочки вызовов, через которые данные могут утекать опосредованно.

Отдельно описывается межфайловый анализ, обеспечивающий

отслеживание потоков данных между различными файлами и модулями

проекта. Этот подход позволяет выявлять утечки, распределённые по

нескольким компонентам программы.

Приводится описание функциональных возможностей разработанного

анализатора, включая:

• конфигурируемый список опасных функций;

• анализ аргументов вызовов;

• многоформатную систему отчетности;

• визуализацию результатов анализа;

• поддержку анализа заголовочных файлов и библиотек.

Конфигурационный файл для программы представлен на рисунке 1. Он

содержит в себе всю необходимую информацию о путях, где хранятся

компиляторы, входных и выходных файлах, режимах работы и опасных

функциях с их описанием:

8

Рисунок 1 – Содержимое конфигурационного файла json_launch.json

В качестве тестовой программы будет рассмотрена следующая (см. рис. 2):

9

Рисунок 2 – Программа test_1.c опасными функциями для тестирования программы

parse_nodes.py

Рисунок 3 – Данные о прямом вызове функций

10

В результате был получен такой результат report.txt, в котором есть

указание прямых вызовов (см. рис. 3):

Цепочки вызовов функций показаны на рисунке 4

Рисунок 4 – Цепочки вызовов функций и подробным описанием

Детальный отчет report.txt содержит более содержательный отчет, с

указанием функций, где были найдены опасные функции см. рис. 5

11

Рисунок 5 – Подробная статистика, представленная в report.txt

Результаты тестирования наглядно доказали эффективность

разработанного статического анализатора. Инструмент корректно выполняет

свою основную функцию: обнаруживает участки кода, где конфиденциальные

данные могут попасть в опасные функции, как напрямую, так и через сложные

цепочки вызовов между модулями. Программный комплекс готов к решению

прикладных задач аудита безопасности C-программ, а модульная архитектура

и многоформатная система отчётов открывают возможности для его

адаптации и интеграции в современные CI/CD-конвейеры.

12

ЗАКЛЮЧЕНИЕ

Проведённое исследование комплексно рассмотрело проблему утечек

данных в ПО, особенно в программах на C, лежащих в основе критической

инфраструктуры. Изучение статистики инцидентов подтвердило актуальность

разработки автоматизированных средств защиты. Теоретический анализ

методов статического анализа (потоки данных, символьное выполнение, taint-

анализ) заложил основу для практической реализации. Сравнение

существующих инструментов выявило необходимость поддержки

транзитивного и межфайлового анализа для обнаружения сложных

уязвимостей.

В результате разработан статический анализатор для C-кода, способный

находить не только прямые вызовы опасных функций, но и сложные сценарии

утечек благодаря транзитивному и межфайловому анализу. Ключевое

достижение – возможность отслеживать цепочки вызовов через несколько

функций и модулей, выявляя уязвимости, не обнаруживаемые базовыми

методами.

Тестирование подтвердило работоспособность системы для проектов

разной сложности. Инструмент готов к интеграции в процесс разработки для

автоматизированного аудита безопасности и может стать основой для более

сложных систем. Перспективы развития включают расширение языковой

поддержки, увеличение глубины анализа и адаптацию к современным

парадигмам программирования.

