Е.В. Гудошникова

ПРИМЕНЕНИЕ ЛИНЕЙНЫХ ПОЛОЖИТЕЛЬНЫХ ОПЕРАТОРОВ ДЛЯ ПРИБЛИЖЕНИЯ ФУНКЦИЙ МНОГИХ ПЕРЕМЕННЫХ
ВВЕДЕНИЕ

Линейные положительные операторы играют большую роль в теории приближения, поскольку обладают рядом простых свойств, облегчающих их изучение. В частности, для линейных положительных операторов наиболее просто формулируются условия, когда последовательность операторов сходится к тождественному, а следовательно, решает задачу приближения (теоремы Коровкина [1]).

Все известные полиномиальные линейные положительные операторы сумматорного вида приближают функции на отрезке или полуоси. Например, операторы Саса-Мираля (2.3)

\[
M_n(f, x) = \sum_{k=0}^{\infty} f \left(\frac{k}{n} \right) \frac{(nx)^k}{k!} e^{-nx}
\]

сходятся к непрерывной функции на \([0; \infty)\).

Используя эти операторы, J. Grof построил последовательность операторов

\[
H_n(f; x) = \sum_{k=0}^{\infty} \left\{ f \left(\frac{k}{n} \right) + (-1)^k f \left(-\frac{k}{n} \right) \right\} \frac{(nx)^k}{2 \text{ch}(nx)k!},
\]

для приближения функций на \((-\infty; \infty)\).

В этом курсе будут построены операторы, являющиеся обобщением операторов \(H_n(f; x)\) для приближения функций многих переменных и изучены их аппроксимационные свойства.
§1. ОПРЕДЕЛЕНИЕ ОПЕРАТОРА $L_n(f; \bar{x})$

Рассмотрим обобщение операторов $H_n(f; x)$ — операторы для функций многих переменных во всем пространстве \mathbb{R}_r.

Для $m \in \mathbb{N}_0$ запишем представление в двоичном формате:

$$m = m_1 + m_2 \cdot 2 + m_3 \cdot 2^2 + \ldots$$

где $m_k \in \{0; 1\}$.

Введем обозначения:

- $\bar{x} = (x_1, \ldots, x_r)$;
- $|\bar{x}| = (|x_1|, \ldots, |x_r|)$;
- $x_m = ((-1)^{m_1} x_1, \ldots, (-1)^{m_r} x_r)$;
- $k_{n,m} = (\frac{k_1}{n} (-1)^{m_1}, \ldots, \frac{k_r}{n} (-1)^{m_r})$, где $k_i \in \mathbb{N}_0$, $n \in \mathbb{N}$.

Для функции $f : \mathbb{R}_r \to \mathbb{R}$ введем аналог модуля непрерывности:

$$\omega(f; \bar{h}) = \sup_{\delta \in Q(\bar{h})} \sup_{x \in \mathbb{R}_r} |f(\bar{x} + \delta) - f(\bar{x})|,$$

где $Q(\bar{h}) = [0; h_1] \times [0; h_2] \times \ldots \times [0; h_r]$, а $\bar{x} + \delta$ понимается как сумма векторов. Очевидно, что если f — равномерно-непрерывная функция, то при $\|\bar{h}\| \to 0$ будет $\omega(f; \bar{h}) \to 0$.

Для функции $f : \mathbb{R}_r \to \mathbb{R}$ рассмотрим операторы

$$L_n(f; \bar{x}) = \sum_{m=0}^{2^r-1} \sum_{k=0}^{\infty} f(\bar{k}_{n,m}) p_{n,k}(\bar{x}_m),$$

где $p_{n,k}(\bar{x}) = \prod_{i=1}^{r} \frac{(nx_i)^{k_i}}{2 \operatorname{ch}(nx_i)k_i!}$ и $\sum_{k_1=0}^{\infty} \ldots \sum_{k_r=0}^{\infty} \ldots = \sum_{k=0}^{\infty}$

При $r = 1$ L_n превращаются в операторы, рассмотренные Грофом.
§2. ВСПОМОГАТЕЛЬНЫЕ ЛЕММАМЫ

Лемма 1. Для любых $\bar{t}, \bar{x} \in \mathbb{R}_r$

$$|f(\bar{t}) - f(\bar{x})| \leq \omega(f; \bar{h}) \prod_{i=1}^{r} \left(1 + \frac{(t_i - x_i)^2}{h_i^2} \right),$$

где $\bar{h} = (h_1, ..., h_r)$.

ДОКАЗАТЕЛЬСТВО. Очевидно, что

$$|f(\bar{t}) - f(\bar{x})| \leq \omega(f; (|t_1 - x_1|, ..., |t_r - x_r|)).$$

Зафиксируем у векторов \bar{h}, \bar{t} и \bar{x} все координаты, кроме первой. Тогда f — функция одной переменной x_1, а $\omega(f; \bar{h}) = \omega(f; h_1)$ — обычный модуль непрерывности со всеми своими свойствами, в том числе следующими: $\omega(f; \lambda h_1) \leq (\lambda + 1)\omega(f; h_1)$ и для $h_1 < h_1^* \omega(f; h_1) \leq \omega(f; h_1^*)$.

Поэтому, если $|t_1 - x_1| \leq h_1$, то

$$|f(\bar{t}) - f(\bar{x})| \leq \omega(f; (h_1, |t_2 - x_2|, ..., |t_r - x_r|)) \leq$$

$$\leq \left(1 + \frac{(t_1 - x_1)^2}{h_1^2} \right) \omega(f; (h_1, |t_2 - x_2|, ..., |t_r - x_r|));$$

если $|t_1 - x_1| > h_1$, то

$$|f(\bar{t}) - f(\bar{x})| \leq \omega \left(f; \left(h_1, \frac{|t_1 - x_1|}{h_1}, |t_2 - x_2|, ..., |t_r - x_r| \right) \right) \leq$$

$$\leq \left(1 + \frac{|t_1 - x_1|}{h_1} \right) \omega(f; (h_1, |t_2 - x_2|, ..., |t_r - x_r|) <$$

$$< \left(1 + \frac{(t_1 - x_1)^2}{h_1^2} \right) \omega(f; (h_1, |t_2 - x_2|, ..., |t_r - x_r|)).$$

Повторяя проведенные рассуждения для $|t_2 - x_2|, ..., |t_r - x_r|$, получим

$$|f(\bar{t}) - f(\bar{x})| \leq \left(1 + \frac{(t_1 - x_1)^2}{h_1^2} \right) ... \left(1 + \frac{(t_r - x_r)^2}{h_r^2} \right) \omega(f; (h_1, ..., h_r)),$$

что и требовалось доказать. □
Лемма 2. Для функции

\[g(\bar{x}) = \frac{1}{h_1 \cdots h_r} \int_0^{h_1} \cdots \int_0^{h_r} f(\bar{x} + \bar{t}) \, dt_1 \cdots dt_r \]

имеют место неравенства:

1°. \(|g(\bar{x}) - f(\bar{x})| \leq \omega(f; \bar{h})

2°. \(|L_n(g; \bar{x}) - L_n(f; \bar{x})| \leq \omega(f; \bar{h})2^r\)

3°. \(\left| \frac{\partial g}{\partial x_i} \right| \leq \omega(f; \bar{h}) \frac{1}{h_i}\),

где \(\bar{h} = (h_1, \ldots, h_r)\)

ДОКАЗАТЕЛЬСТВО. Неравенство 1° немедленно следует из определений функций \(g\) и \(\omega\). Покажем 2°:

\[|L_n(g; \bar{x}) - L_n(f; \bar{x})| = \left| \sum_{m=0}^{2^r-1} \sum_{k=0}^{\infty} (g(\bar{k}_n,m) - f(\bar{k}_n,m)) p_{n,k}(\bar{x}_m) \right| \leq \omega(f; \bar{h}) \sum_{m=0}^{2^r-1} \sum_{k=0}^{\infty} p_{n,k}(\bar{x}_m) \]

с учетом 1° и упростим полученное выражение:

\[\sum_{m=0}^{2^r-1} \sum_{k=0}^{\infty} p_{n,k}(\bar{x}_m) = \sum_{m=0}^{2^r-1} \sum_{k=0}^{\infty} \prod_{i=1}^{r} \frac{(n|x_i|)^{k_i}}{2 \text{ch}(n|x_i|)k_i!} = \]

\[= \sum_{m=0}^{2^r-1} \sum_{k_1=0}^{\infty} \cdots \sum_{k_r=0}^{\infty} \left\{ \prod_{i=1}^{r-1} \frac{(n|x_i|)^{k_i}}{2 \text{ch}(n|x_i|)k_i!} \sum_{k_r=0}^{\infty} \frac{(n|x_r|)^{k_r}}{2 \text{ch}(n|x_r|)k_r!} \right\} = \]

\[= \sum_{m=0}^{2^r-1} \sum_{k_1=0}^{\infty} \cdots \sum_{k_r=0}^{\infty} \left\{ \prod_{i=1}^{r-1} \frac{(n|x_i|)^{k_i}}{2 \text{ch}(n|x_i|)k_i!} \exp(n|x_r|) \right\} = \cdots \]

\[= \sum_{m=0}^{2^r-1} \frac{\exp(n|x_1|)}{2 \text{ch}(n|x_1|)} \cdots \frac{\exp(n|x_r|)}{2 \text{ch}(n|x_r|)} \leq \sum_{m=0}^{2^r-1} 1 = 2^r, \]
откуда и следует утверждение 2°.
Покажем 3°. Для любой непрерывной функции g имеет место равенство

$$\lim_{\delta \to 0} \frac{1}{\delta} \int_{a}^{b} \{g(t + \delta) - g(t)\} \, dt = g(b) - g(a).$$

Поэтому

$$\frac{\partial g}{\partial x_i} = \lim_{\delta \to 0} \frac{1}{\delta} \frac{1}{h_1 \cdots h_r} \cdot \left\{ \int_{0}^{h_1} \ldots \int_{0}^{h_r} \left[f(x_1 + t_1, \ldots, x_{i-1} + t_{i-1}, x_i + t_i + \delta, x_{i+1} + t_{i+1}, \ldots, x_r + t_r) - f(x_1 + t_1, \ldots, x_r + t_r) \right] \, dt_1 \ldots dt_r \right\} =$$

$$= \frac{1}{h_1 \cdots h_r} \left\{ \int_{0}^{h_1} \ldots \int_{0}^{h_r} \left[f(x_1 + t_1, \ldots, x_{i-1} + t_{i-1}, x_i + h_i, x_{i+1} + t_{i+1}, \ldots, x_r + t_r) - f(x_1 + t_1, \ldots, x_{i-1} + t_{i-1}, x_i, x_{i+1} + t_{i+1}, \ldots, x_r + t_r) \right] \, dt_1 \ldots dt_i \ldots dt_{i+1} \ldots dt_r \right\},$$

Откуда

$$\left| \frac{\partial g}{\partial x_i} \right| \leq$$

$$\leq \omega(f; \tilde{h}) \frac{1}{h_1 \cdots h_r} \int_{0}^{h_1} \ldots \int_{0}^{h_r} \left[f(x_1 + t_1, \ldots, x_r + t_r) - f(x_1, \ldots, x_r + t_r) \right] \, dt_1 \ldots dt_r =$$

$$= \frac{1}{h_i} \omega(f; \tilde{h}),$$

что и требовалось доказать. □
Лемма 3. Для операторов

\[l_n(f; x) = \sum_{k=0}^{\infty} f \left(\frac{k}{n} \right) \frac{(nx)^k}{k!} \frac{1}{2 \text{ch}(nx)}, \]

где \(f : \mathbb{R} \to \mathbb{R} \) имеют место соотношения

1°. \(l_n(1; x) = \frac{e^{nx}}{2 \text{ch}(nx)}; \)

2°. \(l_n(t; x) = \frac{t}{2 \text{ch}(nx)}; \)

3°. для \(\alpha \geq 2 \)

\[l_n((t - x)\alpha; x) = \frac{x}{n} \frac{e^{nx}}{2 \text{ch}(nx)} \left[2 \text{ch}(nx)e^{-nx}l_n((t - x)^\alpha; x) \right] + \frac{x(\alpha-1)}{n} l_n((t - x)^{\alpha-2}; x); \]

4°. для \(\alpha \geq 2 \) |\(l_n((t - x)^\alpha; x) \)| \(\leq \text{const}(\alpha)n^{\alpha^2+1}|x|(1 + |x|^\alpha-2). \)

Доказательство утверждений леммы может быть легко получено из аналогичных утверждений для операторов Саса-Миракьяна, поскольку \(l_n(f; x) = M_n(f; x)^{\exp(nx)} \frac{\text{exp}(nx)}{2 \text{ch}(nx)}. \)

Следствие.

1°. \(l_n((t - x)^2; x) = \frac{x}{n} \frac{e^{nx}}{2 \text{ch}(nx)} \left[2 \text{ch}(nx)e^{-nx}l_n((t - x); x) \right] + \frac{x}{n} l_n(1; x) = \frac{x}{n} \frac{e^{nx}}{2 \text{ch}(nx)}. \)

2°. \(l_n((t - x)^2; x) = \)

\[= \frac{x}{n} \frac{e^{nx}}{2 \text{ch}(nx)} \left[2 \text{ch}(nx)e^{-nx}l_n((t - x)^2; x) \right] + \frac{2x}{n} l_n((t - x); x) = \]

\[= \frac{x}{n} \frac{e^{nx}}{2 \text{ch}(nx)} \left[\frac{x}{n} \right] \left[\frac{x}{n} \right] = \frac{x}{n^2} \frac{e^{nx}}{2 \text{ch}(nx)}. \]
3. \(l_n((t - x)^4; x) = \)
\[
\frac{x}{n} \frac{e^{nx}}{2 \operatorname{ch}(nx)} \left[2 \operatorname{ch}(nx)e^{-nx}l_n((t - x)^3; x) \right] + \frac{3x}{n} l_n((t - x)^2; x) =
\]
\[
= \frac{x}{n} \frac{e^{nx}}{2 \operatorname{ch}(nx)} \left[\frac{x}{n^2} \right] + \frac{3x}{n} \frac{x}{n} \frac{e^{nx}}{2 \operatorname{ch}(nx)} = \left[\frac{x}{n^3} + \frac{3x^2}{n^2} \right] \frac{e^{nx}}{2 \operatorname{ch}(nx)}.
\]

Лемма 4. Имеют место равенства

1. \(\sum_{k=0}^{\infty} p_{n,k}(\bar{x}_m) = \prod_{i=1}^{r} \frac{\exp(nx_i(1)^{-mi})}{2 \operatorname{ch}(nx_i)}; \)

2. \(\sum_{m=0}^{2^{r-1}} \sum_{k=0}^{\infty} p_{n,k}(\bar{x}_m) = 1; \)

3. \(\sum_{m=0}^{2^{r-1}} \sum_{k=0}^{\infty} (-1)^{m_j} p_{n,k}(\bar{x}_m) = \operatorname{th}(nx_j). \)

ДОКАЗАТЕЛЬСТВО. Покажем 1.
\[
\sum_{k=0}^{\infty} p_{n,k}(\bar{x}_m) = \sum_{k=0}^{\infty} \prod_{i=1}^{r} \frac{(nx_i(1)^{-mi})^{k_i}}{2 \operatorname{ch}(nx_i)k_i!} =
\]
\[
= \sum_{k_1=0}^{\infty} \cdots \sum_{k_{r-1}=0}^{\infty} \left\{ \prod_{i=1}^{r} \frac{(nx_i(1)^{-m_i})^{k_i}}{2 \operatorname{ch}(nx_i)k_i!} \sum_{k_r=0}^{\infty} \frac{(nx_r(1)^{-m_r})^{k_r}}{2 \operatorname{ch}(nx_r)k_r!} \right\} =
\]
\[
= \exp(nx_r(1)^{-m_r}) \sum_{k_1=0}^{\infty} \cdots \sum_{k_{r-1}=0}^{\infty} \prod_{i=1}^{r-1} \frac{(nx_i(1)^{-m_i})^{k_i}}{2 \operatorname{ch}(nx_i)k_i!} \quad \text{...}
\]
\[
= \prod_{i=1}^{r} \frac{\exp(nx_i(1)^{-m_i})}{2 \operatorname{ch}(nx_i)} \quad \square
\]

Покажем 2. Пусть \(r = 1. \) Тогда утверждение леммы примет вид:
\[
\left. \frac{\exp(nx_1(1)^{-m_1})}{2 \operatorname{ch}(nx_1)} \right|_{m=0} + \left. \frac{\exp(nx_1(1)^{-m_1})}{2 \operatorname{ch}(nx_1)} \right|_{m=1} = 1.
\]
Для $m = 0 \ m_1 = 0$, а для $m = 1 \ m_1 = 1$, поэтому получаем

$$\frac{\exp(nx_1)}{2 \ch(n x_1)} + \frac{\exp(-nx_1)}{2 \ch(n x_1)} = 1,$$

что, очевидно, выполнено. Следовательно, для $r = 1$ равенство 2^0 имеет место. Пусть оно выполнено для некоторого r. Проверим его выполнение для $r + 1$:

$$\sum_{m=0}^{2^{r+1}-1} \prod_{i=1}^{r+1} \frac{\exp(nx_i(-1)^{m_i})}{2 \ch(n x_i)} =$$

$$= \sum_{m=0}^{2^r-1} \prod_{i=1}^{r+1} \frac{\exp(nx_i(-1)^{m_i})}{2 \ch(n x_i)} + \sum_{m=2^r}^{2^{r+1}-1} \prod_{i=1}^{r+1} \frac{\exp(nx_i(-1)^{m_i})}{2 \ch(n x_i)} =$$

Заметим, что в обеих суммах наборы (m_1, \ldots, m_r) пробегают одно и то же множество от $(0, \ldots, 0)$ до $(1, \ldots, 1)$, а m_{r+1} в первой сумме равно 0, а во второй 1. Поэтому равенство можно продолжить следующим образом:

$$\sum_{m=0}^{2^r-1} \prod_{i=1}^{r} \frac{\exp(nx_i(-1)^{m_i})}{2 \ch(n x_i)} \cdot \frac{\exp(nx_{r+1})}{2 \ch(n x_{r+1})} +$$

$$+ \sum_{m=0}^{2^r-1} \prod_{i=1}^{r} \frac{\exp(nx_i(-1)^{m_i})}{2 \ch(n x_i)} \cdot \frac{\exp(-nx_{r+1})}{2 \ch(n x_{r+1})} =$$

(с учетом предположения индукции)

$$= \frac{\exp(nx_{r+1})}{2 \ch(n x_{r+1})} + \frac{\exp(-nx_{r+1})}{2 \ch(n x_{r+1})} = 1$$

и утверждение леммы выполнено и для $r + 1$. Следовательно, оно выполняется для любого натурального r. □

Покажем 3°. При $r = 1$ будет $j = 1$ и равенство 3^0 примет вид:

$$\frac{\exp(nx_1)}{2 \ch(n x_1)} - \frac{\exp(-nx_1)}{2 \ch(n x_1)} = \th(n x_1),$$

что, очевидно, выполнено.
Пусть доказываемое равенство выполняется для некоторого \(r \). Тогда для \(r + 1 \) получим:

\[
\sum_{m=0}^{2^{r+1}-1} (-1)^{m_j} \sum_{k=0}^{\infty} p_{n,k}(\bar{x}_m) = \sum_{m=0}^{2^r-1} (-1)^{m_j} \prod_{i=1}^{r+1} \frac{\exp(nx_i(-1)^{m_i})}{2 \ch(nx_i)} =
\]

\[
= \sum_{m=0}^{2^r-1} (-1)^{m_j} \left\{ \prod_{i=1}^{r} \frac{\exp(nx_i(-1)^{m_i})}{2 \ch(nx_i)} \right\} \frac{\exp(nx_{r+1})}{2 \ch(nx_{r+1})} +
\]

\[
+ \sum_{m=2^r}^{2^{r+1}-1} (-1)^{m_j} \left\{ \prod_{i=1}^{r} \frac{\exp(nx_i(-1)^{m_i})}{2 \ch(nx_i)} \right\} \frac{\exp(-nx_{r+1})}{2 \ch(nx_{r+1})}
\]

если \(j = r + 1 \), то

\[
= \sum_{m=0}^{2^r-1} \left\{ \prod_{i=1}^{r} \frac{\exp(nx_i(-1)^{m_i})}{2 \ch(nx_i)} \right\} \frac{\exp(nx_{r+1})}{2 \ch(nx_{r+1})} -
\]

\[
- \sum_{m=0}^{2^r-1} \left\{ \prod_{i=1}^{r} \frac{\exp(nx_i(-1)^{m_i})}{2 \ch(nx_i)} \right\} \frac{\exp(-nx_{r+1})}{2 \ch(nx_{r+1})} =
\]

\[
= \sum_{m=0}^{2^r-1} \left\{ \prod_{i=1}^{r} \frac{\exp(nx_i(-1)^{m_i})}{2 \ch(nx_i)} \right\} \left(\frac{\exp(nx_{r+1})}{2 \ch(nx_{r+1})} - \frac{\exp(-nx_{r+1})}{2 \ch(nx_{r+1})} \right) =
\]

\[
= \th(nx_{r+1});
\]

если \(j \leq r \), то

\[
= \sum_{m=0}^{2^{r+1}-1} (-1)^{m_j} \left\{ \prod_{i=1}^{r} \frac{\exp(nx_i(-1)^{m_i})}{2 \ch(nx_i)} \right\} \frac{\exp(nx_{r+1})}{2 \ch(nx_{r+1})} +
\]

\[
+ \sum_{m=0}^{2^r-1} (-1)^{m_j} \left\{ \prod_{i=1}^{r} \frac{\exp(nx_i(-1)^{m_i})}{2 \ch(nx_i)} \right\} \frac{\exp(nx_{r+1})}{2 \ch(nx_{r+1})} =
\]

\[
= \sum_{m=0}^{2^r-1} (-1)^{m_j} \left\{ \prod_{i=1}^{r} \frac{\exp(nx_i(-1)^{m_i})}{2 \ch(nx_i)} \right\} \left(\frac{\exp(nx_{r+1})}{2 \ch(nx_{r+1})} + \frac{\exp(-nx_{r+1})}{2 \ch(nx_{r+1})} \right) =
\]

\[
= \th(nx_j),
\]
и равенство 3^o доказано. □

Лемма 5. Имеют место равенства:
1°. $L_n(1; \bar{x}) = 1$;
2°. $L_n(t_j; \bar{x}) = x_j$.

ДОКАЗАТЕЛЬСТВО. Утверждение 1^o есть прямое следствие леммы 4. Покажем 2^o.

$$L_n(t_j; \bar{x}) = \sum_{m=0}^{2^r-1} \sum_{k=0}^{\infty} \frac{k_j}{n} (-1)^{m_j} \prod_{i=1}^{r} \frac{(nx_i(-1)^{m_i})^{k_i}}{2 \operatorname{ch}(nx_i)k_i!} =$$

$$= \sum_{m=0}^{2^r-1} \sum_{k=0}^{\infty} \frac{k_j}{n} (-1)^{m_j} \frac{(nx_j(-1)^{m_j})^{k_j}}{2 \operatorname{ch}(nx_j)k_j!} \prod_{i=1, i \neq j}^{r} \frac{(nx_i(-1)^{m_i})^{k_i}}{2 \operatorname{ch}(nx_i)k_i!} =$$

$$= \sum_{m=0}^{2^r-1} \sum_{k_j=1}^{\infty} \frac{k_j}{n} (-1)^{m_j} \frac{(nx_j(-1)^{m_j})^{k_j}}{2 \operatorname{ch}(nx_j)(k_j-1)!} \prod_{i=1, i \neq j}^{r} \frac{\exp(nx_i(-1)^{m_i})}{2 \operatorname{ch}(nx_i)} =$$

$$= \sum_{m=0}^{2^r-1} \sum_{k_j=0}^{\infty} \frac{k_j}{2\operatorname{ch}(nx_j)(k_j)!} \prod_{i=1, i \neq j}^{r} \frac{\exp(nx_i(-1)^{m_i})}{2 \operatorname{ch}(nx_i)} =$$

$$= x_j \sum_{m=0}^{2^r-1} \prod_{i=1}^{r} \frac{\exp(nx_i(-1)^{m_i})}{2 \operatorname{ch}(nx_i)},$$

откуда, с учетом равенства 2^o из леммы 4, получаем требуемое. □

Лемма 6. Пусть, как и прежде, $\bar{x} = (x_1, ..., x_r)$.

Обозначим $\bar{x}(i) = (x_1, ..., x_{i-1}, -x_i, x_{i+1}, ..., x_r)$.

Положим $f_i(\bar{x}) = f(\bar{x}(i))$. Тогда

$$L_n(f; \bar{x}) = L_n(f_i; \bar{x}(i)).$$
ДОКАЗАТЕЛЬСТВО.

\[L_n(f_i; \bar{x}(i)) = \sum_{m=0}^{2^r-1} \sum_{k=0}^{\infty} f_i \left(\frac{k_1}{n} (-1)^{m_1}, \ldots, \frac{k_r}{n} (-1)^{m_r} \right) p_{n,k}(\bar{x}_m(i)) = \]

\[= \sum_{m=0}^{2^r-1} \sum_{k=0}^{\infty} f \left(\frac{k_1}{n} (-1)^{m_1}, \ldots, \frac{k_r}{n} (-1)^{m_r} \right) p_{n,k}(\bar{x}_m(i)). \]

Для каждого \(m = m_1 + m_2 2 + \ldots + m_{i-1} 2^{i-2} + 1 \cdot 2^{i-1} + m_{i+1} 2^i + \ldots + m_r 2^{r-1} \) найдется пара \(m^* = m_1 + m_2 2 + \ldots + m_{i-1} 2^{i-2} + 0 \cdot 2^{i-1} + m_{i+1} 2^i + \ldots + m_r 2^{r-1} \). Поменяем местами все пары слагаемых с номерами \(m \) и \(m^* \). Получим

\[L_n(f_i; \bar{x}(i)) = \sum_{m=0}^{2^r-1} \sum_{k=0}^{\infty} f(\bar{k}_{n,m}) p_{n,k}(\bar{x}_m) = L_n(f; \bar{x}), \]

что и требовалось доказать. \(\square \)

Лемма 7. Для \(\alpha \geq 2 \) обозначим

\[S_n^\alpha(\bar{x}) = L_n \left(\prod_{i=1}^{r} (t_i - x_i)^{\alpha_i} ; \bar{x} \right), \text{ гдe } \sum_{i=1}^{r} \alpha_i = \alpha. \]

Имеет место неравенство

\[|S_n^\alpha(\bar{x})| \leq \text{const}(\alpha, r)(1 + ||\bar{x}||^{\alpha-1})n^{-\left[\frac{\alpha+1}{2} \right]}. \]

ДОКАЗАТЕЛЬСТВО. Проведем преобразования:

\[S_n^\alpha(\bar{x}) = \sum_{m=0}^{2^r-1} \sum_{k=0}^{\infty} \prod_{i=1}^{r} \left(\frac{k_i}{n} (-1)^{m_i} - x_i \right)^{\alpha_i} \frac{(nx_i(-1)^{m_i})^{k_i}}{2 \operatorname{ch}(nx_i)k_i!} \]

\[= \sum_{m=0}^{2^r-1} \prod_{i=1}^{r} (-1)^{m_i} \alpha_i \left[\sum_{k=0}^{\infty} \left(\frac{k}{n} - x_i(-1)^{m_i} \right)^{\alpha_i} \frac{(nx_i(-1)^{m_i})^{k}}{2 \operatorname{ch}(nx_i)k!} \right] \]

\[= \sum_{m=0}^{2^r-1} \prod_{i=1}^{r} (-1)^{m_i} \alpha_i \ln \left((t_i - x_i(-1)^{m_i})^{\alpha_i} ; x_i(-1)^{m_i} \right), \]
где l_n — то же, что и в лемме 3.
Пусть хоть одно $\alpha_i = 1$. Так как по лемме 3

$$l_n\left((t_i - x_i(-1)^{m_i}); x_i(-1)^{m_i}\right) = 0,$$

в этом случае будет $S_n^{\alpha}(\bar{x}) = 0$ и доказываемое утверждение тривиально.
Пусть все $\alpha_i \neq 1$. Тогда или $\alpha_i = 0$, и в этом случае по лемме 3

$$l_n\left((t_i - x_i(-1)^{m_i})^{\alpha_i}; x_i(-1)^{m_i}\right) = \frac{\exp(nx_i(-1)^{m_i})}{2\text{ch}(nx_i(-1)^{m_i})} \leq 1,$$

или $\alpha_i \geq 2$ и с учетом леммы 3 получаем

$$|S_n^{\alpha}(\bar{x})| \leq \sum_{m=0}^{2r-1} \prod_{i=1}^{\alpha_i \geq 2} \text{const}(\alpha_i) |x_i|^n - \left[\frac{\alpha_i + 1}{2}\right] (1 + |x_i|^{\alpha - 2}). \quad (1)$$

Если α_i четное, то $\left[\frac{\alpha_i + 1}{2}\right] = \frac{\alpha_i}{2}$. Поэтому если все α_i четные, то α четное и

$$\left[\frac{\alpha_1 + 1}{2}\right] + \ldots + \left[\frac{\alpha_r + 1}{2}\right] = \frac{\alpha_1}{2} + \ldots + \frac{\alpha_r}{2} = \frac{\alpha}{2} = \left[\frac{\alpha + 1}{2}\right].$$

Если α_i нечетное, то $\left[\frac{\alpha_i + 1}{2}\right] = \frac{\alpha_i}{2} + \frac{1}{2}$. Поэтому если среди α_i есть нечетные, то

$$\left[\frac{\alpha_1 + 1}{2}\right] + \ldots + \left[\frac{\alpha_r + 1}{2}\right] \geq \frac{\alpha_1}{2} + \ldots + \frac{\alpha_r}{2} + \frac{1}{2} = \frac{\alpha + 1}{2} \geq \left[\frac{\alpha + 1}{2}\right].$$

И в любом случае

$$\prod_{i=1}^{\alpha_i \geq 2} n^{-\left[\frac{\alpha_i + 1}{2}\right]} \leq n^{-\left[\frac{\alpha + 1}{2}\right]}.$$

Подставляя полученную оценку в (1), получим утверждение леммы. \qed
Лемма 8. Для

$$R_{\nu}(f; \bar{x}) = \sum_{\alpha=\nu}^{*} \frac{1}{\alpha_1! \ldots \alpha_r!} L_n \left([F_{\alpha}^{\nu}(\bar{\xi}) - F_{\alpha}^{\nu}(\bar{x})] \prod_{i=1}^{r} (t_i - x_i)^{\alpha_i}; \bar{x} \right),$$

где $\sum_{\alpha=k}^{*}$ берется по всем наборам целых неотрицательных чисел α_i;

$i = 1, r$, таких, что $\sum_{i=1}^{r} \alpha_i = \alpha$, $F_{\alpha}^{\nu} = \frac{\partial^\nu f}{\partial x_1^{\alpha_1} \ldots \partial x_r^{\alpha_r}}$, $\bar{\xi} = \bar{x} + \theta(\bar{t} - \bar{x})$,

$\theta \in [0; 1]$ имеет место неравенство

$$|R_{\nu}(f; \bar{x})| \leq \text{const}(r; \nu) \sum_{\alpha=\nu}^{*} \omega(F_{\alpha}^{\nu}; \bar{h}) \| \bar{x} \|^\nu/2 n^{-\nu/2}.$$

ДОКАЗАТЕЛЬСТВО. Обозначим

$$\psi_{\alpha}(\bar{t}) = [F_{\alpha}^{\nu}(\bar{\xi}) - F_{\alpha}^{\nu}(\bar{x})] \prod_{i=1}^{r} (t_i - x_i)^{\alpha_i}.$$

ψ_{α} — непрерывная функция и по теореме 1

$$|L_n(\psi_{\alpha}(\bar{t}); \bar{x}) - \psi_{\alpha}(\bar{x})| \leq \text{const}(r) \omega(\psi_{\alpha}; \bar{h}),$$

где $\bar{h} = \left(\sqrt{\frac{|x_1|}{n}}, \ldots, \sqrt{\frac{|x_r|}{n}} \right)$.

Во-первых, $\psi_{\alpha}(\bar{x}) = 0$.

Во-вторых,

$$\omega(\psi_{\alpha}; \bar{h}) = \sup_{\bar{\delta}, \bar{x}} |\psi_{\alpha}(\bar{x} + \bar{\delta}) - \psi_{\alpha}(\bar{x})| = \sup_{\bar{\delta}, \bar{x}} \left| [F_{\alpha}^{\nu}(\bar{x} + \theta \bar{\delta}) - F_{\alpha}^{\nu}(\bar{x})] \prod_{i=1}^{r} \delta_i^{\alpha_i} \right| \leq$$

$$\leq \sup_{\bar{\delta}, \bar{x}} \left| F_{\alpha}^{\nu}(\bar{x} + \theta \bar{\delta}) - F_{\alpha}^{\nu}(\bar{x}) \right| \prod_{i=1}^{r} h_i^{\alpha_i} \leq \omega(F_{\alpha}^{\nu}; \bar{h}) \left(\frac{\| \bar{x} \|}{n} \right)^{\alpha/2}.$$

Таким образом

$$|L_n(\psi_{\alpha}(\bar{t}); \bar{x})| \leq \text{const}(r) \omega(F_{\alpha}^{\nu}; \bar{h}) \| \bar{x} \|^{\alpha/2} n^{-\alpha/2},$$

откуда

$$|R_{\nu}(f; \bar{x})| \leq \text{const}(r, \nu) \sum_{\alpha=\nu}^{*} \omega(F_{\alpha}^{\nu}; \bar{h}) \| \bar{x} \|^{\nu/2} n^{-\nu/2}. \quad \square$$
§ 3. ПОРЯДОК ПРИБЛИЖЕНИЯ ОПЕРАТОРАМИ $L_n(f; \bar{x})$

ТЕОРЕМА 1. Для непрерывной функции $f : \mathbb{R} \to \mathbb{R}$

$$|L_n(f; \bar{x}) - f(\bar{x})| \leq (1 + 2^r + r2^{r+1})\omega(f; \tilde{h}),$$

где $\tilde{h} = \left(\sqrt{\frac{|x_1|}{n}}, \ldots, \sqrt{\frac{|x_r|}{n}}\right)$.

ДОКАЗАТЕЛЬСТВО. Положим

$$\tilde{h} = \left(\sqrt{\frac{|x_1|}{n}}, \ldots, \sqrt{\frac{|x_r|}{n}}\right),$$

$$g(\bar{x}) = \frac{1}{h_1 \ldots h_r} \int_0^{h_1} \ldots \int_0^{h_r} f(\bar{x} + \bar{t}) \, dt_1 \ldots dt_r.$$

Очевидно, что

$$|L_n(f; \bar{x}) - f(\bar{x})| \leq |L_n(f; \bar{x}) - L_n(g; \bar{x})| + |L_n(g; \bar{x}) - g(\bar{x})| + |g(\bar{x}) - f(\bar{x})|.$$ (T1-1)

Из леммы 2 имеем, во-первых,

$$|L_n(f; \bar{x}) - L_n(g; \bar{x})| = \sum_{m=0}^{2^r-1} \left| \sum_{k=0}^{\infty} \{f(\bar{k}_n,m) - g(\bar{k}_n,m)\} p_{n,k}(\bar{x}_m) \right| \leq$$

$$\leq \sum_{m=0}^{2^r-1} \left| \sum_{k=0}^{\infty} \{f(\bar{k}_n,m) - g(\bar{k}_n,m)\} \right| p_{n,k}(\bar{x}) \leq$$

$$\leq \omega(f; \tilde{h}) \sum_{m=0}^{2^r-1} \sum_{k=0}^{\infty} p_{n,k}(\bar{x}) = \omega(f; \tilde{h}) \sum_{m=0}^{2^r-1} \prod_{i=1}^{r} \frac{\exp(n|x_i|)}{2 \operatorname{ch}(nx_i)} \leq \omega(f; \tilde{h}) 2^r$$ (T1-2)
во-вторых,

$$|g(\bar{x}) - f(\bar{x})| \leq \omega(f; \bar{h})$$ \hspace{1cm} (T1-3.)

Покажем, что для второго слагаемого из (T1-1) имеет место оценка:

$$|L_n(g; \bar{x}) - g(\bar{x})| \leq r2^{r+1}\omega(f; \bar{h}).$$ \hspace{1cm} (T1-4)

Пусть \bar{x} такое, что для $1 \leq i \leq r$ будет $x_i \geq 0$. Учитывая, что $L_n(1; \bar{x}) = 1$ и $\bar{x}_0 = \bar{x}$, можем записать:

$$L_n(g; \bar{x}) - g(\bar{x}) = \sum_{m=0}^{2^r-1} \sum_{k=0}^\infty \{ g(\bar{k}_{n,m}) - g(\bar{x}) \} p_{n,k}(\bar{x}_m) =$$

$$= \sum_{m=0}^{2^r-1} \sum_{k=0}^\infty \{ g(\bar{k}_{n,m}) - g(\bar{x}_m) \} p_{n,k}(\bar{x}_m) +$$

$$+ \sum_{m=0}^{2^r-1} \sum_{k=1}^\infty \{ g(\bar{x}_m) - g(\bar{x}) \} p_{n,k}(\bar{x}_m) =$$

$$= \sum_{m=0}^{2^r-1} \sum_{k=0}^\infty \{ g(\bar{k}_{n,m}) - g(\bar{x}_m) \} p_{n,k}(\bar{x}_m) +$$

$$+ \sum_{m=1}^{2^r-1} \{ g(\bar{x}_m) - g(\bar{x}) \} \prod_{i=1}^r \frac{\exp(nx_i(-1)^{m_i})}{2 \operatorname{ch}(nx_i)}. $$

Откуда

$$|L_n(g; \bar{x}) - g(\bar{x})| \leq \sum_{m=0}^{2^r-1} \sum_{k=0}^\infty |g(\bar{k}_{n,m}) - g(\bar{x}_m)| p_{n,k}(\bar{x}) +$$

$$+ \sum_{m=1}^{2^r-1} |g(\bar{x}_m) - g(\bar{x})| \prod_{i=1}^r \frac{\exp(nx_i(-1)^{m_i})}{2 \operatorname{ch}(nx_i)}. $$ \hspace{1cm} (T1-5)

По формуле конечных приращений

$$g(\bar{t}) - g(\bar{x}) = \sum_{j=1}^r \frac{\partial}{\partial x_j} g(\bar{\xi})(t_j - x_j),$$
где $\xi = (x_1 + \theta(t_1 - x_1), \ldots, x_r + \theta(t_r - x_r))$, $\theta \in (0; 1)$. Откуда, с учетом леммы 2, получаем

$$|g(\bar{k}_{n,m}) - g(\bar{x}_m)| \leq \sum_{j=1}^{r} \omega(f; \bar{h}) \frac{k_j}{h_j} \left| \frac{k_j}{n} (-1)^{m_j} - x_j(-1)^{m_j} \right| =$$

$$= \omega(f; \bar{h}) \sum_{j=1}^{r} \frac{1}{h_j} \left| \frac{k_j}{n} - x_j \right|$$

и

$$|g(\bar{x}_m) - g(\bar{x})| \leq \sum_{j=1}^{r} \omega(f; \bar{h}) \frac{k_j}{h_j} |x_j(-1)^{m_j} - x_j| =$$

$$= \omega(f; \bar{h}) \sum_{j=1}^{r} \frac{x_j}{h_j} \left| (-1)^{m_j} - 1 \right|.$$

Подставим полученные оценки в (T1-5):

$$|L_n(g; \bar{x}) - g(\bar{x})| \leq \omega(f; \bar{h}) \sum_{j=1}^{r} \sum_{m=0}^{2^r} \frac{1}{h_j} l_n(|t_j - x_j|; x_j) \prod_{i=1}^{r} \frac{\exp(n x_i)}{2 \operatorname{ch}(n x_i)} +$$

$$+ \omega(f; \bar{h}) \sum_{j=1}^{r} \sum_{m=1}^{2^r-1} \frac{x_j}{h_j} \left| (-1)^{m_j} - 1 \right| \frac{\exp(n x_j(-1)^{m_j})}{2 \operatorname{ch}(n x_j)} \prod_{i=1}^{r} \frac{\exp(n x_i(-1)^{m_i})}{2 \operatorname{ch}(n x_i)},$$

где l_n то же, что и в лемме 3.

В силу неравенства Коши-Буняковского леммы 3 и следствия 1 из нее

$$\frac{1}{h_j} l_n(|t_j - x_j|; x_j) \leq \sqrt{l_n((t_j - x_j)^2; x_j)} \sqrt{l_n(1; x_j)} =$$

$$= \frac{1}{h_j} \sqrt{\frac{x_j}{n} \frac{e^{nx_j}}{2 \operatorname{ch}(nx_j)}} \sqrt{\frac{e^{nx_j}}{2 \operatorname{ch}(nx_j)}} \leq 1. \quad (T1-7)$$

Поскольку

$$|(-1)^{m_j} - 1| = \begin{cases} 0, & \text{если } m_j = 0; \\ 2, & \text{если } m_j = 1, \end{cases}$$
Имеем

\[
\sum_{j=1}^{r} \sum_{m=1}^{2^r-1} \frac{x_j}{h_j} \left| (-1)^{m_j} - 1 \right| \frac{\exp(nx_j(-1)^{m_j})}{2 \text{ch}(nx_j)} \prod_{i=1, i \neq j}^{r} \frac{\exp(nx_i(-1)^{m_i})}{2 \text{ch}(nx_i)} \leq \\
\leq \sum_{j=1}^{r} \sum_{m=1}^{2^r-1} \frac{x_j}{h_j} \frac{\exp(-nx_j)}{\text{ch}(nx_j)} \prod_{i=1, i \neq j}^{r} \frac{\exp(nx_i(-1)^{m_i})}{2 \text{ch}(nx_i)}.
\]

Заметим, что \(\frac{x_j \exp(-nx_j)}{\text{ch}(nx_j)} \leq \sqrt{\frac{x_j}{n}}\). Действительно, из очевидной цепочки неравенств

\[
2t < e^{2t} + 1 \iff \frac{2t}{e^{2t} + 1} < 1 \iff \frac{2nx e^{-nx}}{e^{nx} + e^{-nx}} \leq 1 \iff \frac{nx e^{-nx}}{\text{ch}(nx)} < 1
\]

следует, что если \(nx \geq 1\), то

\[
\frac{xe^{-nx}}{\text{ch}(nx)} = \sqrt{\frac{x}{n}} \sqrt{\frac{nx e^{-nx}}{\text{ch}(nx)}} = \sqrt{\frac{x}{n}} \sqrt{\frac{nx e^{-nx}}{\text{ch}(nx)}} < \sqrt{\frac{x}{n}}.
\]

а если \(0 < nx < 1\), то

\[
\frac{xe^{-nx}}{\text{ch}(nx)} \leq \frac{1}{\sqrt{nx \text{ch}(nx)}} \sqrt{\frac{x}{n}} \sqrt{\frac{e^{-nx}}{\text{ch}(nx)}} = \sqrt{\frac{x}{n}} \frac{2e^{-nx}}{e^{nx} + e^{-nx}} = \\
= \sqrt{\frac{x}{n}} \frac{2}{e^{2nx} + 1} \leq \sqrt{\frac{x}{n}}.
\]

И мы получаем

\[
\sum_{j=1}^{r} \sum_{m=1}^{2^r-1} \frac{x_j}{h_j} \left| (-1)^{m_j} - 1 \right| \prod_{i=1}^{r} \frac{\exp(nx_i(-1)^{m_i})}{2 \text{ch}(nx_i)} \leq 2^r \sum_{j=1}^{r} \frac{1}{h_j} \sqrt{\frac{x_j}{n}} = r2^r
\]

(Т1-8)

Подставим неравенства (Т1-7) и (Т1-8) в (Т1-6):

\[
|L_n(g; \bar{x}) - g(\bar{x})| \leq \omega(f; \tilde{h})r2^{r+1}
\]

и для неотрицательных координат неравенство (Т1-4) доказано.
Пусть теперь \(x_i < 0 \), а остальные координаты неотрицательны. Обозначим, как и в лемме 6,

\[
\bar{x}(i) = (x_1, \ldots, x_{i-1}, -x_i, x_{i+1}, \ldots, x_r),
\]

\[
g_i(\bar{x}) = g(\bar{x}(i)),
\]

\[
f_i(\bar{x}) = f(\bar{x}(i)),
\]

тогда с учетом леммы 6

\[
|L_n(g; \bar{x}) - g(\bar{x})| = |L_n(g_i; \bar{x}(i)) - g_i(\bar{x}(i))| \leq (\text{по доказанному})
\]

\[
\leq \omega(f_i; \bar{h}) r 2^{r+1}.
\]

А поскольку \(\omega(f_i; \bar{h}) = \omega(f; \bar{h}) \) неравенство (Т1-4) так же выполнено. Применим р раз такие же рассуждения, что и выше, получим, что оно выполнено для \(\bar{x} \) с любым числом отрицательных координат.

Подставив (Т1-2), (Т1-3) и (Т1-4) в (Т1-1), получим утверждение теоремы. \(\square \)

ТЕОРЕМА 2. Если функция \(f: \mathbb{R}_r \to \mathbb{R} \) дифференцируема, то

\[
|L_n(f; \bar{x}) - f(\bar{x})| \leq 2^{2r-2} \frac{r}{\sqrt{n}} \sum_{j=1}^r \omega \left(\frac{\partial f}{\partial x_j}; \bar{h} \right) \left(\sqrt{3|x_j|} + \frac{1}{\sqrt{n}} \right) +
\]

\[
+ \frac{2^{r-1}}{n} \sum_{j=1}^r \left\| \frac{\partial f}{\partial x_j} \right\|
\]

где \(\bar{h} = \left(\sqrt{\frac{|x_1|}{n}}, \ldots, \sqrt{\frac{|x_r|}{n}} \right) \).

ДОКАЗАТЕЛЬСТВО. Пусть \(\bar{x} \) такое, что для \(1 \leq i \leq r \) будет \(x_i \geq 0 \).

\[
L_n(f; \bar{x}) - f(x) = \sum_{m=0}^{2^{r-1}} \sum_{k=0}^{\infty} \{f(\bar{k}_{n,m}) - f(\bar{x}_m)\} p_{n,k}(\bar{x}_m) +
\]

\[
+ \sum_{m=0}^{2^{r-1}} \{f(\bar{x}_m) - f(\bar{x})\} \sum_{k=0}^{\infty} p_{n,k}(\bar{x}_m)
\]
По формуле конечных приращений имеем

\[
f(\bar{t}) - f(\bar{x}) = \sum_{j=1}^{r} \frac{\partial f}{\partial x_j}(\bar{\xi})(t_j - x_j) = \\
= \sum_{j=1}^{r} \left\{ \frac{\partial f}{\partial x_j}(\bar{\xi}) - \frac{\partial f}{\partial x_j}(\bar{x}) \right\}(t_j - x_j) + \sum_{j=1}^{r} \frac{\partial f}{\partial x_j}(\bar{x})(t_j - x_j),
\]

где \(\bar{\xi} = (x_1 + \theta(t_1 - x_1), \ldots, x_r + \theta(t_r - x_r)), \theta \in (0, 1) \).

Обозначим

\[
A_1 = \sum_{j=1}^{r} \sum_{m=0}^{2^r-1} \sum_{k=0}^{\infty} \left\{ \frac{\partial f}{\partial x_j}(\bar{\xi}_{k,m}) - \frac{\partial f}{\partial x_j}(\bar{x}_m) \right\} \cdot (k_j/n(-1)^{m_j} - x_j(-1)^{m_j}) p_{n,k}(\bar{x}_m),
\]

\[
A_2 = \sum_{j=1}^{r} \sum_{m=0}^{2^r-1} \frac{\partial f}{\partial x_j}(\bar{x}_m) \sum_{k=0}^{\infty} (k_j/n(-1)^{m_j} - x_j(-1)^{m_j}) p_{n,k}(\bar{x}_m),
\]

\[
A_3 = \sum_{j=1}^{r} \sum_{m=0}^{2^r-1} \frac{\partial f}{\partial x_j}(\bar{\eta}_m)(x_j(-1)^{m_j} - x_j) \sum_{k=0}^{\infty} p_{n,k}(\bar{x}_m).
\]

Тогда

\[
L_n(f; \bar{x}) = A_1 + A_2 + A_3 \quad \text{(T2-1)}
\]

Оценим \(A_1 \). С учетом леммы 1

\[
|A_1| \leq \sum_{j=1}^{r} \omega \left(\frac{\partial f}{\partial x_j}; \bar{\h} \right) \sum_{m=0}^{2^r-1} \sum_{k=0}^{\infty} \left| \frac{k_j}{n} - x_j \right| \cdot \\
\prod_{i=1}^{r} \left\{ \left(1 + \frac{1}{h_i^2} \left(\frac{k_i}{n} - x_i \right)^2 \right) \frac{(nx_i)^{k_i}}{2 \chi(nx_i)k_i!} \right\} = \\
= 2^r \sum_{j=1}^{r} \omega \left(\frac{\partial f}{\partial x_j}; \bar{\h} \right) \prod_{i=1}^{r} \ln \left(1 + \frac{1}{h_i^2}(t_i - x_i)^2; x_i \right) \cdot \\
\prod_{i \neq j} \ln \left(\left| 1 + \frac{1}{h_i^2}(t_i - x_i)^2 \right| t_j - x_j; x_j \right).
\]
Во-первых, с учетом леммы 3

\[l_n \left(1 + \frac{1}{h_i^2} (t_i - x_i)^2; x_i \right) = \left(1 + \frac{x_i}{h_i^2 n} \right) \frac{\exp(nx_i)}{2 \ch(nx_i)} = \frac{\exp(nx_i)}{\ch(nx_i)} < 2. \]

Во-вторых,

\[l_n \left(\left[1 + \frac{1}{h_j^2} (t_j - x_j)^2 \right] |t_j - x_j|; x_j \right) = \]

\[= l_n(|t_j - x_j|; x_j) + \frac{1}{h_j^2} l_n((t_j - x_j)^2 |t_j - x_j|; x_j) \leq \]

 применим неравенство Коши-Буняковского и следствия леммы 3

\[\leq \sqrt{l_n((t_j - x_j)^2; x_j)} \sqrt{l_n(1; x_j)} + \frac{1}{h_j^2} \sqrt{l_n((t_j - x_j)^4; x_j)} \sqrt{l_n((t_j - x_j)^2; x_j)} = \]

\[= \sqrt{\frac{x_j \exp(nx_j)}{n} 2 \ch(nx_j)} + \sqrt{\frac{3x_j^2}{n^2} + \frac{x_j}{n^3} \sqrt{\frac{x_j \exp(nx_j)}{n} 2 \ch(nx_j)}} \leq \]

\[\leq \left(\sqrt{\frac{x_j}{n}} + \sqrt{\frac{3x_j^2}{n} + \frac{1}{n^2}} \right) \leq \frac{1}{\sqrt{n}} 3 \sqrt{x_j} + \frac{1}{\sqrt{n}}, \]

что следует из очевидной цепочки неравенств:

\[x + 4 \sqrt{\frac{x}{n}} = 0 \implies 4x + 4 \sqrt{\frac{x}{n}} + \frac{1}{n} > 3x + \frac{1}{n} \implies \]

\[(2 \sqrt{x} + \frac{1}{\sqrt{n}})^2 > 3x + \frac{1}{n} \implies 2 \sqrt{x} + \frac{1}{\sqrt{n}} > \sqrt{3x + \frac{1}{n}} \implies \]

\[3 \sqrt{x} + \frac{1}{\sqrt{n}} > \sqrt{x} + \sqrt{3x + \frac{1}{n}}. \]

Поэтому

\[|A_1| \leq \frac{2^{2r-1}}{\sqrt{n}} \sum_{j=1}^r \omega \left(\frac{\partial f}{\partial x_j}; \bar{h} \right) \left(3 \sqrt{x_j} + \frac{1}{\sqrt{n}} \right). \quad \text{(T2-2)} \]
Подсчитаем A_2:

$$A_2 = \sum_{j=1}^{r} \sum_{m=0}^{2^r - 1} \frac{\partial f}{\partial x_j}(\bar{x}_m)(-1)^{m_j} \sum_{k=0}^{\infty} \left(\frac{k_j}{n} - x_j \right) p_{n,k}(\bar{x}_m) =$$

$$= \sum_{j=1}^{r} \sum_{m=0}^{2^r - 1} \frac{\partial f}{\partial x_j}(\bar{x}_m)(-1)^{m_j} l_n(t_j - x_j; x_j(-1)^{m_j}) \prod_{i=1 \atop i \neq j}^{r} l_n(1; x_i),$$

откуда, с учетом линейности оператора l_n и леммы 3 получаем

$$A_2 = 0 \quad (T2-3)$$

Оценим A_3:

$$A_3 = \sum_{j=1}^{r} \sum_{m=0}^{2^r - 1} x_j \frac{\partial f}{\partial x_j}(\bar{\eta}_m)((-1)^{m_j} - 1) \sum_{k=0}^{\infty} p_{n,k}(\bar{x}_m) =$$

$$= \sum_{j=1}^{r} \sum_{m=0}^{2^r - 1} x_j \frac{\partial f}{\partial x_j}(\bar{\eta}_m)((-1)^{m_j} - 1) \prod_{i=1}^{r} \frac{\exp(nx_i(-1)^{m_i})}{2 \sinh(nx_i)} \Rightarrow$$

$$|A_3| \leq \sum_{j=1}^{r} x_j \frac{\partial f}{\partial x_j} \sum_{m=0}^{2^r - 1} (1 - (-1)^{m_j}) \prod_{i=1}^{r} \frac{\exp(nx_i(-1)^{m_i})}{2 \sinh(nx_i)} \leq$$

$$\leq \sum_{j=1}^{r} x_j \frac{\partial f}{\partial x_j} \sum_{m=0}^{2^r - 1} (1 - (-1)^{m_j}) \frac{\exp(nx_j(-1)^{m_j})}{2 \sinh(nx_j)} =$$

$$= 2^{r-1} \sum_{j=1}^{r} x_j \frac{\partial f}{\partial x_j} \frac{\exp(-nx_j)}{\sinh(nx_j)}.$$

Рассмотрим функцию $y(t) = 2t - e^{2t} - 1$. Поскольку $y' = 2 - 2e^{2t}$, функция $y(t)$ имеет максимум при $t = 0$, откуда

$$y(t) \leq y(0) = -2 < 0 \Rightarrow 2t - e^{2t} - 1 < 0 \Rightarrow 2t < e^{2t} + 1 \Rightarrow$$

$$\frac{2t}{e^{2t} + 1} < 1 \Rightarrow \frac{2nx}{e^{2nx} + 1} < 1 \Rightarrow \frac{2nx e^{-nx}}{e^{nx} + e^{-nx}} < 1 \Rightarrow$$

$$\frac{xe^{-nx}}{\sinh(nx)} < \frac{1}{n}.$$
Потому

\[|A_3| < \frac{2^{r-1}}{n} \sum_{j=1}^{r} \left\| \frac{\partial f}{\partial x_j} \right\| \] \hspace{1cm} (T2-4)

Подставляя в (T2-1) неравенства (T2-2), (T2-3) и (T2-4), получим

\[|L_n(f; \bar{x}) - f(\bar{x})| \leq \frac{2^{2r-1}}{\sqrt{n}} \sum_{j=1}^{r} \omega \left(\frac{\partial f}{\partial x_j}; \bar{h} \right) \left(\sqrt{3x_j + \frac{1}{\sqrt{n}}} \right) + \]

\[+ \frac{2^{r-1}}{n} \sum_{j=1}^{r} \left\| \frac{\partial f}{\partial x_j} \right\| |x_j|, \]

и для неотрицательных координат утверждение леммы доказано.

Проводя такие же рассуждения, как и при завершении доказательства теоремы 1, приходим к выводу, что утверждение теоремы 2 выполнено для любого \(\bar{x} \).

\[\square \]

ТЕОРЕМА 3. 1°. Для дважды дифференцируемой \(f : \mathbb{R}_r \to \mathbb{R} \)

\[|L_n(f; \bar{x}) - f(\bar{x})| \leq \frac{c(r)}{n} \sum_{j=1}^{r} \sum_{l=j}^{r} \omega \left(\frac{\partial^2 f}{\partial x_j \partial x_l}; \bar{h} \right) \left(|x_j| + |x_l| + \frac{1}{n} \right) + \]

\[+ \frac{1}{n} \sum_{j=1}^{r} \left\| \frac{\partial^2 f}{\partial x_j^2} \right\| |x_j|, \]

где \(\bar{h} = \left(\sqrt{\frac{x_1}{n}}, \ldots, \sqrt{\frac{x_r}{n}} \right) \),

\(c(r) \) константа, зависящая только от \(r \).

2°. Если все вторые производные \(f \) разномерно-непрерывны, то

\[\lim_{n \to \infty} |L_n(f; \bar{x}) - f(\bar{x}) - \frac{1}{n} \sum_{j=1}^{r} \frac{\partial^2 f}{\partial x_j^2}(\bar{x}) x_j \text{th}(nx_j)| = 0 \]

ДОКАЗАТЕЛЬСТВО. Пусть \(\bar{x} \) такое, что для \(1 \leq i \leq r \) \(x_i \geq 0 \).

\[L_n(f; \bar{x}) - f(x) = \sum_{m=0}^{2^{r-1}} \sum_{\bar{k}=0}^{\infty} \{ f(\bar{k}_{m}) - f(\bar{x}_m) \} p_{n,\bar{k}}(\bar{x}_m) - \]

\[- \sum_{m=0}^{2^{r-1}} \{ f(\bar{x}) - f(\bar{x}_m) \} \sum_{\bar{k}=0}^{\infty} p_{n,\bar{k}}(\bar{x}_m). \]
По формуле Тейлора

$$ f(\bar{x}) - f(\bar{x}) = \sum_{j=1}^{r} \frac{\partial f}{\partial x_j}(\bar{x})(t_j - x_j) + \sum_{j=1}^{r} \frac{\partial^2 f}{\partial x_j^2}(\bar{x})(t_j - x_j)^2 + $$

\[+ 2 \sum_{j=1}^{r} \sum_{l=j+1}^{r} \frac{\partial^2 f}{\partial x_j \partial x_l}(\bar{x})(t_j - x_j)(t_l - x_l) + \]

\[+ \sum_{j=1}^{r} \left\{ \frac{\partial^2 f}{\partial x_j^2}(\bar{x}) - \frac{\partial^2 f}{\partial x_j \partial x_l}(\bar{x}) \right\}(t_j - x_j)^2 + \]

\[+ 2 \sum_{j=1}^{r} \sum_{l=j+1}^{r} \left\{ \frac{\partial^2 f}{\partial x_j \partial x_l}(\bar{x}) - \frac{\partial^2 f}{\partial x_j \partial x_l}(\bar{x}) \right\}(t_j - x_j)(t_l - x_l), \]

где $\bar{x} = (x_1 + \theta(t_1 - x_1), ..., x_r + \theta(t_r - x_r)), \theta \in (0, 1)$. Обозначим

$$ A_1 = \sum_{m=0}^{2^r-1} \sum_{k=0}^{\infty} \sum_{j=1}^{r} \frac{\partial f}{\partial x_j}(\bar{x}_m) \left(\frac{k_j}{n}(-1)^{m_j} - x_j(-1)^{m_j} \right) p_{n,k}(\bar{x}_m) - $$

\[- \sum_{m=0}^{2^r-1} \sum_{k=0}^{\infty} \sum_{j=1}^{r} \frac{\partial f}{\partial x_j}(\bar{x}_m)(x_j - x_j(-1)^{m_j})p_{n,k}(\bar{x}_m); \]

$$ A_2 = \sum_{m=0}^{2^r-1} \sum_{k=0}^{\infty} \sum_{j=1}^{r} \frac{\partial^2 f}{\partial x_j^2}(\bar{x}_m) \left(\frac{k_j}{n}(-1)^{m_j} - x_j(-1)^{m_j} \right)^2 p_{n,k}(\bar{x}_m) - $$

\[- \sum_{m=0}^{2^r-1} \sum_{k=0}^{\infty} \sum_{j=1}^{r} \frac{\partial^2 f}{\partial x_j^2}(\bar{x}_m)(x_j - x_j(-1)^{m_j})^2 p_{n,k}(\bar{x}_m); \]

$$ A_3 = \sum_{m=0}^{2^r-1} \sum_{k=0}^{\infty} \sum_{j=1}^{r} \sum_{l=j+1}^{r} 2 \frac{\partial^2 f}{\partial x_j \partial x_l}(\bar{x}_m) \left(\frac{k_l}{n}(-1)^{m_l} - x_l(-1)^{m_l} \right) \cdot $$

\[\cdot \left(\frac{k_j}{n}(-1)^{m_j} - x_j(-1)^{m_j} \right) p_{n,k}(\bar{x}_m) - \]

\[- \sum_{m=0}^{2^r-1} \sum_{k=0}^{\infty} \sum_{j=1}^{r} \sum_{l=j+1}^{r} 2 \frac{\partial^2 f}{\partial x_j \partial x_l}(\bar{x}_m)(x_j - x_j(-1)^{m_j})(x_l - x_l(-1)^{m_l}) \cdot \]

\[\cdot p_{n,k}(\bar{x}_m); \]
\[A_4 = \sum_{m=0}^{2^r-1} \sum_{k=0}^\infty \sum_{j=1}^r \left\{ \frac{\partial^2 f}{\partial x_j^2} (\xi_{k,n,m}) - \frac{\partial^2 f}{\partial x_j^2} (\bar{x}_m) \right\} \cdot \left(\frac{k_j}{n} (-1)^{m_j} - x_j (-1)^{m_j} \right)^2 p_{n,k}(\bar{x}_m); \]

\[A_5 = \sum_{m=0}^{2^r-1} \sum_{k=0}^\infty \sum_{j=1}^r \sum_{l=j+1}^r \left\{ \frac{\partial^2 f}{\partial x_j \partial x_l} (\xi_{k,n,m}) - \frac{\partial^2 f}{\partial x_j \partial x_l} (\bar{x}_m) \right\} \cdot \left(\frac{k_j}{n} (-1)^{m_j} - x_j (-1)^{m_j} \right) \left(\frac{k_l}{n} (-1)^{m_l} - x_l (-1)^{m_l} \right) p_{n,k}(\bar{x}_m); \]

\[A_6 = \sum_{m=0}^{2^r-1} \sum_{k=0}^\infty \sum_{j=1}^r \left\{ \frac{\partial^2 f}{\partial x_j^2} (\bar{\eta}_m) - \frac{\partial^2 f}{\partial x_j^2} (\bar{x}_m) \right\} (x_j - x_j (-1)^{m_j})^2 p_{n,k}(\bar{x}_m); \]

\[A_7 = \sum_{m=0}^{2^r-1} \sum_{k=0}^\infty \sum_{j=1}^r \sum_{l=j+1}^r 2 \left\{ \frac{\partial^2 f}{\partial x_j \partial x_l} (\bar{\eta}_m) - \frac{\partial^2 f}{\partial x_j \partial x_l} (\bar{x}_m) \right\} \cdot (x_j - x_j (-1)^{m_j}) (x_l - x_l (-1)^{m_l}) p_{n,k}(\bar{x}_m). \]

Тогда

\[L_n(f; \bar{x}) - f(\bar{x}) = A_1 + A_2 + A_3 + A_4 + A_5 + A_6 + A_7 \quad \text{(T3-1)} \]

Подсчитаем \(A_1 \):

\[A_1 = \sum_{j=1}^r \sum_{m=0}^{2^r-1} \frac{\partial f}{\partial x_j} (\bar{x}_m) \sum_{k_j=0}^\infty \left\{ \frac{k_j}{n} (-1)^{m_j} - x_j \right\} \frac{(nx_j (-1)^{m_j})^{k_j}}{2 \operatorname{ch}(nx_j) k_j!} \cdot \prod_{i=1, i \neq j}^r \frac{\exp(nx_i (-1)^{m_i})}{2 \operatorname{ch}(nx_i)} = \]
\[
\sum_{j=1}^{r} \sum_{m=0}^{2^{-1}} \frac{\partial f}{\partial x_j}(\bar{x}_m) \left\{ (-1)^{m_j} l_n(t; x_j(-1)^{m_j}) - x_j l_n(1; x_j(-1)^{m_j}) \right\} \cdot \prod_{i=1, i \neq j}^{r} \frac{\exp(nx_i(-1)^{m_i})}{2 \operatorname{ch}(nx_i)} =
\]

\[
\sum_{j=1}^{r} \sum_{m=0}^{2^{-1}} \frac{\partial f}{\partial x_j}(\bar{x}_m) \left\{ (-1)^{m_j} x_j(-1)^{m_j} \frac{\exp(nx_j(-1)^{m_j})}{2 \operatorname{ch}(nx_j)} - x_j \frac{\exp(nx_j(-1)^{m_j})}{2 \operatorname{ch}(nx_j)} \right\} \prod_{i=1, i \neq j}^{r} \frac{\exp(nx_i(-1)^{m_i})}{2 \operatorname{ch}(nx_i)} =
\]

Таким образом

\[A_1 = 0. \quad \text{(ТЗ-2)} \]

Подсчитаем \(A_2 \):

\[
A_2 = \sum_{j=1}^{r} \sum_{m=0}^{2^{-1}} \frac{\partial^2 f}{\partial x_j^2}(\bar{x}_m) \sum_{k_j=0}^{\infty} \left\{ \left(\frac{k_j}{n} \right) \left(\frac{2}{x_j} \right)^2 \frac{2}{x_j} + 2x_j^{2}(-1)^{m_j} - x_j^{2} \right\} \cdot \frac{(nx_j(-1)^{m_j})^{k_j}}{2 \operatorname{ch}(nx_j)^{k_j}!} \prod_{i=1, i \neq j}^{r} \frac{\exp(nx_i(-1)^{m_i})}{2 \operatorname{ch}(nx_i)} =
\]

\[
= \sum_{j=1}^{r} \sum_{m=0}^{2^{-1}} \frac{\partial^2 f}{\partial x_j^2}(\bar{x}_m) \left\{ l_n(t^2; x_j(-1)^{m_j}) - 2x_j l_n(t; x_j(-1)^{m_j}) + (2x_j^{2}(-1)^{m_j} - x_j^{2}) l_n(1; x_j(-1)^{m_j}) \right\} \prod_{i=1, i \neq j}^{r} \frac{\exp(nx_i(-1)^{m_i})}{2 \operatorname{ch}(nx_i)} =
\]

\[
= \sum_{j=1}^{r} \sum_{m=0}^{2^{-1}} \frac{\partial^2 f}{\partial x_j^2}(\bar{x}_m) \left\{ \left(x_j^{2} + \frac{x_j(-1)^{m_j}}{n} \right) - 2x_j^{2}(-1)^{m_j} + \right.
\]

\[
+ \left(2x_j^{2}(-1)^{m_j} - x_j^{2} \right) \left\{ \prod_{i=1}^{r} \frac{\exp(nx_i(-1)^{m_i})}{2 \operatorname{ch}(nx_i)} \right. \right. =
\]

\[
= \sum_{j=1}^{r} \sum_{m=0}^{2^{-1}} \frac{\partial^2 f}{\partial x_j^2}(\bar{x}_m) \frac{x_j(-1)^{m_j}}{n} \prod_{i=1}^{r} \frac{\exp(nx_i(-1)^{m_i})}{2 \operatorname{ch}(nx_i)} =
\]
\[
\begin{align*}
= \frac{1}{n} \sum_{j=1}^{r} \sum_{m=0}^{2^r-1} \left\{ \frac{\partial^2 f}{\partial x_j^2}(\bar{x}_m) - \frac{\partial^2 f}{\partial x_j^2}(\bar{x}) \right\} x_j (-1)^m \prod_{i=1}^{r} \frac{\exp(nx_i (-1)^{m_i})}{2 \operatorname{ch}(nx_i)} + \\
+ \frac{1}{n} \sum_{j=1}^{r} \frac{\partial^2 f}{\partial x_j^2}(\bar{x}) x_j \sum_{m=0}^{2^r-1} (-1)^m \prod_{i=1}^{r} \frac{\exp(nx_i (-1)^{m_i})}{2 \operatorname{ch}(nx_i)}. \end{align*}
\]

Обозначим

\[
A_8 = \frac{1}{n} \sum_{j=1}^{r} \sum_{m=0}^{2^r-1} \left\{ \frac{\partial^2 f}{\partial x_j^2}(\bar{x}_m) - \frac{\partial^2 f}{\partial x_j^2}(\bar{x}) \right\} x_j (-1)^m \prod_{i=1}^{r} \frac{\exp(nx_i (-1)^{m_i})}{2 \operatorname{ch}(nx_i)}. \]

Тогда с учетом леммы 4

\[
A_2 = A_8 + \frac{1}{n} \sum_{j=1}^{r} \frac{\partial^2 f}{\partial x_j^2}(\bar{x}) x_j \operatorname{th}(nx_j). \tag{T3-3} \]

Подсчитаем \(A_3\). Так как

\[
\sum_{k=0}^{\infty} \left\{ \left(\frac{k_j}{n} (-1)^{m_j} - x_j (-1)^{m_j} \right) \left(\frac{k_l}{n} (-1)^{m_l} - x_l (-1)^{m_l} \right) \right\} r \prod_{i=1}^{r} \frac{(nx_i (-1)^{m_i})^{k_i}}{2 \operatorname{ch}(nx_i) k_i !} = \\
= (-1)^{m_j + m_l} \sum_{k_j=0}^{\infty} \sum_{k_l=0}^{\infty} \left\{ \left(\frac{k_j}{n} - x_j \right) \left(\frac{k_l}{n} - x_l \right) \right\} \\
\cdot \left(nx_j (-1)^{m_j} \right)^{k_j} \left(nx_l (-1)^{m_l} \right)^{k_l} r \prod_{i=1}^{r} \frac{\exp(nx_i (-1)^{m_i})}{2 \operatorname{ch}(nx_i) i \neq j, i \neq l} = \\
= (-1)^{m_j + m_l} \sum_{k_j=0}^{\infty} \left\{ \left(\frac{k_j}{n} - x_j \right) \left(l_n(t; x_l (-1)^{m_l}) - x_l l_n(1; x_l (-1)^{m_l}) \right) \right\} \\
\cdot \left(nx_j (-1)^{m_j} \right)^{k_j} \prod_{i=1}^{r} \frac{\exp(nx_i (-1)^{m_i})}{2 \operatorname{ch}(nx_i) i \neq j, i \neq l} = \\
= (-1)^{m_j + m_l} \sum_{k_j=0}^{\infty} \left\{ \left(\frac{k_j}{n} - x_j \right) \left(l_n(t; x_l (-1)^{m_l}) - x_l l_n(1; x_l (-1)^{m_l}) \right) \right\} \\
\cdot \left(nx_j (-1)^{m_j} \right)^{k_j} \prod_{i=1}^{r} \frac{\exp(nx_i (-1)^{m_i})}{2 \operatorname{ch}(nx_i) i \neq j, i \neq l} = \\
= (-1)^{m_j + m_l} \sum_{k_j=0}^{\infty} \left\{ \left(\frac{k_j}{n} - x_j \right) \left(l_n(t; x_l (-1)^{m_l}) - x_l l_n(1; x_l (-1)^{m_l}) \right) \right\} \\
\cdot \left(nx_j (-1)^{m_j} \right)^{k_j} \prod_{i=1}^{r} \frac{\exp(nx_i (-1)^{m_i})}{2 \operatorname{ch}(nx_i) i \neq j, i \neq l} =
\]
\[\sum_{k_j=0}^{\infty} \left\{ \frac{k_j}{n} x_l (-1)^{m_i} - x_j x_l (-1)^{m_i} - \frac{k_j}{n} x_l + x_j x_l - x_j x_l \left((-1)^{m_j} - 1 \right) \left((-1)^{m_i} - 1 \right) \right\}. \]

\[\cdot \frac{(n x_j (-1)^{m_j})^{k_j}}{2 \operatorname{ch}(n x_j) k_j!} \prod_{i=1}^{r} \frac{\exp(n x_i (-1)^{m_i})}{2 \operatorname{ch}(n x_i)} = \]

\[= (-1)^{m_j + m_i} \left\{ \left[x_l (-1)^{m_j} - x_l \right] l_n(t; x_j (-1)^{m_j}) - x_j x_l \left[(-1)^{m_i} - 1 + \left((-1)^{m_j} - 1 \right) \left((-1)^{m_i} - 1 \right) \right] l_n(1; x_j (-1)^{m_i}) \right\}. \]

\[\cdot \prod_{i=1}^{r} \frac{\exp(n x_i (-1)^{m_i})}{2 \operatorname{ch}(n x_i)} = \]

\[= (-1)^{m_j + m_i} \left\{ \left[x_l (-1)^{m_j} - x_l \right] x_j (-1)^{m_j} - x_j x_l \left[(-1)^{m_i} - 1 + \left((-1)^{m_j} - 1 \right) m_i + (-1)^{m_i} - (-1)^{m_j} + 1 \right] \right\}. \]

\[\cdot \prod_{i=1}^{r} \frac{\exp(n x_i (-1)^{m_i})}{2 \operatorname{ch}(n x_i)}, \]

получаем, что

\[A_3 = 0. \quad \text{(T3-4)} \]

Из соотношений (T3-1), (T3-2), (T3-3) и (T3-4) следует равенство

\[L_n(f; \bar{x}) - f(\bar{x}) = \frac{1}{n} \sum_{j=1}^{r} \frac{\partial^2 f}{\partial x_j^2} (\bar{x}) x_j \operatorname{th}(n x_j) + A_4 + A_5 + A_6 + A_7 + A_8 \quad \text{(T3-5)} \]
Оценим $|A_4|$:

$$
|A_4| \leq \sum_{m=0}^{2r-1} \sum_{k=0}^{\infty} \sum_{j=1}^{r} \left| \frac{\partial^2 f}{\partial x_j^2}(\bar{x}_{k,n,m}) - \frac{\partial^2 f}{\partial x_j^2}(\bar{x}_m) \right| \left(\frac{k_i}{n} - x_j \right)^2 \cdot \prod_{i=1}^{r} \frac{(nx_i)^{k_i}}{2 \operatorname{ch}(nx_i)k_i!} \leq \text{применим лемму 1}
$$

$$
\leq \sum_{m=0}^{2r-1} \sum_{k=0}^{\infty} \sum_{j=1}^{r} \omega \left(\frac{\partial^2 f}{\partial x_j^2}; \bar{h} \right) \left\{ \prod_{i=1}^{r} \left(1 + \frac{1}{h_i^2} \left(\frac{k_i}{n} - x_i \right)^2 \right) \right\} \left(\frac{k_j}{n} - x_j \right)^2 \cdot \prod_{i=1}^{r} \frac{(nx_i)^{k_i}}{2 \operatorname{ch}(nx_i)k_i!} =
$$

$$
= 2^r \sum_{j=1}^{r} \omega \left(\frac{\partial^2 f}{\partial x_j^2}; \bar{h} \right) \left\{ \prod_{i=1}^{r} \left(1 + \frac{1}{h_i^2} \left(t_i - x_i \right)^2 ; x_i \right) \right\} \cdot \ln \left((t_j - x_j)^2 + \frac{1}{h_j^2} (t_j - x_j)^4 ; x_j \right).
$$

Во-первых, с учетом леммы 3

$$
\ln \left(1 + \frac{1}{h_i^2} (t_i - x_i)^2 ; x_i \right) = \ln(1; x_i) + \frac{1}{h_i^2} \ln((t_i - x_i)^2 ; x_i) =
$$

$$
= \left(1 + \frac{x_i}{h_i^2 n} \right) \exp(nx_i) = 2 \operatorname{ch}(nx_i) < 2.
$$

Во-вторых,

$$
\ln \left((t_j - x_j)^2 + \frac{1}{h_j^2} (t_j - x_j)^4 ; x_j \right) =
$$

$$
= \ln \left((t_j - x_j)^2 ; x_j \right) + \frac{1}{h_j^2} \ln((t_j - x_j)^4 ; x_j) =
$$

$$
= \left\{ \frac{x_j}{n} + \frac{1}{h_j^2} \left[\frac{3x_j^2}{n^2} + \frac{x_j}{n^3} \right] \right\} \exp(nx_j) = \left\{ \frac{4x_j}{n} + \frac{1}{n^2} \right\} \exp(nx_j) \leq
$$

$$
\leq \frac{4x_j}{n} + \frac{1}{n^2}.
$$
Поэтому

\[|A_4| \leq \frac{2^{2r-1}}{n} \sum_{j=1}^{r} \omega \left(\frac{\partial^2 f}{\partial x_j^2}; \tilde{h} \right) \left\{ 4x_j + \frac{1}{n} \right\} \] \quad (T3-6)

Оценим \(|A_5|\):

\[|A_5| \leq 2 \sum_{j=1}^{r} \sum_{l=j+1}^{r} \omega \left(\frac{\partial^2 f}{\partial x_j \partial x_l}; \tilde{h} \right) . \]

\[\cdot \sum_{m=0}^{2^r-1} \sum_{k=0}^{\infty} \left\{ \prod_{i=1}^{r} \left(1 + \frac{1}{h_i^2} \left(\frac{k_i}{n} - x_i \right)^2 \right) \right\} \left\{ \prod_{i=1}^{2^r-1} \frac{(nx_i)^{k_i}}{2\text{ch}(nx_i)k_i!} \right\} . \]

\[= 2^{r+1} \sum_{j=1}^{r} \sum_{l=j+1}^{r} \omega \left(\frac{\partial^2 f}{\partial x_j \partial x_l}; \tilde{h} \right) \left\{ \prod_{i=1}^{r} l_n \left(1 + \frac{1}{h_i^2} (t_i - x_i)^2; x_i \right) \right\} \cdot l_n \left(\left[1 + \frac{1}{h_j^2} (t_j - x_j) \right] |t_j - x_j|; x_j \right) l_n \left(\left[1 + \frac{1}{h_l^2} (t_l - x_l) \right] |t_l - x_l|; x_l \right) \]

Во-первых, как было получено при оценке \(A_4\)

\[l_n \left(1 + \frac{1}{h_i^2} (t_i - x_i)^2; x_i \right) \leq 2 \]

Во-вторых, как было показано при доказательстве теоремы 2

\[l_n \left(\left[1 + \frac{1}{h_j^2} (t_j - x_j)^2 \right] |t_j - x_j|; x_j \right) \leq \frac{1}{\sqrt{n}} \left\{ 3\sqrt{x_j} + \frac{1}{\sqrt{n}} \right\} . \]

Поэтому

\[|A_5| \leq \frac{2^{2r-1}}{n} \sum_{j=1}^{r} \sum_{l=j+1}^{r} \omega \left(\frac{\partial^2 f}{\partial x_j \partial x_l}; \tilde{h} \right) \left\{ 3\sqrt{x_j} + \frac{1}{\sqrt{n}} \right\} \left\{ 3\sqrt{x_l} + \frac{1}{\sqrt{n}} \right\} . \] \quad (T3-7)

Оценим \(A_6, A_7, A_8\). Применяя леммы 1 и 4, получим
\[
|A_6| \leq \sum_{j=1}^{r} x_j^2 \omega \left(\frac{\partial^2 f}{\partial x_j^2}; \tilde{h} \right) \sum_{m=0}^{2r-1} (1 - (-1)^{m_j})^2 \cdot \prod_{i=1}^{r} \left(1 + \frac{x_i^2}{h_i^2} (1 - (-1)^{m_i})^2 \right) \frac{\exp(nx_i(-1)^{m_i})}{2 \text{ch}(nx_i)};
\]

\[
|A_7| \leq 2 \sum_{j=1}^{r} \sum_{l=j+1}^{r} x_j x_l \omega \left(\frac{\partial^2 f}{\partial x_j \partial x_l}; \tilde{h} \right) \sum_{m=0}^{2r-1} (1 - (-1)^{m_j})(1 - (-1)^{m_l}) \cdot \prod_{i=1}^{r} \left(1 + \frac{x_i^2}{h_i^2} (1 - (-1)^{m_i})^2 \right) \frac{\exp(nx_i(-1)^{m_i})}{2 \text{ch}(nx_i)};
\]

\[
|A_8| \leq \frac{1}{n} \sum_{j=1}^{r} x_j \omega \left(\frac{\partial^2 f}{\partial x_j^2}; \tilde{h} \right) \cdot \sum_{m=0}^{2r-1} \prod_{i=1}^{r} \left(1 + \frac{x_i^2}{h_i^2} (1 - (-1)^{m_i})^2 \right) \frac{\exp(nx_i(-1)^{m_i})}{2 \text{ch}(nx_i)}.
\]

Если \(m_i = 0 \), то
\[
\left(1 + \frac{x_i^2}{h_i^2} (1 - (-1)^{m_i})^2 \right) \frac{\exp(nx_i(-1)^{m_i})}{2 \text{ch}(nx_i)} = \frac{\exp(nx_i)}{2 \text{ch}(nx_i)} \leq 1.
\]

Если \(m_i = 1 \), то,
\[
\left(1 + \frac{x_i^2}{h_i^2} (1 - (-1)^{m_i})^2 \right) \frac{\exp(nx_i(-1)^{m_i})}{2 \text{ch}(nx_i)} = (1 + 4nx_i) \frac{\exp(-nx_i)}{2 \text{ch}(nx_i)}.
\]

Рассмотрим функцию \(y(t) = 4t - e^{2t} \). Очевидно, что \(t = \ln \sqrt{2} \) — точка максимума функции \(y(t) \), поэтому

\[
y(t) \leq y(\ln \sqrt{2}) = 2 \ln 2 - 2 < 0 \implies 4t - e^{2t} < 0 \implies 4t < e^{2t} \implies 1 + 4t < 1 + e^{2t} \implies \frac{1 + 4t}{1 + e^{2t}} < 1 \implies \frac{1 + 4nx}{1 + e^{2nx}} < 1 \implies \frac{1 + 4nx \exp(-nx)}{2 \text{ch}(nx)} < 1.
\]
Поскольку

$$|A_6| \leq \sum_{j=1}^{r} x_j^2 \omega \left(\frac{\partial^2 f}{\partial x_j^2}; \bar{h} \right) \sum_{m=0}^{2r-1} (1 - (-1)^{m_j})^2 \left(1 + \frac{x_j^2}{h_j^2} (1 - (-1)^{m_j})^2 \right) \cdot \frac{\exp(nx_j(-1)^{m_j})}{2 \cdot \text{ch}(nx_j)} =$$

(так как половина слагаемых обращается в ноль)

$$= 2^{r+1} \sum_{j=1}^{r} x_j^2 \omega \left(\frac{\partial^2 f}{\partial x_j^2}; \bar{h} \right) (1 + 4nx_j) \frac{\exp(nx_j(-1)^{m_j})}{2 \cdot \text{ch}(nx_j)};$$

$$|A_7| \leq 2 \sum_{j=1}^{r} \sum_{l=j+1}^{r} x_l x_j \omega \left(\frac{\partial^2 f}{\partial x_j \partial x_l}; \bar{h} \right) \sum_{m=0}^{2r-1} (1 - (-1)^{m_j})(1 - (-1)^{m_l}) \cdot \frac{\exp(nx_j(-1)^{m_j}) \exp(nx_l(-1)^{m_l})}{2 \cdot \text{ch}(nx_j) \cdot 2 \cdot \text{ch}(nx_l)} =$$

(так как $3/4$ слагаемых обращается в ноль)

$$= 2^{r+1} \sum_{j=1}^{r} \sum_{l=j+1}^{r} x_l x_j \omega \left(\frac{\partial^2 f}{\partial x_j \partial x_l}; \bar{h} \right) (1 + 4nx_j)(1 + 4nx_l) \cdot \frac{\exp(nx_j(-1)^{m_j}) \exp(nx_l(-1)^{m_l})}{2 \cdot \text{ch}(nx_j) \cdot 2 \cdot \text{ch}(nx_l)};$$

и

$$|A_8| \leq \frac{2r}{n} \sum_{j=1}^{r} x_j \omega \left(\frac{\partial^2 f}{\partial x_j^2}; \bar{h} \right). \quad (T3-8)$$

Для завершения оценки $|A_6|$ и $|A_7|$ рассмотрим вспомогательную функцию $y(t) = t + 2t^2 - e^t$. Уравнение $y'(t) = 0$ имеет два корня $t = 0$ и $t = t_0 > 0$, причем при $t \in (0, t_0)$ будет $1 + 4t > e^t$, а при $t \in (t_0, \infty)$ будет $1 + 4t < e^t$, то есть t_0 — точка максимума функции $y(t)$.
Опишем, что

\[y'(2, 2) = 9, 8 - e^{2.2} > 9, 8 - 2, 8^{2.2} \approx 9, 8 - 9, 63 > 0 \]
\[y'(2, 5) = 11 - e^{2.5} < 11 - 2, 7^{2.5} \approx 11 - 11, 98 < 0, \]

следовательно, \(2, 2 < t_0 < 2, 5 \). Таким образом, для \(t \geq 0 \)

\[y(t) \leq y(t_0) = t_0 + 2t_0^2 - e^{t_0} < 2, 5 + 2 \cdot 2, 5^2 - 2, 7^{2.2} \approx 15 - 8, 89 < 8 \]

\[\Rightarrow t + 2t^2 - e^t < 8 \Rightarrow \frac{t + 2t^2}{8 + e^t} < 1 \Rightarrow \frac{1 + 2t}{8 + e^t} < \frac{1}{t} \Rightarrow \frac{1 + 4nx}{8 + e^{2nx}} < \frac{1}{2nx} \Rightarrow \]

\[\frac{1 + 4nx}{8(1 + 4nx)} \frac{1}{8(1 + e^{2nx})} < \frac{8}{8 + e^{2nx}} < \frac{8}{2nx} \frac{4}{nx}. \]

Подставляя полученную оценку, получаем:

\[|A_6| \leq \frac{2^{r+3}}{n} \sum_{j=1}^{r} x_j \omega \left(\frac{\partial^2 f}{\partial x_j^2}; \bar{h} \right), \]

(Т3-9)

\[|A_7| \leq \frac{2^{r+5}}{n} \sum_{j=1}^{r} \sum_{l=j+1}^{r} \omega \left(\frac{\partial^2 f}{\partial x_j \partial x_l}; \bar{h} \right) \]

Применяя к соотношению (Т3-5) неравенства (Т3-6), (Т3-7), (Т3-8) и (Т3-9), получаем с одной стороны

\[|L_n(f; \bar{x}) - f(\bar{x})| \leq \frac{1}{n} \sum_{j=1}^{r} \frac{\partial^2 f}{\partial x_j^2}(\bar{x}) x_j \text{th}(nx_j) + \]

\[+ \frac{1}{n} \sum_{j=1}^{r} \omega \left(\frac{\partial^2 f}{\partial x_j^2}; \bar{h} \right) \left(2^{r+1} x_j + \frac{2^{r-1}}{n} + 2^{r+3} x_j + 2^r x_j \right) + \]

\[+ \frac{1}{n} \sum_{j=1}^{r} \sum_{l=j+1}^{r} \omega \left(\frac{\partial^2 f}{\partial x_j \partial x_l}; \bar{h} \right) \cdot \left(2^{r-1} \left(3\sqrt{x_j} + \frac{1}{\sqrt{n}} \right) \left(3\sqrt{x_l} + \frac{1}{\sqrt{n}} \right) + \frac{2^{r+5}}{n} \right) \leq \]

\[\leq \frac{c(r)}{n} \sum_{j=1}^{r} \sum_{l=j}^{r} \omega \left(\frac{\partial^2 f}{\partial x_j \partial x_l}; \bar{h} \right) \left(|x_j| + |x_l| + \frac{1}{n} \right) + \frac{1}{n} \sum_{j=1}^{r} \left\| \frac{\partial^2 f}{\partial x_j^2} \right\| |x_j|, \]
С другой стороны,

\[|L_n(f; \bar{x}) - f(\bar{x}) - \frac{1}{n} \sum_{j=1}^{r} \frac{\partial^2 f}{\partial x_j^2}(\bar{x}) x_j \text{th}(nx_j)| \leq \]
\[\leq \frac{c(r)}{n} \sum_{j=1}^{r} \sum_{l=j}^{r} \omega \left(\frac{\partial^2 f}{\partial x_j \partial x_l}; \bar{h} \right) \left(|x_j| + |x_l| + \frac{1}{n} \right) \to 0 \]

при \(n \to \infty \) и функции с равномерно-непрерывными вторыми производными.

Таким образом для положительных координат теорема доказана. Проводя такие же рассуждения, как и при завершении доказательства теоремы 2, приходим к выводу, что утверждение теоремы 3 выполнено для любого \(\bar{x} \). □

Замечание. С одной стороны, из теоремы 3 следует, что порядок приближения операторами \(L_n \) функций, у которых все вторые производные равномерно непрерывные, есть \(\frac{1}{n} \). С другой стороны, указанный порядок приближения не улучшается для трижды дифференцируемых функций. В этом смысле, теорема 3 является аналогом хорошо известной теоремы Вороновской (см., например, [6]). Аналогичные теоремы справедливы для операторов Саса-Миракьяна.
§4. ОПЕРАТОРЫ $\mathcal{L}_{n,\nu}(f; \bar{x})$

Для ν раз дифференцируемых функций рассмотрим операторы

$$\mathcal{L}_{n,0}(f; \bar{x}) = \mathcal{L}_{n,1}(f; \bar{x}) = L_n(f; \bar{x});$$

для $\nu \geq 2$

$$\mathcal{L}_{n,\nu}(f; \bar{x}) = L_n(f; \bar{x}) - \sum_{k=2}^{\nu} \sum_{\alpha_k=k}^{\nu} \frac{1}{\alpha_1! \ldots \alpha_r!} S_n^\alpha(\bar{x}) \cdot \mathcal{L}_{n,\nu-k}(F_k^\alpha; \bar{x}),$$

где $S_n^\alpha(\bar{x}) = L_n(\prod_{i=1}^{r} (t_i - x_i)^{\alpha_i}; \bar{x}),$

$$\sum_{\alpha_k=k}^{\nu} \text{ берется по всем наборам целых неотрицательных чисел } \alpha_i,$n

$$i = 1, r, \text{ таких, что } \alpha_1 + \ldots + \alpha_r = k,$$

$$F_k^\alpha = \frac{\partial^k f}{\partial x_1^{\alpha_1} \ldots \partial x_r^{\alpha_r}}.$$

Если взять $r = 1$ (функцию одного переменного), а вместо операторов L_n операторы Бернштейна, то получим конструкцию, которая при $\nu = 3$ была указана самим С.Н. Бернштейном, а для любого ν построена и изучена В.С. Виленским ([5]).

ТЕОРЕМА 4. Если функция $f: \mathbb{R}_r \to \mathbb{R}$ ν раз дифференцируема, то

$$|\mathcal{L}_{n,\nu}(f; \bar{x}) - f(\bar{x})| \leq \text{const}(\nu, r)(1 + \|x\|^{\nu-1})n^{-\nu/2} \sum_{\alpha=\nu}^{\nu} \omega(F_{\alpha}^{\nu}; \bar{h})$$

ДОКАЗАТЕЛЬСТВО. Пусть $f: \mathbb{R}_r \to \mathbb{R}$ ν раз дифференцируемая функция. По формуле Тейлора

$$f(\bar{\xi}) = f(\bar{x}) + \sum_{k=1}^{\nu} \sum_{\alpha_k=k}^{\nu} \frac{1}{\alpha_1! \ldots \alpha_r!} F_k^\alpha(\bar{x}) \prod_{i=1}^{r} (t_i - x_i)^{\alpha_i} +$$

$$+ \sum_{\alpha=\nu}^{\nu} \frac{1}{\alpha_1! \ldots \alpha_r!} \left[F_k^\alpha(\bar{\xi}) - F_k^\alpha(\bar{x}) \right] \prod_{i=1}^{r} (t_i - x_i)^{\alpha_i},$$
где \(\xi = \bar{x} + \theta(\bar{t} - \bar{x}), \theta \in [0;1] \). Откуда имеем

\[
L_n(f(\bar{t}); \bar{x}) = f(\bar{x}) + \sum_{k=1}^{\nu} \sum_{\alpha=k}^{\nu} \frac{1}{\alpha_1! \ldots \alpha_r!} F_{\alpha_k}^k(\bar{x}) S_{n}^{\alpha_k}(\bar{x}) + R_\nu(f; \bar{x}),
\]

где \(R_\nu(f; \bar{x}) \) — то же, что и в лемме 8.
Если \(k = 1 \), то \(\alpha_i \) все, кроме одного равны нулю, а одно из них \(\alpha_{i_0} = 1 \).
Поэтому для \(k = 1 \)

\[
S_{n}^{\alpha_k}(\bar{x}) = L_n(t_{i_0}; \bar{x}) - x_{i_0} L_n(1; \bar{x}) = 0.
\]

Следовательно,

\[
L_n(f(\bar{t}); \bar{x}) = f(\bar{x}) + \sum_{k=2}^{\nu} \sum_{\alpha=k}^{\nu} \frac{1}{\alpha_1! \ldots \alpha_r!} F_{\alpha_k}^k(\bar{x}) S_{n}^{\alpha_k}(\bar{x}) + R_\nu(f; \bar{x}).
\]

Подставляя полученное представление \(L_n \) в выражение для \(\mathcal{L}_{n,\nu} \), получим

\[
\mathcal{L}_{n,\nu}(f(\bar{t}); \bar{x}) = f(\bar{x}) + \sum_{k=2}^{\nu} \sum_{\alpha=k}^{\nu} \frac{1}{\alpha_1! \ldots \alpha_r!} \left[F_{\alpha_k}^k(\bar{x}) - \mathcal{L}_{n,\nu-k}(F_{\alpha_k}^k; \bar{x}) \right] S_{n}^{\alpha_k}(\bar{x}) + R_\nu(f; \bar{x}),
\]

откуда

\[
\left| \mathcal{L}_{n,\nu}(f(\bar{t}); \bar{x}) - f(\bar{x}) \right| \leq \sum_{k=2}^{\nu} \sum_{\alpha=k}^{\nu} \frac{1}{\alpha_1! \ldots \alpha_r!} \left| F_{\alpha_k}^k(\bar{x}) - \mathcal{L}_{n,\nu-k}(F_{\alpha_k}^k; \bar{x}) \right| S_{n}^{\alpha_k}(\bar{x}) + \left| R_\nu(f; \bar{x}) \right| \quad \text{(Т3-1)}
\]

Для \(\nu = 2 \) неравенство (Т3-1) примет вид

\[
\left| \mathcal{L}_{n,2}(f(\bar{t}); \bar{x}) - f(\bar{x}) \right| \leq \sum_{\alpha=2}^{\nu} \frac{1}{\alpha_1! \ldots \alpha_r!} \left| F_{\alpha_k}^2(\bar{x}) - L_n(F_{\alpha_k}^2; \bar{x}) \right| S_{n}^{\alpha_k}(\bar{x}) + \left| R_2(f; \bar{x}) \right| \leq
\]

\[
\sum_{\alpha=2}^{\nu} \frac{1}{\alpha_1! \ldots \alpha_r!} \left| F_{\alpha_k}^2(\bar{x}) - L_n(F_{\alpha_k}^2; \bar{x}) \right| S_{n}^{\alpha_k}(\bar{x}) + \left| R_2(f; \bar{x}) \right|.
\]
применим леммы 7, 8 и теорему 1:

\[
\leq \sum_{\alpha=2}^{\nu} \frac{\text{const}(\alpha, r)}{\alpha_1! \ldots \alpha_r!} \cdot 1 + \frac{\|\bar{x}\|}{n} \omega(F_{\alpha}^2; \bar{h}) + \text{const}(r) \sum_{\alpha=2}^{\nu} \frac{\|\bar{x}\|}{n} \omega(F_{\alpha}^2; \bar{h}) \leq \text{const}(r) \frac{1 + \|\bar{x}\|}{n} \sum_{\alpha=2}^{\nu} \omega(F_{\alpha}^2; \bar{h})
\]

и для \(\nu = 2 \) утверждение теоремы выполнено. Пусть оно выполнено до некоторого \(\nu - 1 \) включительно. Тогда, применяя к (Т3-1) леммы 7, 8 и предположение индукции, получим

\[
\left| \mathcal{L}_{n, \nu}(f(\bar{i}); \bar{x}) - f(\bar{x}) \right| \leq \sum_{k=2}^{\nu} \sum_{\alpha=k}^{\nu} \frac{\text{const}(\alpha, r)}{\alpha_1! \ldots \alpha_r!} (1 + \|\bar{x}\|^{\nu-k-1})n^{-\frac{\nu-k}{2}}(1 + \|\bar{x}\|^{k-1})n^{-\frac{k+1}{2}}.
\]

\[
\cdot \sum_{\beta=\nu-k}^{\nu} \omega(F_{\alpha}^{k-\beta}; \bar{h}) + \text{const}(r, \nu) \sum_{\alpha=\nu}^{\nu} \omega(F_{\alpha}^\nu; \bar{h}) \|x\|^{\nu/2} n^{-\nu/2} \leq \text{const}(r, \nu) \sum_{\alpha=\nu}^{\nu} \omega(F_{\alpha}^\nu; \bar{h})(1 + \|x\|^{\nu-1})n^{-\nu/2}. \quad \square
\]
§5. ОБОБЩЕНИЕ ОПЕРАТОРОВ \(L_n(f; x) \)

Применяя идеи и методы, изложенные в §1-3, построим класс операторов для приближения функций многих переменных с определенным весовым ограничением на рост в бесконечности.

Обозначим \(\mathcal{M} \) – класс линейных положительных операторов вида

\[
L_n(f; x) = \sum_{k=0}^{\infty} f\left(\frac{k}{n}\right) \frac{u_{n,k}(x)}{v_n(x)} x^k, \quad x \in [0; \infty),
\]

где \(u_{n,k}(x) \) и \(v_n(x) \) – дифференцируемые функции, удовлетворяющие условиям:

1. \(u_{n,k}(x) \geq 0 \) и \(v_n(x) > 0 \) для \(x \geq 0 \), \(v_n(0) = 1 \), \(\lim_{x \to \infty} v_n(x) = \infty \);

2. \(\sum_{k=0}^{\infty} u_{n,k}(x)x^k = v_n(x) \);

3. \(\sum_{k=0}^{\infty} u_{n,k}(x)(-x)^k = v_n(x) \);

4. Для \(q_{n,k}(x) = \frac{u_{n,k}(x)}{v_n(x)} x^k \) выполняется соотношение:

\[
q'_{n,k}(x) = \frac{k - nx}{w(x)} q_{n,k}(x),
\]

где \(w(x) \) – дважды дифференцируемая функция, не имеющая нулей на \((0; \infty) \).

Этим условиям удовлетворяют, например,

операторы Саса-Миракьяна: \(M_n(f; x) = \sum_{k=0}^{\infty} f\left(\frac{k}{n}\right) \frac{(nx)^k}{k!} e^{-nx} \),
операторы Баскакова:
\[B_n(f; x) = \sum_{k=0}^{\infty} f\left(\frac{k}{n}\right)^{n+k-1} \left(\frac{x}{1+x}\right)^{n+k} \]

операторы Каталана:
\[K_n(f; x) = \sum_{k=0}^{\infty} f\left(\frac{k}{n}\right)^{2k+n} \left(\frac{x}{1+2x}\right)^{n+k} \]

и другие.

Пусть, как и раньше:

для \(m \in N_0 \) имеем представление в двоичном формате:

\(m = m_1 + m_2 \cdot 2 + m_3 \cdot 2^2 + \ldots + m_r \cdot 2^{r-1} \), где \(m_k \in \{0; 1\} \);

\(\bar{x} = (x_1, ..., x_r) \);

\(|\bar{x}| = (|x_1|, ..., |x_r|) \);

\(\bar{k}_{n,m} = \left(\frac{k_1}{n}(-1)^{m_1}, \frac{k_2}{n}(-1)^{m_2}, ..., \frac{k_r}{n}(-1)^{m_r}\right) \), где \(k_j \in N_0, \ n \in N; \)

\(\bar{m}_k = m_1 k_1 + \ldots + m_r k_r \).

Для \(f : R_r \rightarrow R, \ \bar{x} \in R_r \) по классу \(M \) построим класс \(M^* \) операторов

\[L_n(f; \bar{x}) = \sum_{k=0}^{\infty} \sum_{m=0}^{2^r-1} (-1)^{\bar{m}_k} f(\bar{k}_{n,m}) \cdot p_{n,\bar{k}}(\bar{x}_m), \]

где \(p_{n,\bar{k}}(\bar{x}) = \prod_{i=1}^{r} \frac{u_{n,k_i}(x_i)}{z_n(x_i)} x_i^{k_i} ; \ z_n(x) = v_n(|x|) + \frac{v_n(2|x|)}{v_n(2|x|)}. \)

Пусть \(Q(\bar{x}) \) – положительная, непрерывная, убывающая по каждой переменной функция, определенная на \([0; \infty)^r\), такая, что

\[\sum_{k=0}^{\infty} \sum_{m=0}^{2^r-1} \frac{1}{Q(\bar{k}_{n,m})} |p_{n,\bar{k}}(\bar{x}_m)| \leq \frac{c}{Q(\bar{x})}. \]

Модулем непрерывности функции \(f : R_r \rightarrow R \) с весом \(Q \), будем называть

\[\omega_Q(f, \bar{h}) = \sup_{\delta \in R(\bar{h})} \sup_{x \in R_r} Q(\bar{x}) |f(\bar{x} + \delta) - f(\bar{x})|, \]

где \(R(\bar{h}) = [0, h_1] \times [0, h_2] \times \ldots \times [0, h_r] \).
ТЕОРЕМА 5. Пусть $f: \mathbb{R} \rightarrow \mathbb{R}$ -- непрерывная функция, для которой величина $Q(|\bar{x}|)|f(\bar{x})|$ ограничена. Тогда $L_n(f;x) \rightarrow f(\bar{x})$, причем имеет место неравенство:

$$Q(|\bar{x}|)\left|L_n(f;\bar{x}) - f(\bar{x})\right| \leq C(r)\omega_Q(f;\bar{h}),$$

где $h_i = 2\sqrt{\frac{w(|x_i|)}{n}} + \frac{|x_i|}{1 + v_n(2|x_i|)}$.

Доказательство теоремы разобьем на леммы.

Лемма 1. Для $x \geq 0$, $m \in \mathbb{N}$

$$l_n(t^m;x) = xl_n(t^{m-1};x) + \frac{w(x)}{n}l_n'(t^{m-1};x).$$

ДОКАЗАТЕЛЬСТВО. При $x = 0$ равенство очевидно. При $x > 0$ в силу условия (4) имеем:

$$\frac{k}{n}q_{n,k}(x) = xq_{n,k}(x) + \frac{w(x)}{n}q'_{n,k}(x).$$

Тогда

$$l_n(t^m;x) = \sum_{k=0}^{m} \left(\frac{k}{n} \right) q_{n,k}(x) = \sum_{k=0}^{m} \left(\frac{k}{n} \right)^{m-1} \left(xq_{n,k}(x) + \frac{w(x)}{n}q'_{n,k}(x) \right) =$$

$$= x \sum_{k=0}^{m} \left(\frac{k}{n} \right)^{m-1} q_{n,k}(x) + \frac{w(x)}{n} \sum_{k=0}^{m} \left(\frac{k}{n} \right)^{m-1} q'_{n,k}(x) = xl_n(t^{m-1};x) + \frac{w(x)}{n}l_n'(t^{m-1};x). \Box$$

СЛЕДСТВИЯ. Отметим, что в силу условия (2) $l_n(1;x) = 1$. Применяя лемму 1, получаем следующие равенства:

1°. $l_n(t;x) = xl_n(1;x) + \frac{w(x)}{n}l_n'(1;x) = x$;

2°. $l_n(t^2;x) = xl_n(t;x) + \frac{w(x)}{n}l_n'(t;x) = x^2 + \frac{w(x)}{n}$;

3°. $l_n((t-x)^2;x) = l_n(t^2;x) - 2xl_n(t;x) + x^2l_n(1;x) = \frac{w(x)}{n}$.
Лемма 2. \(L_n(l; \overline{x}) = 1 \).

ДОКАЗАТЕЛЬСТВО.

\[L_n(l; \overline{x}) = \sum_{k=0}^{2^r-1} \sum_{m=0}^{2^r-1} (-1)^{(m,k)} p_n,\overline{x}(x) = \sum_{k=0}^{2^r-1} \sum_{m=0}^{2^r-1} (-1)^{(m,k)} \prod_{i=1}^{r} \frac{u_{n,k_i}([x_i]) v_n(2|x_i|)}{v_n([x_i])(1+v_n(2|x_i|))} x_i^{k_i} = \]

\[= \sum_{m=0}^{2^r-1} \sum_{k_{r-1}=0}^{\infty} \ldots \sum_{k_1=0}^{\infty} (-1)^{m,k_{r-1}} \prod_{i=1}^{r-1} \frac{u_{n,k_i}([x_i]) v_n(2|x_i|)}{v_n([x_i])(1+v_n(2|x_i|))} x_i^{k_i} \cdot \sum_{k_r=0}^{\infty} (-1)^{m,k_r} \frac{u_{n,k_r}([x_r]) v_n(2|x_r|)}{v_n([x_r])(1+v_n(2|x_r|))} x_r^{k_r} \]

Обозначим последнюю сумму \(A(x_r;m_r) \). Тогда

\[\sum_{k=0}^{\infty} (-1)^{(m,k)} p_n,\overline{x}(x) = \prod_{i=1}^{r} A(x_i,m_i) \] (1)

и

\[L_n(l; \overline{x}) = \prod_{m=0}^{2^r-1} A(x_r,m_r) . \]

Если \(x_r \geq 0 , m_r = 0 \), то

\[A(x_r;m_r) = \frac{v_n(2x_r)}{v_n(x_r)(1+v_n(2x_r))} \sum_{k_r=0}^{\infty} u_{n,k_r}(x_r)x_r^{k_r} = \frac{v_n(2x_r)}{1+v_n(2x_r)} . \]

Если \(x_r \geq 0 , m_r = 1 \), то

\[A(x_r;m_r) = \frac{v_n(2x_r)}{v_n(x_r)(1+v_n(2x_r))} \cdot \sum_{k_r=0}^{\infty} u_{n,k_r}(x_r)(-x_r)^{k_r} = \frac{1}{1+v_n(2x_r)} . \]

Если \(x_r < 0 , m_r = 0 \), то

\[A(x_r;m_r) = \frac{v_n(-2x_r)}{v_n(-x_r)(1+v_n(-2x_r))} \cdot \sum_{k_r=0}^{\infty} u_{n,k_r}(-x_r)x_r^{k_r} = \frac{1}{1+v_n(-2x_r)} . \]

Если \(x_r < 0 , m_r = 1 \), то

\[A(x_r;m_r) = \frac{v_n(-2x_r)}{v_n(-x_r)(1+v_n(-2x_r))} \cdot \sum_{k_r=0}^{\infty} u_{n,k_r}(-x_r)(-x_r)^{k_r} = \frac{v_n(-2x_r)}{1+v_n(-2x_r)} . \]

Завершение доказательства проведем по индукции. Пусть \(r=1 \), тогда

\[L_n(1; x) = A(x,0) + A(x,1) = 1 . \]
Предположим, что для некоторого \(r \) \(L_n(1; \bar{x}) = 1 \). Тогда для \(r+1 \)

\[
L_n(1; \bar{x}) = \sum_{m=0}^{2^r-1} \prod_{i=1}^{r} A(x_i, m) \ A(x_{r+1}, 0) + \sum_{m=0}^{2^r-1} \prod_{i=1}^{r} A(x_i, m) \ A(x_{r+1}, 1) =
\]

(с учетом предположения индукции) \(=A(x_{r+1}, 0) + A(x_{r+1}, 1) = 1 \)

и лемма 2 доказана. □

Лемма 3. Для функции

\[
g(\bar{x}) = \frac{1}{h_1 \ldots h_r} \int_0^{h_1} \ldots \int_0^{h_r} f(\bar{x} + \bar{r}) d\bar{t}_1 \ldots d\bar{t}_r
\]

имеют место неравенства:

1°. \(|g(\bar{x}) - f(\bar{x})| \leq \frac{\omega_Q(f; \bar{h})}{Q(\|\bar{x}\|)} \);

2°. \(|L_n(g; \bar{x}) - L_n(f; \bar{x})| \leq \frac{\omega_Q(f; \bar{h})}{Q(\|\bar{x}\|)} 2^r \);

3°. \(\left| \frac{\partial g}{\partial x_i} \right| \leq \frac{\omega_Q(f; \bar{h}(i))}{h_i Q(\|\bar{x}\|)}, \) где \(\bar{h}(i) = (0, \ldots, 0, h_i, 0, \ldots, 0) \).

Доказательство. Неравенство 1° непосредственно следует из определений \(g \) и \(\omega_Q \).

Покажем 2°:

\[
|L_n(g; \bar{x}) - L_n(f; \bar{x})| \leq \sum_{k=0}^{\infty} \sum_{m=0}^{2^r-1} (-1)^{\langle m, k \rangle} \left(g(\bar{k}_{n,m}) - f(\bar{k}_{n,m}) \right) p_{n,\bar{k}}(\bar{x}) \leq \sum_{k=0}^{\infty} \sum_{m=0}^{2^r-1} |g(\bar{k}_{n,m}) - f(\bar{k}_{n,m})| p_{n,\bar{k}}(|\bar{x}|) \leq \frac{\omega_Q(f; \bar{h})}{Q(\|\bar{x}\|)} \sum_{k=0}^{\infty} \sum_{m=0}^{2^r-1} p_{n,\bar{k}}(|\bar{x}|) =
\]

(с учетом (1)) \(= \frac{\omega_Q(f; \bar{h})}{Q(\|\bar{x}\|)} \sum_{m=0}^{2^r-1} \prod_{i=1}^{r} A(|x_i|, 0), \)

где, как и в лемме 2, \(A(|x_i|, 0) = \frac{v_n(2|x_i|)}{1 + v_n(2|x_i|)} < 1 \), откуда и следует неравенство 2°.
Докажем 3°. Для любой непрерывной функции $q(t)$ имеет место равенство

$$\lim_{\delta \to 0} \frac{1}{\delta} \int_a^b (q(t + \delta) - q(t)) dt = q(b) - q(a).$$

Поэтому

$$\frac{\partial g}{\partial x_1} = \frac{1}{h_1 \ldots h_r} \int_0^{b_1} \ldots \int_0^{b_r} [f(x_1 + t_1 + \delta, x_2 + t_2, \ldots, x_r + t_r) - f(x_1 + t_1, x_2 + t_2, \ldots, x_r + t_r)] dt_2 \ldots dt_r.$$

$$\left| \frac{\partial g}{\partial x_1} \right| \leq \frac{\omega_q(f; \vec{h}(1))}{h_1 Q(|\vec{x}|)} \frac{1}{h_1 \ldots h_r} \int_0^{b_1} \ldots \int_0^{b_r} dt_2 \ldots dt_r = \frac{\omega_q(f; \vec{h}(1))}{h_1 Q(|\vec{x}|)}.$$

Аналогично для других координат, и лемма 3 полностью доказана.

Лемма 4. Обозначим $\vec{x}(j) = (x_1, \ldots, x_j, -x_j, x_{j+1}, \ldots, x_r)$ и $f_j(\vec{x}) = f(\vec{x}(j))$, тогда

$$L_n(f; \vec{x}) = L_n(f_j; \vec{x}(j)).$$

ДОКАЗАТЕЛЬСТВО.

$$L_n(f_j; \vec{x}(j)) = \sum_{k=0}^{\infty} \sum_{m=0}^{2^r-1} (-1)^{\bar{m}k} f_j(\vec{k}_{n,m}) p_{n,k}(\vec{x}) =$$

$$= \sum_{k=0}^{\infty} \sum_{m=0}^{2^r-1} (-1)^{\bar{m}k} f\left(\frac{k_1}{n}, \ldots, \frac{k_{j-1}}{n}, \frac{k_j}{n}, \frac{k_{j+1}}{n}, \ldots, \frac{k_r}{n}\right).$$

В сумме по m для каждого номера

$$m^o = m_1 + 2m_2 + \ldots + 2^{j-2}m_{j-1} + 2^{j-1} \cdot 1 + 2^j m_{j+1} + \ldots + 2^{r-1}m_r$$

найдется парный номер

$$m^* = m_1 + 2m_2 + \ldots + 2^{j-2}m_{j-1} + 2^{j-1} \cdot 0 + 2^j m_{j+1} + \ldots + 2^{r-1}m_r.$$
Поменяем местами все пары слагаемых с номерами m^o и m^*, получим, что
\[
L_n(f_j; \bar{x}(j)) = \sum_{k=0}^{r-1} \sum_{m=0}^{\infty} (-1)^{m+k} (-1)^{m_j^* + m_j} f \left((-1)^{m_k} \frac{k}{n}, \ldots, (-1)^{m_r} \frac{k}{n} \right) p_{n,k} \bar{x}(j) = \\
= \sum_{k=0}^{r-1} \sum_{m=0}^{\infty} (-1)^{m+k} (-1)^{k_j} f(\bar{k}_{n,m}) \ p_{n,k} \bar{x}(j) = \sum_{k=0}^{r-1} \sum_{m=0}^{\infty} (-1)^{m+k} f(\bar{k}_{n,m}) \ p_{n,k} \bar{x}(j),
\]
что и доказывает лемму.

Лемма 5. Пусть, как и выше, $g(\bar{x}) = \frac{1}{h_1 \ldots h_r} \int_{h_0}^{h_1} \ldots \int_{h_0}^{h_r} f(\bar{x} + \bar{t}) dt_1 \ldots dt_r$, тогда
\[
|L_n(g; \bar{x}) - g(\bar{x})| \leq \frac{\omega_Q(f; \bar{h})}{Q(|\bar{x}|)} \cdot 2^{r-1} \sum_{j=1}^{r} \frac{\alpha_n(x_j)}{h_j},
\]
где
\[
\alpha_n(x_j) = 2 \sqrt{\frac{w(x_j)}{n}} + \frac{|x_j|}{1 + \nu_n(2 |x_j|)}.
\]

ДОКАЗАТЕЛЬСТВО. Пусть \bar{x} – точка с неотрицательными координатами. Обозначим $\bar{m}x = ((-1)^{m_1}x_1, \ldots, (-1)^{m_r}x_r)$. С учетом леммы 2
\[
L_n(g; \bar{x}) - g(\bar{x}) = L_n(g; \bar{x}) - g(\bar{x})L_n(1; \bar{x}) = \\
= \sum_{m=0}^{\infty} \sum_{k=0}^{r-1} (-1)^{m+k} \left(g(\bar{k}_{n,m} - g(\bar{x}_m) \right) p_{n,k} \bar{x}(x) + \sum_{m=0}^{\infty} \sum_{k=0}^{r-1} (-1)^{m+k} \left(g(\bar{x}_m) - g(\bar{x}) \right) p_{n,k} \bar{x}(x),
\]
Откуда
\[
|L_n(g; \bar{x}) - g(\bar{x})| \leq \\
\leq \sum_{m=0}^{\infty} \sum_{k=0}^{r-1} (-1)^{m+k} |g(\bar{k}_{n,m}) - g(\bar{x}_m)| \ |p_{n,k} \bar{x}(x) + \sum_{m=0}^{\infty} |g(\bar{x}_m) - g(\bar{x})| \ |\sum_{k=0}^{\infty} (-1)^{m+k} p_{n,k} \bar{x}(x)|
\]
По формуле конечных приращений
\[
g(\bar{t}) - g(\bar{x}) = \sum_{j=1}^{r} \frac{\partial g}{\partial x_j}(\bar{\zeta}) \cdot (t_j - x_j), \quad \text{где } \bar{\zeta} = (x_1 + \theta(t_1 - x_1), \ldots, x_r + \theta(t_r - x_r)),
\]
\[
\theta \in (0;1).
\]
Поэтому, с учетом леммы 3 получаем

\[|L_n(g; x) - g(x)| \leq \sum_{m=0}^{2^r-1} \sum_{j=1}^{r} \omega_Q(f; (0, \ldots, h_j, \ldots, 0)) \frac{k_j}{n} - x_j \cdot p_{n,k}(x) + \]

\[+ \sum_{m=0}^{2^r-1} \sum_{j=1}^{r} \omega_Q(f; (0, \ldots, h_j, \ldots, 0)) \frac{1}{h_j Q(\bar{x})} |(-1)^{m_j} x_j - x_j| \cdot |1 + \sum_{k=0}^{\infty} (-1)^m p_{n,k}(\bar{x})| \leq \]

\[\leq \omega_Q(f; \bar{h}) \sum_{j=1}^{r} \frac{1}{h_j} \sum_{m=0}^{2^r-1} \frac{k_j}{n} - x_j \cdot p_{n,k}(\bar{x}) + \]

\[+ \omega_Q(f; \bar{h}) \sum_{j=1}^{r} x_j \sum_{m=0}^{2^r-1} |(-1)^{m_j} - 1| \sum_{k=0}^{\infty} (-1)^m p_{n,k}(\bar{x}) |\frac{\omega_Q(f; \bar{h})}{Q(\bar{x})} (A_1 + A_2). \]

Преобразуем первое слагаемое:

\[\sum_{k=0}^{\infty} \frac{k_j}{n} - x_j \cdot p_{n,k}(\bar{x}) = \sum_{k=0}^{\infty} \frac{k_j}{n} - x_j \cdot \prod_{i=1}^{r} \frac{u_{n,k_j}(x_j) v_n(2x_j)}{v_n(x_j)(1 + v_n(2x_j))} x_j^k = \]

\[= \sum_{k_j=0}^{\infty} \frac{k_j}{n} - x_j \cdot \frac{u_{n,k_j}(x_j)}{v_n(x_j)} x_j^k \prod_{i=1}^{r} \frac{v_n(2x_j)}{1 + v_n(2x_j)} = \]

\[= \sum_{k_j=0}^{\infty} \frac{k_j}{n} - x_j \cdot \frac{u_{n,k_j}(x_j)}{v_n(x_j)} x_j^k \prod_{i=1}^{r} \frac{v_n(2x_j)}{1 + v_n(2x_j)}. \]

В силу неравенства Коши-Буняковского

\[\sum_{k_j=0}^{\infty} \frac{k_j}{n} - x_j \cdot \frac{u_{n,k_j}(x_j)}{v_n(x_j)} x_j^k \leq \sqrt{\sum_{k_j=0}^{\infty} \left(\frac{k_j}{n} - x_j \right)^2 \frac{u_{n,k_j}(x_j)}{v_n(x_j)} x_j^k} = \]

\[= \sqrt{l_n(1;x_j)} \sqrt{l_n((t-x_j)^2;x_j)} = \frac{w(x_j)}{n}. \]

Кроме того, \(\frac{v_n(2x_j)}{1 + v_n(2x_j)} < 1 \), поэтому \(A_1 \leq \sum_{j=1}^{r} \frac{1}{h_j} \sum_{m=0}^{2^r-1} \left(\frac{w(x_j)}{n} \right)^2 \frac{1}{h_j} \frac{r}{\sqrt{n}} \sum_{j=1}^{r} \frac{\sqrt{w(x_j)}}{h_j}. \)

Преобразуем второе слагаемое. Так как \(|A(x_i;m_i)| < 1 \), где \(A(x_i;m_i) \) то же, что и в лемме 2, получаем, что

\[A_2 = \sum_{j=1}^{r} \frac{x_j}{h_j} \sum_{m=0}^{2^r-1} |(-1)^{m_j} - 1| \prod_{i=1}^{r} A(x_i;m_i) < \sum_{j=1}^{r} \frac{x_j}{h_j} \sum_{m=0}^{2^r-1} |(-1)^{m_j} - 1| |A(x_i;m_i)|. \]
При $m_j = 0$ слагаемое в последней сумме пропадает, поэтому

$$A_2 < \sum_{j=1}^{r} \sum_{h_j m_0} \left[(-1)^{m_j} - 1 \right] \left| A(x_j; 1) \right| =$$

$$= \sum_{j=1}^{r} \sum_{h_j m_0} \left[(-1)^{m_j} - 1 \right] \frac{1}{1 + v_n(2x_j)} = 2^{r-1} \sum_{j=1}^{r} \frac{x_j}{h_j(1 + v_n(2x_j))}.$$

И, подставляя полученные оценки, имеем:

$$\left| L_n(g; \bar{x}) - g(\bar{x}) \right| \leq \frac{\omega_0(f; \bar{h})}{Q(|\bar{x}|)} \cdot 2^{r-1} \sum_{j=1}^{r} \frac{1}{h_j} \left[\frac{w(x_j)}{n} + \frac{x_j}{1 + v_n(2x_j)} \right].$$

и для неотрицательных координат утверждение леммы доказано.

Пусть теперь $x_i < 0$, а остальные координаты неотрицательны.

Обозначим, как и в лемме 4, $\bar{x}(j) = (x_1, \ldots, x_{j-1}, x_j, x_{j+1}, \ldots, x_r)$,

$$f_j(\bar{x}) = f(\bar{x}(j)), g_j(\bar{x}) = g(\bar{x}(j)).$$

Тогда, с учетом леммы 4,

$$\left| L_n(g; \bar{x}) - g(\bar{x}) \right| = \left| L_n(g; \bar{x}(i)) - g_i(\bar{x}(i)) \right| \leq \frac{\omega_0(f; \bar{h})}{Q(|\bar{x}(i)|)} \cdot 2^{r-1} \sum_{j=1}^{r} \frac{1}{h_j} \frac{a_n(x_j)}{h_j}$$

и утверждение леммы так же выполнено. Применяя необходимое количество раз те же рассуждения, что и выше, получим, что утверждение леммы выполнено для \bar{x} с любым количеством отрицательных координат. □
ДОКАЗАТЕЛЬСТВО ТЕОРЕМЫ. Пусть \(g(\overline{x}) \) то же, что и выше.

Возьмем \(h_j = a_{n_j}(x_j) \).

\[
|L_n(f; \overline{x}) - f(\overline{x})| \leq |L_n(g; \overline{x}) - L_n(g; \overline{x})| + |L_n(g; \overline{x}) - L_n(\overline{x})| + |g(\overline{x}) - f(\overline{x})|.
\]

Во-первых, с учетом леммы 3,

\[
|L_n(f; \overline{x}) - L_n(g; \overline{x})| = \sum_{m=0}^{2^r-1} \sum_{k=0}^{\infty} (-1)^{m(k)} \left(f(\overline{k}_{n,m}) - g(\overline{k}_{n,m}) \right) |p_{n,k}(x)| \leq \sum_{m=0}^{2^r-1} \sum_{k=0}^{\infty} \frac{\omega_Q(f; \overline{h})}{Q(\overline{k}_{n,m})} |p_{n,k}(\overline{x})| \leq \frac{C\omega_Q(f; \overline{h})}{Q(|\overline{x}|)}.
\]

Во-вторых, по лемме 5

\[
|L_n(g; \overline{x}) - g(\overline{x})| \leq \frac{\omega_Q(f; \overline{h})}{Q(|\overline{x}|)} \cdot 2^{r-1} \sum_{j=1}^{r-1} a_n(x_j) \leq \frac{\omega_Q(f; \overline{h})}{Q(|\overline{x}|)} \cdot 2^{r-1} r,
\]

и, оценивая \(|g(\overline{x}) - f(\overline{x})| \), так же по лемме 3 получаем

\[
|L_n(f; \overline{x}) - f(\overline{x})| \leq \frac{\omega_Q(f; \overline{h})}{Q(|\overline{x}|)} \cdot [C + 2^{r-1} r + 2^r],
\]

откуда \(Q(|\overline{x}|)|L_n(f; \overline{x}) - f(\overline{x})| \leq C(r)\omega_Q(f; \overline{h}) \), что и требовалось доказать.
ЛИТЕРАТУРА

1. Коровкин П.П. Линейные операторы и теория приближений //"Наука" М., 1959.
2. Мирокян Г.М. Аппроксимирование непрерывных функций с помощью полиномов $e^{-nx} \sum_{k=0}^{n} c_k n x^k$ //Докл. АН СССР, 1941, т.31, с.201-205.