Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Авторы-составители:

Л.Ф. Кожина, И.В.Тюрина, И.В. Косырева

Анализ результатов ЕГЭ по химии в 2017 году

в г. Саратове и Саратовской области

Учебно-методическое пособие для студентов направления подготовки «Педагогическое образование» профиль «Химия»

Авторы-составители: Л.Ф. Кожина, И.В.Тюрина, И.В. Косырева. Анализ результатов ЕГЭ по химии в 2017 году в г. Саратове и Саратовской области. Учебно-методическое пособие для студентов направления подготовки «Педагогическое образование» профиль «Химия». [Электронный ресурс]. Саратов. 2017. – 48 с.

Данное пособие составлено преподавателями Института химии СГУ и председателем региональной экспертной комиссии по химии. В пособии проведен анализ результатов единого государственного экзамена (ЕГЭ) по химии в 2017 году в г. Саратове и Саратовской области. Анализ результатов ЕГЭ по химии являются одной из составных частей для самостоятельной работы студентов - будущих учителей химии. Преподаватели, работающие со студентами, должны учитывать проблемы, возникающие у экзаменующихся по химии, и уделять им большее внимание при изучении химии и других смежных химических дисциплин.

пособии даны методические рекомендации ДЛЯ учителей, занимающихся подготовкой учащихся к сдаче ЕГЭ по химии. Рассмотрены проблемы, вызывающие наибольшие затруднения при сдаче экзамена.

Пособие может быть полезным и для студентов других направлений обучения и для учащихся с углубленным изучением химии.

Авторы будут искренне благодарны всем, кто сочтет необходимым сделать замечания и высказать мнение о предлагаемом вниманию читателей учебно-методическом пособии. Они учтут их в своей дальнейшей работе.

Рекомендуют к печати кафедра общей и неорганической химии кафедра аналитической химии и химической экологии Института химии СГУ НМС Института химии СГУ органической экологии и камической экологии и

профессор кафедры аналитической химии и химической экологии д.х.н. С.Ю. Доронин

Химия — сложная наука. Более сложная, чем физика. Физика гораздо проще, она описывает явления и выстраивает безупречную вертикальную логику. Уловить логику при изучении химических явлений очень сложно, в химии исключений очень много. Химия в центре всех наук. Весь мир, включая нас самих, состоит из химических веществ. А изучением вещества и занимается химия. Что же может быть интереснее?

Химическая промышленность выпускает пластмассы, искусственное волокно, синтетический каучук, красители, минеральные удобрения, лекарственные препараты и многое другое. С каждым годом возрастает роль химии в производстве продуктов питания.

Химия тесно связана со многими естественными науками – геологией, биологией и другими. На границе между химией и геологией возникла распространенность и миграцию изучающая геохимия, элементов на Земле. На стыке химии, биологии и геологии возникла биогеохимия, изучающая геохимические процессы с участием живых организмов. На границе биологии и неорганической химии появилась новая наука – бионеорганическая химия, которая изучает химические процессы, протекающие в клетках живых организмов при участии соединений биогенных элементов. Тесная связь физики, химии и биологии привела к созданию биофизической химии, которая описывает закономерности и механизмы протекания биологических процессов на основе фундаментальных физической химии. В основе законов процессов, обусловливающих современное состояние биосферы, лежат химические превращения в литосфере, гидросфере, атмосфере и живых организмах. Эти превращения являются предметом изучения химии, геохимии, агрохимии, фотохимии, гидрохимии, биохимии. Возникло новое научное направление – химия окружающей среды. Зная химию, легче во всем этом разобраться.

Итоговая аттестация по химии в форме единого государственного экзамена (ЕГЭ) проходит в нашем регионе с 2009 г. в соответствии с

законодательством и является дисциплиной по выбору. Для подготовки учащихся к экзамену выпускается большое число различных пособий, авторами которых являются преподаватели и методисты, принимающие непосредственное участие в разработке контрольных измерительных материалов (КИМ) ЕГЭ. Задачей пособий является желание предоставить обучающимся информацию о структуре и содержании КИМ, степени трудности заданий. Однако, как известно по опыту прошлых лет и по выступлениям представителей Министерства образования и науки РФ, возможны изменения в формате и количестве заданий КИМ. В связи с этим в процессе подготовки необходимо обращаться к материалам сайта официального разработчика экзаменационных заданий — Федерального института педагогических измерений (ФИПИ): www.fipi.ru.

Результаты ЕГЭ по химии при поступлении в Вузы г. Саратова учитываются в СГМУ имени В.И. Разумовского, СГУ имени Н.Г. Чернышевского (Институт химии, биологический факультет), СГАУ имени Н.И. Вавилова, СГТУ имени Ю.А. Гагарина.

В табл. 1 приведены данные о количестве экзаменующихся с 2013 по 2017 гг. и числе учащихся, которые не смогли преодолеть нижний порог уровня освоения знаний по химии.

Таблица 1. Количество экзаменующихся и число учащихся, которые не смогли преодолеть нижний пороговый уровень

Год ЕГЭ	Число участников ЕГЭ	Ниже порогового балла (36)
2017	1176	127 (10,8%)
2016	1267	167 (13,2%)
2015	1334	111 (8,3%)
2014	1318	147 (11,2%)
2013	1710	181 (10,6%)

Число учащихся, которые выбрали единый экзамен по химии, с каждым годом уменьшается. В 2017 году в сдаче ЕГЭ по химии приняли участие 1176 человек, средний балл – 56,6. Федеральной службой по надзору в сфере образования и науки было установлено минимальное количество

баллов, нижний пороговый балл составил 36. Число экзаменующихся, знания которых оцениваются ниже порогового уровня (ниже 36 баллов), составило 127 учащихся. И только 1 участник ЕГЭ имеет 100 балльный результат.

Каждый вариант экзаменационной работы включал 34 задания, 1-26—задания базового уровня сложности, ответы к заданиям записываются в виде последовательности цифр и подсказкой при этом является число правильных ответов указанных в задании; 27 — 29 — расчетные (типовые) задачи; 30 -34 — задания высокого уровня сложности с развернутым подробным ответом выполнения. Текст решения записывается на специальном бланке и оценивается комиссией при работе с копиями ответов-решений экзаменующихся. Задания этого типа в наибольшей степени позволяют объективно оценить уровень подготовки экзаменующегося.

Каждый вариант экзаменационной работы ЕГЭ состоял из 2 частей (табл. 2).

Часть	Количество	Максимальный	Процент	Тип задания
работы	заданий	первичный	максимального	
		балл за	первичного	
		выполнение	балла за	
			выполнение	
Часть 1	29	40	66,7	Краткий ответ
Часть 2	5	20	33,3	Развернутый ответ
Итого	34	60	100	

Таблица 2. Структура экзаменационной работы

Часть 1 содержала 29 заданий с кратким ответом. Задания этой части построены на материале всех важнейших разделов школьного курса химии. В совокупности они проверяли усвоение материала содержания на базовом уровне, предусмотренного стандартом образования из 4 содержательных блоков курса:

- теоретические основы химии
- неорганическая химия
- органическая химия

- методы познания в химии. Химия и жизнь.

Задания экзаменационных вариантов содержали вопросы разного типа и разного уровня сложности по проверяемым темам курса химии: «Современные представления о строении атома», «Периодический закон и Периодическая элементов Д.И. Менделеева», система химических «Химическая связь и строение вещества», «Неорганическая химия», «Органическая химия», «Методы познания в химии. Химия и жизнь», «Общие «Экспериментальные познания В ХИМИИ≫, представления о промышленных способах получения важнейших веществ», «Расчеты по химическим формулам и уравнениям реакций».

На экзамене при выполнении работы можно использовать Периодическую систему химических элементов Д.И. Менделеева, таблицу растворимости солей, кислот и оснований в воде, электрохимический ряд напряжений металлов.

В приложении 1 представлена краткая информация, которую нужно знать и использовать, имея навыки работы с таблицей Д.И. Менделеева.

А в приложении 2 – с таблицей растворимости солей, кислот и оснований в воде. Экзаменующиеся традиционно ошибаются при составлении уравнений химических реакций с участием кислых солей слабых кислот (основных солей слабых оснований), не учитывая, что эти кислоты (основания) являются слабыми электролитами. В большей степени это проявляется при написании полных или кратких ионных уравнений. Значительные затруднения возникают при составлении формул соединений но названию соединения, при определении среды растворов при гидролизе.

В приложении 3 представлена информация, которую можно получить, используя знания и умения работы с электрохимическим рядом напряжений металлов.

Анализ результатов выполнения заданий базового уровня (рис. 1) показал, что практически все участники **наиболее успешно справились** с выполнением тех заданий, которые ориентированы на проверку усвоения

учебного материала следующих содержательных линий ведущего раздела курса «Теоретические основы химии»:

- современные представления о строении атома;
- Периодический закон и Периодическая система химических элементов Д.И. Менделеева;
- химическая связь и строение вещества;
- классификация химических реакций.

Рис. 1. Результаты выполнения каждого задания % от общего числа экзаменующихся.

Наибольшие затруднения были отмечены при выполнении следующих

	Наибольшие затруднения были отмечены при выполнении следующих заданий части 1:								
	TAN	а 3. Задания части 1, выполнение которых вызвало затруднения.							
~	20 11011110	Прородомий одомонт оодорующия							
QY	Задание Проверяемый элемент содержания								
C.P.	9 Взаимосвязь неорганических веществ								
	10	Реакции окислительно-восстановительные							
	11	Характерные химические свойства неорганических веществ							
	17 Взаимосвязь углеводородов и кислородсодержащих органичества в применения в приме								
	соединений								
	18	Характерные химические свойства углеводородов							
	19	Характерные химические свойства							

	предельных одноатомных и многоатомных спиртов, фенола,
	альдегидов, предельных карбоновых кислот, сложных эфиров
23	Гидролиз солей. Среда водных растворов: кислая, нейтральная,
	щелочная
24	Обратимые и необратимые химические реакции. Химическое
	равновесие. Смещение равновесия под действием различных
	факторов
25	Качественные реакции на неорганические вещества и ионы.
	Качественные реакции органических соединений
26	Правила работы в лаборатории. Лабораторная посуда и
	оборудование.
	Правила безопасности.
	Научные методы исследования химических веществ и
	превращений.
	Общие научные принципы химического производства
	Высокомолекулярные соединения

Особенностью экзаменационных вариантов ЕГЭ по химии в 2017 году является отсутствие заданий с одним вариантом ответа.

Часть 2 включает 5 заданий с развернутым ответом выполнения заданий и требует более глубоких химических знаний и являются самыми сложными в экзаменационной работе. Задания с развернутым ответом предусматривают одновременную проверку усвоения нескольких элементов содержания из различных содержательных блоков на профильном уровне.

Таблица 4. Результаты выполнения заданий части 2

Задание	Максимальный	Средний балл
CAY	балл	
30	3	2,13
31	4	1,62
32	5	2,36
33	4	0,46
34	4	1,00

Как видно из данных табл. 4 **задание 30** основано на знании и усвоении основополагающих элементов содержания темы «Окислительновосстановительные реакции». Происходит оценивание каждого этапа задания и максимальный балл за выполнение данного типа задания составил 3 балла.

С заданием 30 полностью справились 49,2% обучающихся и средний балл составил 2,13. Наиболее типичные ошибки и затруднения при работе над этим типом задания:

- ошибки в нахождении степеней окисления атомов элементов в соединении; небрежность в записи величины степени окисления над символом элемента: вначале указывается знак «+» или «-», а затем цифра.
- ошибки при определении продуктов реакции (окисленной или восстановленной формы) в зависимости от кислотности среды, а также побочных продуктов (например, в щелочной среде в качестве продукта не могут образовываться кислоты или кислотные оксиды, а в кислой среде основания, основные оксиды); окислитель и восстановитель являются реагентами (находятся в левой части уравнения реакции); обращать внимание на число атомов элемента в составе окислителя или восстановителя и учитывать это число в электронном балансе.

В приложении 4 представлены основные умения и знания, которыми должны владеть экзаменующиеся при выполнении задания данного типа.

Задание 31 основано на взаимосвязи различных классов неорганических соединений и составлении реакций их взаимодействия со знанием правил записи молекулярных, полных и кратких ионных уравнений. Максимальный возможный балл – 4. Полностью выполнили предлагаемое задание всего лишь 19,8% от общего числа обучающихся. Средний балл 1,62.

Величина среднего балла свидетельствует о низком уровне знаний химических свойств неорганических соединений. Такой тип заданий вызывает у учащихся каждый год большие затруднения при их выполнении. Наиболее типичные ошибки и затруднения при работе над этим типом задания:

- при написании ионов не учитывают различие в записи степени окисления и заряда иона: правильная запись степени окисления атомов элементов - над символом элемента указывают знак «+» или «-» и цифру, например,

 $Cr(NO_3)_3$ NH_3 Правильная запись заряда ионов, например, $(Cr_2O_7)^{2-}$, $(Cr)^{3+}$ - цифра, а затем указывают знак «+» или «-».

- недостаточно используют знание периодического закона, изменения свойств веществ в зависимости от положения элемента, образующего соединение в таблице Д.И.Менделеева; теории электролитической диссоциации.
- отсутствуют навыки составления уравнений химических реакций с участием кислых и основных солей; с участием комплексных соединений и водного раствора аммиака; а также навыки написания уравнений реакций с учетом амфотерных свойств металлов, их оксидов и гидроксидов.

В приложении 5 приведены примеры решения задач подобного типа.

Задание 32 основано на знании свойств органических соединений и взаимосвязи соединений различных классов. Максимальный балл за выполнение данного типа задания – 5. Всего лишь 21% обучающихся полностью выполнили задание. Это величина несколько больше (приблизительно на 1%) по сравнению с результатом выполнения задания 31.

Представляет интерес сравнение «нулевых» результатоы выполнения заданий 31 и 32. Значительно большие затруднения наблюдаются при выполнении задания 31. Материал о свойствах неорганических соединений осваивается учащимися в меньшей степени. В целом, выполнение данного вида задания, представляет для экзаменующихся значительную трудность.

- Отмечено невнимательное прочтение учащимися условия задания.
- Характерно отсутствие или наличие неправильной записи формул органических соединений в структурном виде.
- Вместо уравнений химических реакций представлены схемы реакций: без указания побочных продуктов, без коэффициентов перед реагентами или продуктами реакций.

- Отмечены проблемы при определении степеней окисления атомов углерода в органических соединениях; затруднения при составлении уравнений электронного баланса.
- Проявляется недостаточная степень освоения материала о номенклатуре веществ, типах химических реакций; свойствах органических соединений и их зависимости от условий протекания реакций.

Задание 33 - расчетные задачи по неорганической химии. Максимальный балл за правильное выполнение данного задания — 4. Полностью выполнили задание всего лишь 2,0%. Средний балл составил 0,46. Это самый низкий результат выполнения заданий части 2. 73,6% из числа обучающихся, приступивших к выполнению этого задания показали «нулевые» знания. Представленные результаты свидетельствуют об отсутствии у основной части обучающихся сформированного навыка в решении комбинированных задач.

Типичные ошибки:

Невнимательное прочтение учащимися условия - требования задания:

- неверно составлены уравнения реакций;
- нет расчета и вывода об избытке и недостатке реагентов;
- проведены ошибочные математические расчеты;
- допущены ошибки в применении формул связи между количеством вещества, массой и молярной массой;
- неверно установлены количественные отношения между реагирующими веществами;
- неправильно рассчитана масса конечного раствора;
- проведены недопустимые округления рассчитанных величин;
- экзаменующиеся **не пишут** или записывают **неверно** единицы измерения физических величин.

Задание 34. В заданиях данного вида предложены задачи на установление молекулярной и структурной формулы вещества. Данное задание оценивалось максимально в 4 балла. Полностью с заданием

справились 6,8 % экзаменующихся. Из числа приступивших к работе «нулевые» результаты показали 42,3% учащихся.

Наиболее типично невнимательное прочтение учащимися условия, т.е. при выполнении работы не учитываются требования задания:

- провести вычисления;
- составить структурную формулу вещества, <u>однозначно</u> отражающую порядок связей;

 уравноста
- уравнение реакции с заданным веществом

Типичные ошибки

- неверно составлены уравнения реакций;
- приведены ошибочные математические расчеты;
- неверно установлены количественные отношения между реагирующими веществами;
- проведены недопустимые округления рассчитанных величин.

Таблица 5. Результаты выполнения заданий части 2 по баллам в %

Задание	0	1	3 2	3	4	5
30	11,9	12,8	26,1	49,2	1	-
31	39,3	11,5	17,4	12,0	19,8	-
32	31,9	9,6	8,2	10,9	18,4	21,0
33	73,6	14,6	5,9	3,9	2,0	-
34	42,3	36,5	6,8	7,6	6,8	-

Анализируя результаты ЕГЭ по химии следует отметить, что

- значительное число «нулевых» результатов вполне объяснимо.В общеобразовательных учреждениях произошло значительное сокращение часов на изучение химии. 8 класс – 2 часа в неделю, 9 класс – 2 часа в неделю, 10 класс – 1 час, 11 класс – 1 час.
- учащиеся школ, лицеев и гимназий с углубленным изучением химии имеют значительно более высокие баллы.
- необходимо усилить взаимосвязь преподавателей Вузов и средних учебных заведений с целью повышения уровня подготовленности абитуриентов и их

последующем обучении как студентов, для которых химия является профилирующей дисциплиной. Впервые в 2016/2017 учебном году отмечена тенденция среди студентов 1 курса — значительное число отчислений студентов по собственному желанию.

Особое состояние тревожности возникает при обучении студентов направления подготовки «Педагогическое образование» профиль «Химия». Число бюджетных мест на обучение по данному направлению в 2017/2018 уч.г - 10, из числа первокурсников число иногородних равно 6 (60%); средний балл ЕГЭ по химии для них – 56,6; для выпускников г.Саратова – 63.7 балла. Число обучающихся на договорной основе -2, средний балл ЕГЭ Такие результаты ЕГЭ составляет 37,5. однозначно ПО химии свидетельствуют об отсутствии прочных базовых знаний по химии, а именно эти студенты через 4 года станут учителями химии.

Наибольшие проблемы возникают у преподавателей Вузов при обучении студентов, которые при поступлении в ВУЗ не сдавали ЕГЭ по химии (геологический, географический, физический, юридический факультеты и др). При обучении студентов 1 курса необходимо поднять базовый уровень знаний по химии.

Приложение 1

Особенностью работы с периодической системой Д.И. Менделеева на ЕГЭ является наличие черно-белого варианта таблицы, это вносит определенные трудности для некоторых обучающихся. Необходимо помнить, что первые три периода это элементы главных подгрупп, каждый период содержит 2 s-элемента и 6 p-элементов. Начиная с 4 периода между 2 s- и 6 p-элементами располагаются 10 d-элементов, которые составляют побочные подгруппы в каждой группе.

***Главной характеристикой атома является *заряд ядра*. Он определяет число электронов, находящихся в атоме, и соответствует *атомному номеру*, т.е. *порядковому номеру элемента* в периодической системе

***Период - последовательный ряд элементов, в атомах которых происходит заполнение одинакового числа электронных слоев.

***В малых периодах находятся только s- и p-элементы. В больших периодах между s-элементами и p-элементами внедряются 10 d-элементов, у которых электроны заполняют предвнешний d-подуровень. У всех d-элементов, независимо от номера группы, на внешнем уровне находится 2 электрона (или один электрон, если имеет место «провал» электрона). Явление «провала» электрона - электрон с подуровня пs «проваливается» на подуровень (n-1)d - можно объяснить наибольшей устойчивостью наполовину или полностью заполненных d-подуровней.

В четвертом и пятом периодах располагаются соответственно 3d- и 4d-элементы. В шестом и седьмом периодах помимо 10 d-элементов располагаются еще по 14 f-элементов (лантаноиды и актиноиды). Между s- и p-элементами в шестом и седьмом периодах находятся по 24 переходных металла, соответственно (5d- и 4f-элементы) и (6d- и 5f-элементы).

*** В группы объединяют атомы элементов, имеющие одинаковое число валентных электронов. Каждая группа делится на две подгруппы: главную (s-, p-элементы) и побочную (d-, f-элементы). Подгруппа — это совокупность элементов, являющихся полными химическими аналогами. Электронными

аналогами называются элементы, у которых валентные электроны описываются общей для всех элементов формулой. Например, галогены являются электронными аналогами, электронная конфигурация внешнего уровня ns²np⁵. *Группа* — совокупность элементов, содержащих одинаковое число валентных электронов. *Подгруппа* — совокупность элементов, являющихся безусловными электронными аналогами.

***Суммарное количество электронов на внешнем уровне у s- и p-элементов соответствует номеру группы, в которой находится элемент и равно числу валентных электронов. Максимальная валентность элементов второго периода, равна 4, исключение - атомы O, N, F.

Для d-элементов валентные электроны располагаются на внешнем s-подуровне и на предвнешнем (n-1)d- подуровне. Максимальная валентность атома Fe не равна номеру группы, а равна 6.

*** Химическая природа элемента обуславливается способностью его атома терять и приобретать электроны. Эта способность может быть количественно оценена энергией ионизации атома и его сродством к электрону.

***Энергия *ионизации* — количество энергии, необходимое для отрыва электрона от невозбужденного атома; характеризует *металлические*, восстановительные свойства элементов. В периоде слева направо энергия ионизации увеличивается, металлические (восстановительные) свойства атомов уменьшаются. По группе сверху вниз энергия ионизации уменьшается.

***Сродство к электрону — энергетический эффект процесса присоединения электрона к нейтральному атому с превращением его в отрицательный ион. Характеризует неметаллические, окислительные свойства элементов. Общая закономерность: по периоду слева направо увеличивается, по группе сверху вниз — уменьшается.

***Электроотрицательность является условным понятием, оно позволяет оценить способность атома данного элемента притягивать к себе

электроны, связывающие их с другими атомами в гетероатомной молекуле. Значения электротрицательности, полученные разными способами, совпадают. Однако общие тенденции в изменении электроотрицательности по периодической таблице совпадают. Изменение электроотрицательности увеличивается (ослабевают) ПО группам периодам: В периоде металлические, увеличиваются неметаллические свойства элементов), в уменьшается (ослабевают неметаллические, возрастают группе металлические свойства).

***Атомный радиус определяют как полусумму соответствующих расстояний между ядрами соседних атомов в молекуле. Атомные радиусы элементов в периоде слева направо уменьшаются - с увеличением порядкового номера элемента происходит уменьшение радиуса. Объяснить это можно тем, что с увеличением заряда ядра увеличивается сила кулоновского притяжения электронов к ядру, которая преобладает над силами взаимного отталкивания электронов. Происходит сжатие электронной оболочки.

По группе сверху вниз с увеличением заряда ядра происходит увеличение радиуса — увеличение числа энергетических уровней, т.е. увеличение номера периода

***Номер периода указывает на число энергетических уровней; число энергетических подуровней в данном энергетическом уровне.

***Явление изоморфизма — способность образовывать общие кристаллические решетки со структурой одного из компонентов. Классификация разновалентных «изоморфных» ионов (с различием в величине радиусов не более 10–15%) - геохимические ряды А.Е. Ферсмана:

Ряд одновалентных катионов

Катион	Li ⁺	Cu^+	Na ⁺	Ag^+	K^{+}	NH_4^+	Tl^+	Rb ⁺	Cs^+
r, Å	0,68	0,94	0,98	1,13	1,33	1,40	1,49	1,49	1,65

Ряд двухвалентных катионов

Катион	Be ²⁺	Mg^{2+}	Ni ²⁺	Co ²⁺	Fe ²⁺	Cu ²⁺	Zn^{2+}	Mn ²⁺	Cd^{2+}
r, Å	0,34	0,74	0,74	0,78	0,80	0,80	0,83	0,91	0,99
7.0	~ 2±	~ ?±			- 2±	1			
Катион	Ca^{2+}	Sr^{2+}	Pb	Ba^{2+}	Ra				
r, Å	1,04	1,26	1,26	1,38	1,44				

Ряд трехвалентных катионов

Катион	Al^{3+}	Cr ³⁺	Fe ³⁺	РЗЭ ³⁺ и Ү ³⁺
r, Å	0,68	0,94	0,98	1,13

Группы изоморфных ионов отделены друг от друга двойной чертой. Аналогичные изоморфные ряда известны для анионов. Именно этим объясняется способность различных ионов замещать друг друга в узлах кристаллической решеткой природных веществ.

***Периодическое изменение электронного строения атомов элементов — причина периодического изменения химических свойств элементов, а также соединений, которые они образуют.

***Периодический закон — свойства простых веществ, а также свойства и формы соединений элементов находятся в периодической зависимости от заряда ядра атомов элементов.

***Высшая степень окисления элемента равна номеру группы, в которой находится элемент. Минимальная степень окисления металлов равна металлы не тонкивкодп нулю, отрицательную степень окисления, отрицательная степень окисления характерна для неметаллов. Минимальная степень окисления неметаллов рассчитывается по формуле - (N-8), где N номер группы, которой находится элемент. Степени окисления закономерно изменяются при переходе от одного элемента к другому в периодической системе. В периодах высшая степень окисления увеличивается. В главных подгруппах при переходе от элементов сверху вниз обычно становятся более устойчивыми низшие степени окисления; в побочных подгруппах, наоборот, устойчивы более высокие окисления.

INF.BCKOTO

Приложение 2

*** В воде растворимы оксиды, которым по таблице растворимости соответствуют растворимые *основные гидроксиды* — основания (исключение гидрат аммония) - символы «р» или «м».

*** В воде растворимы все *кислотные гидроксиды* за исключением SiO_2 — для кремниевой кислоты символ «н».

*** Сильные электролиты: растворы основных гидроксидов щелочных и щелочноземельных металлов; несмотря на малую растворимость в воде гидроксиды кальция, стронция и бария являются сильными электролитами, т.к. та часть, которая растворилась в воде, полностью распадается на ионы. - сведения о сильных и слабых кислотах экзаменующиеся должны запомнить за годы обучения. На наш взгляд желательно еще на начальном этапе изучения химии познакомить учащихся с константами диссоциации кислот и оснований. Такая информация позволит им более осознанно изучать тему «Растворы» и в частности вопросы, связанные с электролитической диссоциацией, ионными уравнениями химических реакций, процессами гидролиза.

Константы диссоциации кислот

$$HA \stackrel{\leftarrow}{\to} H^+ + A^-; K_a = \frac{[H^+][A^-]}{[HA]}$$

Значения Ка приведены для температуры 298,15 К

Название	Формула	K_a
Азотистая	HNO_2	6,9 · 10 ⁻⁴
Азотная	HNO ₃	4,36 · 10
Бромоводородная	HBr	$1 \cdot 10^9$
Иодоводородная	НІ	$1 \cdot 10^{11}$
Кремниевая	H ₄ SiO ₄	
K_I		1,3 · 10 ⁻¹⁰
K_2		$1,6 \cdot 10^{-12}$
K_3		$2,0\cdot 10^{-14}$
Марганцовая	HMnO ₄	≈10 ⁸
Марганцовистая	H_2MnO_4	
K_I		≈10 ⁻¹

K_2		7,1 · 10 ⁻¹¹
Серная	H ₂ SO ₄	7,1 10
K_{I}	1120 0 4	$1\cdot 10^3$
K_2		$1,15 \cdot 10^{-2}$
Сернистая	H ₂ SO ₃	1,15 10
K_{I}	112803	1 4 · 10-2
K ₂		1,4 ·10 ⁻² 6,2 ·10 ⁻⁸
Сероводородная	H_2S	0,2 10
K_{I}	1120	1.0 · 10 ⁻⁷
K_2		1,0 · 10 ⁻⁷ 2,5 · 10 ⁻¹³
Тиосерная	H ₂ SO ₃ S	-,5
<i>K</i> ₁		2,5 · 10 ⁻¹
K_2	,	1,9 · 10 ⁻²
Угольная	$CO_2(p) + H_2O$, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
K_{I}	247	4.5 · 10 ⁻⁷
K_2		4,5 · 10 ⁻⁷ 4,8 · 10 ⁻¹¹
Уксусная	CH₃COOH	$1,74 \cdot 10^{-5}$
Фосфористая	H_3PO_3	,
K_1		1,6 · 10 ⁻³
K_2		1,6 · 10 ⁻⁷
Название	Формула	K_a
Фосфорная, орто	H_3PO_4	
K_1		$7.1 \cdot 10^{-3}$ $6.2 \cdot 10^{-8}$
K_2		6,2 · 10 ⁻⁸
<i>K</i> ₃		5,0 · 10 ⁻¹³
Фосфорная, пиро	$H_4P_2O_7$	
$\bigcirc K_1$		1,2 · 10 ⁻¹
K_2		$7,9 \cdot 10^{-3}$
Фтороводородная	HF	6,2 · 10 ⁻⁴
Хлористая	HClO ₂	1,1 · 10 ⁻²
Хлорная	HClO ₄	≈10 ⁸
Хлорноватая	HClO ₃	≈10 ³
Хлорноватистая	HClO	$2,95 \cdot 10^{-8}$
Хромовая	H ₂ CrO ₄	
K_{I}		1,6 · 10 ⁻¹
K_2		3,2 · 10 ⁻⁷
Циановодородная	HCN	5,0 · 10 ⁻¹⁰

***Используя таблицу растворимости легко составить формулу оснований, кислот и солей.

Чтобы составить формулу основания необходимо обратить внимание на заряд катиона металла (катиона аммония) и записать после символа катиона гидроксогруппы, учитывая, что их число должно быть равно числу положительного заряда катиона:

$$Zn^{2+}(OH^{-})_{2} = Zn(OH)_{2}$$
 $Fe^{3+}(OH^{-})_{3} = Fe(OH)_{3}$

(проверить: суммарное число положительных зарядов равно суммарному числу отрицательных зарядов).

Чтобы составить формулу кислоты, необходимо записать формулу аниона (кислотного остатка), например, (NO_3) заряд этого аниона равен -1 и перед анионом записать символ катиона водорода, учитывая, что число катионов H^+ должно быть равно цифре заряда аниона:

$$(\mathbf{H}^{+})(NO_{3}^{-}) = HNO_{3}$$

 $(\mathbf{H}^+)_3(PO_4^{3-}) = H_3PO_4$ (проверить: суммарное число положительных зарядов равно суммарному числу отрицательных зарядов).

Для составления формул солей записываем символы катионов и анионов, соблюдая принцип электронейтральности, записываем формулу вещества, например: $(Zn^{2+})(PO_4^{3-}) = Zn_3(PO_4)_2$ или $(Mg^{2+})(NO_3^{-}) = Mg(NO_3)_2$

Названия кислот и соответствующих солей

Киелота	Формула	Анион	Название соли	Примеры солей
1	2	3	4	5
Фтороводородная (плавиковая)	HF	F	фторид	NaF
Хлороводородная (соляная)	HC1	Cl ⁻	хлорид	NaCl
Бромоводородная	HBr	Br	бромид	NaBr
Иодоводородная	HI	I-	иодид	NaI
Хлорная	HClO ₄	ClO ₄	перхлорат	NaClO ₄
Хлорноватая	HClO ₃	ClO ₃	хлорат	NaClO ₃
Хлористая	HClO ₂	ClO_2	хлорит	NaClO ₂
Хлорноватистая	HClO	ClO	гипохлорит	NaClO

Азотная	HNO ₃	NO_3	нитрат	NaNO ₃
Азотистая	HNO_2	NO_2	нитрит	NaNO ₂
Сероводородная	H_2S	HS ⁻	гидросульфид	NaHS
		S 2-	сульфид	Na ₂ S
Серная	H_2SO_4	HSO ₄	гидросульфат	NaHSO ₄
		SO_4^{2-}	сульфат	Na ₂ SO ₄
Сернистая	H_2SO_3	HSO_3^-	гидросульфит	NaHSO ₃
		SO_3^{2-}	сульфит	Na ₂ SO ₃
Угольная	H_2CO_3	HCO ₃	гидрокарбонат	NaHCO ₃
		CO_3^{2-}	карбонат	Na ₂ CO ₃
Ортофосфорная	H_3PO_4	H_2PO_4	дигидрофосфат	NaH ₂ PO ₄
(фосфорная)		HPO_4^{2-}	гидрофосфат	Na ₂ HPO ₄
		PO ₄ ³⁻	фосфат	Na ₃ PO ₄
Ортокремневая (кремневая)	H ₄ SiO ₄	H ₃ SiO ₄	тригидросиликат	NaH ₃ SiO ₄
Марганцовая	HMnO ₄	MnO_4	перманганат	NaMnO ₄
Хромовая	H ₂ CrO ₄	CrO ₄ ²	хромат	Na ₂ CrO ₄
Дихромовая	$H_2Cr_2O_7$	$\operatorname{Cr}_2\operatorname{O}_7^{2-}$	дихромат	Na ₂ Cr ₂ O ₇
Муравьиная	НСООН	HCOO-	формиат	HCOONa
Уксусная	CH ₃ COOH	CH ₃ COO	ацетат	CH ₃ COONa
Щавелевая	$H_2C_2O_4$	COO-	оксалат	$K_2C_2O_4$

*** *Сильные одноосновные* кислоты диссоциируют практически необратимо:

$$HC1 \rightarrow H^+ + C1^-$$

$$HNO_3 \rightarrow H^+ + NO_3$$

*** *Сильные многоосновные* кислоты диссоциируют ступенчато: по первой ступени необратимо, по остальным – обратимо:

$$H_2SO_4 \rightarrow H^+ + HSO_4^-$$

$$HSO_4^- \leftrightarrow H^+ + SO_4^{-2-}$$

*** Слабые одноосновные кислоты и кислоты средней силы диссоциируют обратимо:

$$HF \longleftrightarrow H^+ + F^-$$

$$CH_{3}COOH \longleftrightarrow H^{\scriptscriptstyle +} + CH_{3}COO^{\scriptscriptstyle -}$$

*** *Многоосновные* кислоты средней силы диссоциируют ступенчато и по всем ступеням обратимо:

$$H_3PO_4 \leftrightarrow H^+ + H_2PO_4^ H_2PO_4^- \leftrightarrow H^+ + HPO_4^{2-}$$
 $HPO_4^{2-} \leftrightarrow H^+ + PO_4^{3-}$

Число ступеней диссоциации равно основности кислоты. Константа диссоциации резко уменьшается при переходе от одной ступени к другой. Это означает, что в растворе больше всего ионов, образованных по первой ступени $(K_1 > K_2 > K_3)$. Общая константа диссоциации равна произведению ступенчатых констант: $K = K_1 \cdot K_2 \cdot K_3$, где K – общая константа диссоциации кислоты.

*** У элементов одной группы при одной и той же степени окисления сверху вниз увеличиваются эффективные заряды центральных атомов, что приводит к уменьшению силы кислот: $H_2SO_3 > H_2SeO_3 > H_2TeO_3$.

Сила кислородсодержащих кислот зависит от строения их молекул. Формулу кислородсодержащих кислот можно в общем виде записать: $\Theta_m(OH)_n$, учитывая, что в молекулах имеются связи $\Theta_m(OH)_n$. Числа основности — числа групп $\Theta_m(OH)_n$ (числа $\Theta_m(OH)_n$). Но сила кислот существенно зависит от числа не связанных в $\Theta_m(OH)_n$ атомов кислорода (т.е. числа $\Theta_m(OH)_n$). По первой ступени диссоциации кислоты типа $\Theta_m(OH)_n$ 0 относятся к очень слабым, типа $\Theta_m(OH)_n$ 1 к слабым, типа $\Theta_m(OH)_n$ 2 к очень сильным.

Классификация кислородсодержащих кислот по силе (по первой ступени диссоциации)

Тип кислоты	Кислота	Константа	Сила кислоты
		диссоциации	
	HC1O	3,2 ·10 ⁻⁸	
2(011)	H_3BO_3	5,8.10-10	0
Э(OH) _n	H_4SiO_4	2,0. 10-10	Очень слабые
	H_6 TeO $_6$	2,0 ·10 ⁻⁸	CKO
	HClO ₂	1,1 · 10 -8	1.80
	HNO_2	4,0 10-4	
ЭО(ОН),	H_2CO_3	1,3 · 10 ⁻⁴	, JOIL
30(011) _n	H_2SO_3	1,3 · 10-2	Слабые
	H_3PO_4	7,3 · 10 ⁻³	
	H_5IO_6	3,1 · 10 ⁻²	•
	HNO_3	44	
ЭО ₂ (ОН) _п	HClO ₃	10^{3}	Сильные
$OO_2(OII)_n$	H_2MnO_4	10-1	Сильные
	H_2SO_4	1.10^{3}	
ЭО ₃ (ОН) _п	HClO ₄	10^{8}	Очень сильные
$OO_3(OII)_n$	HMnO ₄	10^8	Очень сильные

Резкое возрастание силы кислот с увеличением m можно объяснить оттягиванием электронной плотности от связи О — Н на связь Э = О. Это приводит к снижению прочности связи О — Н, облегчению ее разрыва с отщеплением иона H^+ . Некоторые неметаллы образуют несколько кислот: H_2SO_3 и H_2SO_4 ; HNO_2 и HNO_3 ; HCIO, $HCIO_2$, $HCIO_3$ и $HCIO_4$. Чем выше степень окисления элемента, тем сильнее кислота.

*** Следует отметить, что высшая степень окисления центрального атома кислоты не всегда обусловливает проявление сильных окислительных свойств. Например, H_3PO_4 , H_2WO_4 , H_2SO_4 (разб), H_2CO_3 и кремниевые кислоты окислительных свойств в растворах практически не проявляют.

*** Рассмотрим изменение окислительной способности в ряду кислородсодержащих кислот хлора. Казалось бы, с увеличением степени окисления атома хлора должна увеличиваться способность к присоединению электронов. В действительности окислительные свойства увеличиваются в обратном порядке: $HClO > HClO_2 > HClO_3 > HClO_4$.

Связано это с тем, что в процессе восстановления должно происходить отщепление атомов кислорода, которое происходит тем труднее, чем выше степень окисления атома хлора.

*** Сильные одно- и двухкислотные основания (щелочи) диссоциируют практически необратимо и в одну ступень:

$$NaOH \rightarrow Na^{+} + OH^{-}$$

$$Ba(OH)_2 \rightarrow Ba^{2+} + 2OH^{-}$$

Слабые одно- и многокислотные основания диссоциируют обратимо и ступенчато, число ступеней равно кислотности основания (числу групп OH^-):

$$NH_3 \cdot H_2O \leftrightarrow NH_4^+ + OH^-$$

(диссоциация как слабого электролита, обратимый процесс)

$$Pb(OH)_2 \leftrightarrow PbOH^+ + OH^-$$

(диссоциация как слабого электролита, обратимый процесс)

$$PbOH^+ \leftrightarrow Pb^{2+} + OH^-$$

(диссоциация как слабого электролита, обратимый процесс)

Общая константа диссоциации оснований равна произведению ступенчатых констант: $K = K_1 \cdot K_2$, где K – общая константа диссоциации основания.

Константы ионизации оснований

Название	Формула	Раствори-	Константа
114354112	тортупа	мость в воде	диссоциации
Гидроксид лития	LiOH	растворим	$6.8 \cdot 10^{-1}$
Гидроксид натрия	NaOH	растворим	5,9
Гидрат аммиака	NH ₃ ·H ₂ O	растворим	6,3·10 ⁻³
Гидроксид магния	$Mg(OH)_2$	малорастворим	(II) $2.5 \cdot 10^{-3}$
Гидроксид стронция	$Sr(OH)_2$	малорастворим	(II) $1,5\cdot10^{-1}$
Гидроксид бария	Ba(OH) ₂	малорастворим	$2,3\cdot10^{-1}$
Гидроксид цинка	$Zn(OH)_2$	нерастворим	(II) $4.0 \cdot 10^{-5}$
Гипроусил свиния	Pb(OH) ₂	нерастворим	(I) $9,6\cdot10^{-4}$
Гидроксид свинца	ид Свинца Г Б(ОП)2		(II) $3.0 \cdot 10^{-8}$
Гидроксид меди (II)	Cu(OH) ₂	нерастворим	(II) $3,4\cdot10^{-7}$
Гидроксид марганца (II)	Mn(OH) ₂	нерастворим	(II) $5,0.10^{-4}$
Гидроксид железа (II)	Fe(OH) ₂	нерастворим	(II) $1,3\cdot10^{-4}$

Гидроксид железа (III)	Fe(OH) ₃	нерастворим	(II) $1.82 \cdot 10^{-11}$ $1.35 \cdot 10^{-12}$
Гидроксид алюминия	Al(OH) ₃	нерастворим	(III) 1,38·10 ⁻⁹
Гидроксид хрома (III)	Cr(OH) ₃	нерастворим	(III) $1,02 \cdot 10^{-10}$

Основания классифицируются по кислотности (по числу гидроксильных групп, образующихся при электролитической диссоциации) и по силе (по величине константы диссоциации):

Кислотность основного гидроксида	однокислотные: NaOH, KOH двухкислотные: $Ca(OH)_2$, $Fe(OH)_2$ трехкислотные: $Fe(OH)_3$, $Al(OH)_3$
Сила основного гидроксида	<i>сильные:</i> NaOH, KOH, Ca(OH) ₂ <i>средние:</i> Mg(OH) ₂ <i>слабые:</i> Fe(OH) ₃ , Al(OH) ₃

Константы диссоциации основных и кислотных гидроксидов по периоду слева направо изменяются следующим образом: в начале периода располагаются элементы, образующие гидроксиды с ярко выраженными основными свойствами; затем гидроксиды со слабыми основными свойствами, амфотерные и затем кислотные, свойства которых увеличиваются по периоду.

NaOH	$NaOH = Na^{+} + OH^{-}$	K = 5,9
$Mg(OH)_2$	$Mg(OH)_2 \leftrightarrow Mg(OH)^+ + OH^-$	$K_1 = 2.5 \cdot 10^{-3}$
	$Mg(OH)^+ \leftrightarrow Mg^{2+} + OH^-$	
$Al(OH)_3$	$Al(OH)_3 \leftrightarrow Al(OH)_2^+ + OH^-$	$K_1 = 8.3 \cdot 10^{-9}$
<	$Al(OH)_2^+ \leftrightarrow Al(OH)^{2+} + OH^-$	$K_2 = 2.1 \ 10^{-9}$
1/2	$Al(OH)^{2+} \leftrightarrow Al^{3+} + OH^{-}$	$K_3 = 1.0 \ 10^{-9}$
H_4SiO_4	$H_4SiO_4 \leftrightarrow H^+ + H_3SiO_4$	$K_1 = 1.3 \cdot 10^{-10}$
80.	$H_3SiO_4^- \leftrightarrow H^+ + H_2SiO_4^{-2}$	$K_2 = 1.6 \cdot 10^{-12}$
O	$H_2SiO_4^{2-} \leftrightarrow H+ + HSiO_4^{3-}$	$K_3 = 2.0 \ 10^{-14}$
H_3PO_4	$H_3PO_4 \leftrightarrow H^+ + H_2PO_4^-$	$K_1 = 7.1 \cdot 10^{-3}$
	$H_2PO_4 \leftrightarrow H^+ + HPO_4^{2-}$	$K_2 = 6.2 \cdot 10^{-8}$
	$HPO_4^{2-} \leftrightarrow H^+ + PO_4^{3-}$	$K_3 = 5.0 \ 10^{-13}$
H_2SO_4	$H_2SO_4 = H^+ + HSO_4^-$	$K_1 = 10^3$
	$HSO_4^- \leftrightarrow H^+ + SO_4^{-2-}$	$K_2 = 1,1 \ 10^{-2}$
HClO ₄	$HClO_4 = H^+ + ClO_4^-$	$K = 10^8$

Средние соли – сильные электролиты, диссоциируют практически полностью и при этом образуются катионы металла и анионы кислотного остатка:

$$CaCl_2 \rightarrow Ca^{2+} + 2Cl^{-1}$$

 $Fe_2(SO_4)_3 \rightarrow 2Fe^{3+} + 3SO_4^{2-1}$

Кислые соли диссоциируют ступенчато. Например, дигидрофосфат $_{1}$ ха $_{1}$ Р $_{2}$ Р $_{4}$ \rightarrow N $_{4}$ $^{+}$ Н $_{2}$ Р $_{4}$ $^{-}$ (диссоциация как сильного электролита, необратимый процесс) $_{1}$ $_{2}$ $_{2}$ $_{3}$ $_{4}$ $_{5}$ $_{4}$ $_{5}$ $_{7}$ натрия NaH₂PO₄ диссоциирует следующим образом:

$$NaH_2PO_4 \rightarrow Na^+ + H_2PO_4$$

$$H_2PO_4^- \leftrightarrow H^+ + HPO_4^{-2-}$$

(диссоциация как слабого электролита, обратимый процесс)

$$HPO_4^{2-} \leftrightarrow H^+ + PO_4^{3-}$$

(диссоциация как слабого электролита, обратимый процесс)

В результате диссоциации кислых солей образуются два типа катионов: катионы металла и водорода.

К образованию кислых солей способны двух- и трехосновные кислоты, например, фосфорная кислота образует 3 типа солей – Na₃PO₄, Na₂HPO₄, NaH₂PO₄. Число солей определяется по числу анионов, которые образуются при диссоциации фосфорной кислоты.

Диссоциацию основной соли рассмотреть примере ОНЖОМ на гидроксохлорида магния:

$$MgOHCl \rightarrow MgOH^{\scriptscriptstyle +} + Cl^{\scriptscriptstyle -}$$

(диссоциация как сильного электролита, необратимый процесс)

$$MgOH^+ \leftrightarrow Mg^{2+} + OH^-$$

(диссоциация как слабого электролита, обратимый процесс)

При диссоциации основных солей всегда образуются два типа анионов: анион кислотного остатка и гидроксид-ион.

Основные соли образуют основания, в составе которых присутствует 2 или 3 гидроксильные группы. Число солей определяется по числу катионов, которые образуются при диссоциации многокислотного основного гидроксида.

Двойные соли диссоциируют в водном растворе полностью и необратимо с образованием катионов двух различных металлов и аниона кислотного остатка:

$$KCl \cdot MgCl_2 \rightarrow K^+ + Mg^{2+} + 3Cl^-$$

 $KAl(SO_4)_2 \rightarrow K^+ + Al^{3+} + 2SO_4^{2-}$

Смешанные соли образуют при диссоциации в водном растворе катионы металла и анионы двух различных кислот:

$$Ca(OCl)Cl \rightarrow Ca^{2+} + OCl^{-} + Cl^{-}$$

Комплексные соли – электролиты, которые при диссоциации образуют комплексные ионы, способные к самостоятельному существованию в растворе:

$$K_2[HgI_4] \to 2K^+ + [HgI_4]^{2-}$$

Комплексные ионы – слабые электролиты, диссоциируют ступенчато и обратимо:

$$[HgI_{4}]^{2^{-}} \leftrightarrow [HgI_{3}]^{-} + \Gamma$$

$$[HgI_{3}]^{-} \leftrightarrow [HgI_{2}]^{-} + \Gamma$$

$$[HgI_{2}]^{+} \leftrightarrow [HgI]^{+} + \Gamma$$

$$[HgI]^{+} \leftrightarrow Hg^{2^{+}} + \Gamma$$

Пример: напишите уравнение нейтрализации основной соли с образованием средних солей: $(AlOH)Cl_2 + HNO_3 \rightarrow в$ молекулярной, полной ионной и краткой ионной форме.

Решение:

- внимательно прочитав условие задания, запишем продукты реакции cpednue соли соляной кислоты $AlCl_3$ и азотной кислоты $Al(NO_3)_3$, т.к. в растворе присутствуют анионы 2-х кислот:

$$(AlOH)Cl_2 + HNO_3 \rightarrow AlCl_3 + Al(NO_3)_3 + H_2O$$

- расставим коэффициенты в предлагаемой схеме реакции с учетом формул реагирующих веществ:

$$3(AIOH)Cl_2 + 3HNO_3 \rightarrow AICl_3 + AI(NO_3)_3 + H_2O$$

Перед формулой исходной соли (AlOH)Cl₂ и HNO₃ должен быть коэффициент, кратный 3, исходя из состава соли AlCl₃ и соли Al(NO₃)₃.

- учитывая общее число атомов алюминия в составе исходной соли вводим коэффициент 2 перед AlCl₃.

$$3(AlOH)Cl_2 + 3HNO_3 \rightarrow 2AlCl_3 + Al(NO_3)_3 + H_2O_3$$

- проверяем число атомов водорода в правой и левой частях схемы реакции и вводим коэффициент 3 для молекул воды:

$$3(AlOH)Cl_2 + 3HNO_3 = 2AlCl_3 + Al(NO_3)_3 + 3H_2O$$

- запишем полное ионное уравнение реакции с учетом диссоциации основных солей:

$$3(AlOH)^{2+} + 6Cl^{-} + 3H^{+} + 3NO_{3}^{-} = 2Al^{3+} + 6Cl^{-} + Al^{3+} + 3NO_{3}^{-} + 3H_{2}O$$

- краткое ионное уравнение имеет вид:

$$3(AlOH)^{2+} + 3H^{+} = 3Al^{3+} + 3H_2O$$

Пример: Напишите уравнение *необратимой* электролитической диссоциации $Na_3(HCO_3)CO_3$. Рассчитайте сумму коэффициентов в уравнении реакции.

Решение:

Формула вещества показывает, что предлагаемая соль относится к классу двойных солей, образованных слабой угольной кислотой. Формулу соли можно записать Na_2CO_3 : $NaHCO_3$. Подсказкой является слово *«необратимая»* диссоциация (необратимая диссоциация характерна для сильных электролитов):

$$Na_3(HCO_3)CO_3 = 3Na^+ + HCO_3^- + CO_3^{2-}$$

Сумма коэффициентов в уравнении реакции равна 6, а сумма коэффициентов перед ионами равна 5.

Условия, необходимые для протекания гидролиза:

- соль должна быть растворима в воде

- соль должна быть образована слабым основанием и (или) слабой кислотой.

При решении вопросов, связанных с гидролизом солей рекомендуем использовать следующий алгоритм действий:

- записать формулу соли и формулы кислоты и основания, при взаимодействии которых может образоваться данная соль.

Указать силу кислоты и основания:

Хлорид натрия NaCl	NaOH сильный электролит
	НС1 сильный электролит

Вывод: соль не подвергается гидролизу, среда раствора нейтральная

Ацетат бария (CH ₃ COO) ₂ Ba	Ва(ОН) ₂ сильный электролит
	СН ₃ СООН слабый электролит

Используем правило «сильное побеждает слабое». Следовательно, гидролиз по аниону, среда раствора щелочная. Этой информации достаточно для выполнения задания по данной теме в экзаменационных вариантах.

Уравнение реакции следует записывать, начиная с ионов соли:

$$2CH_3COO^- + Ba^{2+} + HOH \leftrightarrow 2CH_3COOH + Ba^{2+}$$

Учитывая, что реакция гидролиза — это реакция ионного обмена с молекулами воды с образованием слабого электролита.

Краткое ионное уравнение имеет вид:

$$CH_3COO^{-} + HOH \leftrightarrow CH_3COOH + OH^{-}$$

Особенность: в кратком ионном уравнении процесса гидролиза всегда принимает участие 1 молекула воды.

Молекулярное уравнение процесса:

$$(CH_3COO)_2Ba + HOH \leftrightarrow 2CH_3COOH + Ba(OH)_2$$

Фосфат натрия Na ₃ PO ₄	NaOH сильный электролит
	Н ₃ РО ₄ слабый электролит по 2 и 3
	стадии диссоциации

В соответствии с правилом «сильное побеждает слабое» гидролиз происходит по аниону, среда раствора щелочная. Основность кислоты указывает на 3 стадии процесса гидролиза.

Для лучшего понимания следующих действий, запишем уравнение диссоциации фосфорной кислоты:

$$H_3PO_4 \leftrightarrow H^+ + H_2PO_4^ H_2PO_4^- \leftrightarrow H^+ + HPO_4^{2-}$$
 $HPO_4^{2-} \leftrightarrow H^+ + PO_4^{3-}$

Кислотные свойства анионов уменьшаются в ряду: ${
m H_2PO_4}^{-} > {
m HPO_4}^{2^-} > {
m PO_4}^{3^-}$

 Na_3PO_4 — среда раствора сильно щелочная, т.к. соль образована наиболее слабым кислотным анионом.

1 стадия гидролиза:
$$3\text{Na}^+ + \text{PO}_4^{\ 3^-} + \text{HOH} \longleftrightarrow 3\text{Na}^+ + \text{HPO}_4^{\ 2^-} + \text{OH}^-$$

$$\text{PO}_4^{\ 3^-} + \text{HOH} \longleftrightarrow \text{HPO}_4^{\ 2^-} + \text{OH}^-$$

$$\text{Na}_3\text{PO}_4 + \text{HOH} \longleftrightarrow \text{Na}_2\text{HPO}_4 + \text{NaOH}$$

2 стадия гидролиза соли Na₂HPO₄:

$$2Na^{+} + HPO_{4}^{2-} + HOH \leftrightarrow H_{2}PO_{4}^{-} + 2Na^{+} + OH^{-}$$

$$HPO_{4}^{2-} + HOH \leftrightarrow H_{2}PO_{4}^{-} + OH^{-}$$

$$Na_{2}HPO_{4} + HOH \leftrightarrow NaH_{2}PO_{4} + NaOH$$

Среда раствора менее щелочная, чем в растворе Na₃PO₄.

По 3 стадии гидролиз практически не протекает, преобладает процесс диссоциации, т.к. по 1 стадии диссоциации фосфорная кислота является электролитом средней силы. Среда раствора слабо кислотная, близка к нейтральной.

*** Средние соли подвергаются гидролизу в большей степени, чем кислые соли.

Чем слабее кислота, образующая соль, тем в большей степени происходит гидролиз соли, и соответственно, среда раствора соли в большей степени отличается от нейтральной.

*** Гидролизу подвергается незначительная часть вещества. В растворе преобладает процесс диссоциации соли.

Хлорид меди CuCl ₂	Cu(OH) слабый электролит,
	стадии гидролиза
	НС1 сильный электролит

В водном растворе данная соль подвергается обратимому гидролизу по катиону, среда раствора –кислая, уравнение реакции гидролиза имеет вид:

1 стадия гидролиза:
$$Cu^{2+} + 2Cl^{-} + HOH \leftrightarrow Cu(OH)^{+} + 2Cl^{-} + H^{+}$$

$$Cu^{2+} + HOH \leftrightarrow Cu(OH)^+ + H^+$$

$$CuCl_2 + HOH \leftrightarrow Cu(OH)Cl + HCl$$

2 стадия гидролиза:
$$Cu(OH)^+ + Cl^- + HOH \leftrightarrow Cu(OH)_2 + H^+ + Cl^-$$

$$Cu(OH)^+ + HOH \leftrightarrow Cu(OH)_2 + H^+$$

$$Cu(OH)CI + HOH \leftrightarrow Cu(OH)_2 + HCI$$

Основные соли подвергаются гидролизу в меньшей степени, чем средние соли, чем слабее основание образующее соль, тем в большей степени происходит гидролиз.

Карбонат аммония (NH ₄) ₂ CO ₃	NH ₄ OH (NH ₃ +H ₂ O) слабый электролит
₹ 0	H ₂ CO ₃ слабый электролит

В водном растворе данная соль подвергается обратимому гидролизу по катиону и аниону одновременно:

$$2(NH_4)^+ + CO_3^{2-} + 2HOH \leftrightarrow 2(NH_3 + H_2O) + H_2CO_3$$

 $(NH_4)^+ + HOH \leftrightarrow (NH_3 + H_2O) + H^+$
 $CO_3^{2-} + 2HOH \leftrightarrow H_2CO_3 + 2OH^-$
 $(NH_4)_2CO_3 + 2HOH \leftrightarrow 2(NH_3 + H_2O) + H_2CO_3$

Среда раствора близка к нейтральной.

Возможен полный и необратимый гидролиз содей, подсказкой в этом случае является таблица растворимости, для таких солей в таблице стоит прочерк и в примечании слова: разлагается водой или не существует в водном растворе. К солям такого типа относятся: Al_2S_3 , Cr_2S_3 , $Cr_2(CO_3)_3$, $Al_2(CO_3)_3$ и др.

Гидролизом солей обусловлены следующие превращения:

) 3 и др.
пдролизом солей обусловлены следующие превращения:
$$Cr_2(SO_4)_3 + 3Na_2CO_3 + 3H_2O = 2Cr(OH)_3 + 3Na_2SO_4 + 3CO_2$$

$$2CuSO_4 + 2Na_2CO_3 + H_2O = (CuOH)_2CO_3 + 2Na_2SO_4 + CO_2$$

$$2AlCl_3 + 3Na_2CO_3 + 3H_2O = 2Al(OH)_3 + 3CO_2 + 3NaCl$$

$$AlCl_3 + 3NaNO_2 + 3H_2O = Al(OH)_3 + 3NaCl + 3HNO_2$$

$$2Al(NO_3)_3 + 3Na_2SO_3 + 6H_2O = 2Al(OH)_3 + 6NaNO_3 + 3H_2SO_3$$

$$Na[A1(OH)_4] = OH + Al(OH)_3 \quad (при нагревании раствора)$$

$$Na[A1(OH)_4] + HCl_{\text{недост.}} = NaCl + Al(OH)_3 + H_2O$$

$$Na[A1(OH)_4] + CO_2 = NaHCO_3 + Al(OH)_3$$

$$Na[A1(OH)_4] + SO_2 = NaHSO_3 + Al(OH)_3$$

$$3Na[A1(OH)_4] + AlCl_3 = 4Al(OH)_3 + 3NaCl$$

$$2CuSO_4 + 2Na_2CO_3 + H_2O = (CuOH)_2CO_3 + 2Na_2SO_4 + CO_2$$

Образование основной обусловлено eë наименьшей соли растворимостью по сравнению с Cu(OH)₂ и CuCO₃. При взаимодействии растворов солей с противоположным типом гидролиза происходит взаимное усиление гидролиза.

Предлагаемые уравнения химических превращений достаточно часто встречаются в части 2 заданий экзаменационных вариантов.

Затруднения возникают при составлении уравнений реакций ионного обмена с участием водного раствора аммиака, необходимо учитывать, что водный раствор аммиака проявляет основные свойства за сет химического взаимодействия в растворе:

$$NH_3 + H_2O \leftrightarrow NH_4^+ + OH^-$$

Например, взаимодействие растворимой соли алюминия с водным раствором аммиака, описывается следующим образом:

$$AlCl_3 + 3(NH_3 + H_2O) = Al(OH)_3 + 3NH_4Cl$$

$$Al^{3+} + 3Cl^{-} + 3(NH_3 + H_2O) = Al(OH)_3 + 3NH_4^{+} + 3Cl^{-}$$

$$Al^{3+} + 3(NH_3 + H_2O) = Al(OH)_3 + 3NH_4^{+}$$

Допускается написание формы записи водного раствора аммиака:

$$(NH_3 + H_2O), (NH_3 H_2O), NH_4OH$$

*** Гидроксид алюминия, гидроксид железа (III) нерастворимы в избытке водного раствора аммиака, поэтому для полного осаждения гидроксидов применяют гидрат аммиака. Гидроксид меди (II) растворяется в избытке водного раствора аммиака с образованием комплексного соединения, образуется раствор василькового цвета:

$$Cu(OH)_2 + 4(NH_3 + H_2O) = [Cu(NH_3)_4](OH)_2 + 4H_2O$$

 $Cu(OH)_2 + 4(NH_3 + H_2O) = [Cu(NH_3)_4]^{2+} + 2OH^{-} + 4H_2O$

- *** Комплексные ионы являются слабыми электролитами и в реакциях ионного обмена не учитывают диссоциацию внутренней сферы.
- *** Реакции ионного обмена протекают до конца, если продуктом реакции является газ, осадок, вода или комплексное соединение.

Приложение 3

- *** Слева направо по ряду напряжений металлов восстановительные свойства уменьшаются, а окислительные свойства катионов металлов увеличиваются.
- *** Металлы, расположенные в ряду напряжений слева, включительно по A1 растворимы в воде с образованием основных гидроксидов и выделением водорода: при комнатной температуре от лития до магния; магний при кипячении раствора; алюминий после удаления оксидной пленки; остальные металлы только при высокой температуре с образованием оксидов.
- *** Металлы, расположенные в ряду напряжений до H_2 , взаимодействуют с разбавленными кислотами, проявляющими общие кислотные свойства, с выделением водорода.
- *** Более активный металл вытесняет менее активный из растворов его солей. Нельзя использовать металлы, растворимые в воде.
- *** Чем выше активность металла, тем больше термическая устойчивость его оксида.
- *** Если в состав соли входит катион металла, растворимого в воде (Li -Al), то при электролизе водного раствора соли на катоде принимает участие вода $2H_2O + 2e = H_2 + 2OH^-$; если в состав соли входит катион малоактивного металла (Cu Au), то на катоде принимает участие катион металла: $Me^{+n} + ne = Me^0$. Если в состав соли входит катион металла средней активности, то на при электролизе водного раствора соли на катоде одновременно происходят два процесса: $2H_2O + 2e = H_2 + 2OH^-$; $Me^{+n} + ne = Me^0$.

*** Можно предсказать продукты разложения нитратов:

	Ме до магния Мд	$Me(NO_2)_n + O_2$
$Me(NO_3)_n$	Мg - до Си	$Me_xO_y + O_2 + NO_2$
	После Си	$Me + O_2 + NO_2$

Приложение 4

Определение степени окисления элемента в какой-либо молекуле сводится к простой арифметической операции, т.к. сумма всех степеней окисления атомов всех элементов, входящих в состав молекулы, равна нулю. Алгоритм вычисления неизвестной степени окисления элемента в молекуле сводится к следующему:

- обозначьте известные степени окисления элементов;
- устно (письменно) составьте уравнение суммы степеней окисления всех элементов, входящих в состав молекулы, учитывая число атомов каждого элемента;
 - определите неизвестную степень окисления, решив уравнение.

Пример: Определите степень окисления марганца в соединении КМnO₄

Решение:
$$KMnO_4$$
 +1 + x + 4(-2) = 0; $x = +8 - 1 = +7$

Степень окисления элемента в ионе определяется с учетом заряда иона.

Пример: Определите степень окисления азота в ионе $(NO_3)^{-}$.

Решение:
$$(NO_3)^{-1}$$
 $x + 3(-2) = -1$ $x = -1 + 6 = +5$

Пример: Определите степень окисления атома хрома в соединении $K_2Cr_2O_7$

Решение:
$$K_2Cr_2O_7$$
 $2(+1) + 2x + 7(-2) = 0$ $2x = 2 - 14 = 0$ $x = (14-2)/2 = +6$ т.к. число атомов хрома в соединении равно 2.

Пример. Напишите уравнение реакции взаимодействия сульфата железа (II) с перманганатом калия в кислой среде и расставьте коэффициенты методом электронного баланса (особенность данной реакции – указаны только реагенты – вещества, вступающие во взаимодействие).

Решение.

1) Запишем формулы исходных реагентов:

$$FeSO_4 + KMnO_4 + H_2SO_4 \rightarrow$$

- 2) Железо в степени окисления +2 проявляет восстановительные свойства, следовательно, продукт реакции $-Fe_2(SO_4)_3$ с учетом того, что среда обусловлена присутствием серной кислоты.
- 3) Марганец в степени окисления +7 проявляет свойства окислителя, продукт реакции MnSO₄, так как среда раствора обусловлена присутствием серной кислоты.
 - 4) Записываем полную схему уравнения реакции:

$$FeSO_4 + KMnO_4 + H_2SO_4 \rightarrow Fe_2(SO_4)_3 + MnSO_4 + K_2SO_4 + H_2O_4 + K_2SO_4 + H_2O_4 + K_2SO_4 + K_2SO_5 + K_2S$$

5) Составляем уравнение электронного баланса:

$$Fe^{+2} - 1\bar{e} \longrightarrow Fe^{+3}$$
 | 5 восстановитель $Mn^{+7} + 5\bar{e} \longrightarrow Mn^{+2}$ | 1 окислитель

6) С учетом уравнения электронного баланса, необходимо расставить коэффициенты в уравнение реакции. Однако, продуктом реакции является вещество $Fe_2(SO_4)_3$, содержащее 2 атома железа, поэтому необходимо коэффициенты в уравнении электронного баланса удвоить, как для окислителя, так и для восстановителя:

$$Fe^{+2}$$
 - $1\bar{e}$ \longrightarrow Fe^{+3} / 5 | 10 восстановитель Mn^{+7} + $5\bar{e}$ \longrightarrow Mn^{+2} / 1 | 2 окислитель $10FeSO_4 + 2KMnO_4 + H_2SO_4 \rightarrow 5Fe_2(SO_4)_3 + 2MnSO_4 + K_2SO_4 + H_2O_4$

7) Общее число сульфат-ионов в правой части уравнения составляет 5.3 + 2 + 1 = 18, в левой части уравнения, с учетом коэффициента перед восстановителем (10), тогда необходимо перед формулой H_2SO_4 ввести коэффициент 8:

$$10FeSO_4 + 2KMnO_4 + 8H_2SO_4 \rightarrow 5Fe_2(SO_4)_3 + 2MnSO_4 + K_2SO_4 + H_2O_4 + K_2SO_4 + H_2O_4 + K_2SO_4 + K_2SO_5 + K_2SO_5$$

8) Сравнивая число атомов водорода в левой и правой частях уравнения, вводим коэффициент 8 перед формулой воды:

$$10FeSO_4 + 2KMnO_4 + 8H_2SO_4 = 5Fe_2(SO_4)_3 + 2MnSO_4 + K_2SO_4 + 8H_2O_4 + 2KMnO_4 + 8H_2O_4 + 8H_2O_$$

9) Проверяем число атомов кислорода в левой и правой частях уравнения.

Пример. Напишите уравнение реакции обжига сульфида железа (II) и расставьте коэффициенты методом электронного баланса.

Решение.

1) Записываем формулы исходных реагентов:

$$FeS + O_2 \rightarrow$$

- 2) Железо в степени окисления +2 проявляет восстановительные свойства, следовательно, продукт реакции $-Fe_2O_3$;
- 3) Сера в степени окисления -2 проявляет свойства восстановителя, продукт реакции SO_2 , а кислород в свободном виде свойства окислителя.
 - 4) Записываем полную схему уравнения реакции:

$$FeS + O_2 \rightarrow Fe_2O_3 + SO_2$$

5) Составляем уравнение электронного баланса:

$$egin{array}{ccccc} Fe^{+2} - 1e & o Fe^{+3} \ S^{-2} & - 6e o S^{+4} \ O_2 + 4ar{e} & \longrightarrow 2O^{-2} \ \end{array} \end{array}
ight\}$$
 $= 0$ восстановитель

В реакции принимают участия 2 восстановителя, поэтому общее число отданных электронов равно 7.

6) с учетом уравнения электронного баланса, необходимо расставить коэффициенты в уравнение реакции.

Однако, продуктом реакции является вещество Fe_2O_3 , содержащее 2 атома железа, поэтому коэффициент перед FeS равен 4, а перед Fe_2O_3-2 :

$$4FeS + O_2 \rightarrow 2Fe_2O_3 + SO_2$$

Число атомов серы в исходном веществе и продукте реакции должно быть одинаково, поэтому в правой части уравнения коэффициент 4 вводим перед формулой SO_2 :

$$4FeS + O_2 \rightarrow 2Fe_2O_3 + 4SO_2$$

7) В соответствии с уравнением электронного баланса коэффициент перед окислителем равен 7:

$$4FeS + 7O_2 = 2Fe_2O_3 + 4SO_2$$

8) Проверяем число атомов кислорода в левой и правой частях уравнения.

Пример: Напишите уравнение реакции взаимодействия пирита с концентрированной серной кислотой. Решение.

Пирит можно перевести в раствор обработкой кислотамиокислителями. Взаимодействие с концентрированной серной кислотой выражается уравнением реакции:

$$FeS_2 + H_2SO_{4(конц)} \rightarrow Fe_2(SO_4)_3 + SO_2\uparrow + H_2O$$
 $Fe^{+2} - 1e = Fe^{+3}$ 2 восстановитель, процесс окисления $2S^{-1} - 10e = 2S^{+4}$ 2 восстановитель, процесс окисления $S^{+6} + 2e = S^{+4}$ 11 окислитель, процесс восстановления

B соответствии c уравнением электронного баланса, коэффициент 2 необходим перед веществом FeS_2 , при этом продуктом реакции окисления является SO_2 c коэффицинтом 4:

$$2FeS_2 + H_2SO_{4(\kappa OHU)} \rightarrow Fe_2(SO_4)_3 + 4SO_2 \uparrow + H_2O$$

Серная кислота в данном процессе является одновременно и окислителем, и создает среду, т.е. принимает участие в реакции солеобразования: в соответствии с уравнением электронного баланса, образуется 11 формульных единиц SO_2 , и суммарный коэффициент равен 15. Учитывая общее число атомов серы (18) в правой части уравнения, перед веществом H_2SO_4 необходим коэффициент 14.

$$2FeS_2 + 14H_2SO_{4(KOHU)} = Fe_2(SO_4)_3 + 15SO_2\uparrow + 14H_2O_3$$

Пример: Напишите уравнение реакции растворения пирита в концентрированной азотной кислоте.

Решение.

Концентрированная азотная кислота проявляет окислительные свойства (продукт восстановления азотной кислоты диоксид азота) и взаимодействие пирита с этим окислителем соответствует процессу:

$$FeS_2 + HNO_{3(\kappa OHU)} \rightarrow Fe(NO_3)_3 + H_2SO_4 + NO_2 + H_2O$$

$$Fe^{+2} - 1e = Fe^{+3}$$
 1 восстановитель, процесс окисления $2S^{-1} - 14e = 2S^{+6}$ 1 восстановитель, процесс окисления $N^{+5} + 1e = N^{+4}$ 15 окислитель, процесс восстановления

В соответствии с уравнением электронного баланса перед веществом продуктом восстановления азотной кислоты NO_2 появляется коэффициент 15. Азотная кислота проявляет свойства окислителя и поддерживает кислотность среды (образование нитрата железа). Суммарный коэффициент равен 18.

$$FeS_2 + 18HNO_{3(\kappa OHU)} = Fe(NO_3)_3 + 2H_2SO_4 + 15NO_2 + 7H_2O$$

При использовании перманганата калия $KMnO_4$ в качестве окислителя необходимо помнить, что окислительные свойства перманганата зависят от среды раствора, в которой происходит химическое взаимодействие.

Кислая среда: $Mn^{+7} + 5e = Mn^{+2}$. Продукт восстановления окислителя - соль марганца (II) той кислоты, которая создает среду. Для создания среды наиболее часто применяют серную кислоту, тогда продуктом реакции является сульфат марганца $MnSO_4$. Признак химической реакции – исчезновение фиолево-малиновой окраски раствора перманганата калия. Соли марганца (II) в разбавленных растворах практически бесцветны.

Hейтральная среда: $Mn^{+7} + 3e = Mn^{+4}$. Продукт восстановления $KMnO_4$ — диоксид марганца (IV) MnO_2 и KOH. Признак химического взаимодействия — образование бурой окраски диоксида MnO_2 .

Щелочная среда: $Mn^{+7} + e = Mn^{+6}$. Продукт восстановления $KMnO_4 - Mn$ манганат калия (если среда создается раствором КОН) состава K_2MnO_4 . Признак химического взаимодействия — образование зеленой окраски манганата.

Влияние среды раствора проявляется также при составлении уравнений реакции с соединениями хрома:

$$^{+3}$$
 2

 $Br_2 + 2e = 2Br^{-}$ 3 окислитель, процесс восстановления

Если в схеме реакции не указаны продукты реакции, например продукт окисления хрома (III), то подсказкой является наличие в исходных веществах КОН, т.к. хроматы устойчивы и существуют в щелочной среде.

Дихромат калия в кислой среде восстанавливается до солей хрома (III) с образованием соли той кислоты, которая создает среду, например:

$$K_2Cr_2O_7 + 7H_2SO_4 + 3Na_2S = 3S + 3Na_2SO_4 + K_2SO_4 + Cr_2(SO_4)_3 + 7H_2O_4 + Cr_2(SO_4)_3 + 2H_2O_4 + 2H_2$$

$$2Cr^{+6} + 6e = 2Cr^{+3}$$
 2 1 окислитель, процесс восстановления

$$S^{-2}$$
 -2e = S^{0} 6 3 восстановитель, процесс окисления

Признак химического взаимодействия — оранжевая окраска дихромата переходит в зеленую, характерную для солей хрома (III).

При взаимодействии дихромата калия с сульфидом аммония

в нейтральной среде продуктом восстановления хрома (VI) является гидроксид хрома (III), признак реакции – помутнение раствора за счет образования элементарной серы и нерастворимого гидроксида $Cr(OH)_3$

$$K_2Cr_2O_7 + 3(NH_4)_2S + H_2O = 3S + 2Cr(OH)_3 + 2KOH + 6NH_3$$

**** В кислой среде окислительные свойства проявляются в более сильной степени, в щелочной среде – восстановительные.

Широко известную реакцию «серебряного зеркала» можно записать следующим образом:

$$^{-3}$$
 +1 +1 $^{-1}$ -3 +3 0 $^{-3}$ CH₃COH + 2[Ag(NH₃)₂]OH = CH₃COONH₄ +2Ag + 3NH₃ + H₂O $^{+1}$ C - $^{-2}$ \bar{e} = C 1 восстановитель, процесс окисления $^{+1}$ Ag + 1 \bar{e} = Ag 2 окислитель, процесс восстановления

Как известно, альдегиды окисляются до карбоновых кислот, и многие, как и в схеме реакции, записывают продуктом реакции карбоновую кислоту, не учитывая, что среда реакции основная за счет избытка аммиака ($Ag_2O + NH_3$) и образовавшаяся карбоновая кислота нейтрализуется аммиаком с образованием аммонийной соли карбоновой кислоты.

Метановый альдегид (формальдегид) в реакции «серебряного зеркала» окисляется до углекислого газа, т.к. метановая кислота содержит альдегидную группу и мгновенно окисляется до углекислого газа, который взаимодействует с водным раствором аммиака с образованием карбоната аммония:

0
 $^{+1}$ $^{+1}$ $^{+2}$ 0 $^{+2}$ $^{-1}$

При написании окислительно-восстановительных реакций с участием органических веществ в настоящее время в школьном курсе химии используют для вычисления степени окисления атома углерода суммарный заряд в молекуле органического вещества:

$$C_6H_5CH_2CH_2CH_3 + KMnO_4 + H_2SO_4 \rightarrow C_6H_5COOH + CO_2 + MnSO_4 + K_2SO_4 + H_2O$$

Число атомов углерода в составе исходного органического вещества равно 12. Число атомов водорода в составе исходного вещества - 12. Суммарный заряд атомов углерода в продуктах реакции $7C^{-2}$ и $2C^{+4}$. Уравнение электронного баланса имеет вид: е

$$9C^{-12}$$
 -18 e = $7C^{-2} + 2C^{+4}$ 5 восстановитель, процесс окисления $Mn^{+7} + 5$ e = Mn^{+2} 18 восстановитель, процесс окисления

Суммарное уравнение с учетом коэффициентов уравнения электронного баланса имеет вид:

$$5C_6H_5CH_2CH_2CH_3 + 18KMnO_4 + 27H_2SO_4 = 5C_6H_5COOH + 10CO_2 + 18MnSO_4 + 9K_2SO_4 + 42H_2O$$

С точки зрения основ органической химии, более правильным является определение степени окисления тех атомов углерода, которые непосредственно принимают участие в окислительном процессе:

$$C_6H_5CH_2CH_2CH_3 + KMnO_4 + H_2SO_4 \rightarrow C_6H_5COOH + CO_2 + MnSO_4 + K_2SO_4 + H_2O_4$$

Уравнение электронного баланса:

$$C^{-2} - 5e = C^{+3}$$
 $C^{-2} - 6e = C^{+4}$ (суммарное число отданных $e = 18$)
 $C^{-3} - 7e = C^{+4}$
 $Mn^{+7} + 5 = Mn^{+2}$ 18

Суммарное уравнение с учетом коэффициентов уравнения электронного баланса имеет вид:

$$5C_6H_5CH_2CH_2CH_3 + 18KMnO_4 + 27H_2SO_4 = 5C_6H_5COOH + 10CO_2 + 18MnSO_4 + 9K_2SO_4 + 42H_2O$$

С точки зрения написания уравнения реакции, суммарное уравнение имеет такой же вид, что и при учете суммарной степени окисления атома углерода. С точки зрения знания химических свойств гомологов бензола вторая форма записи электронного баланса несет больше информации и способствует лучшему усвоению материала об окислительновосстановительных свойствах органических соединений. Именно такая форма записи применяется в Вузе. В данном случае, атом углерода, связанный с бензольным кольцом (C^{-2}), окисляется до карбоксильной группы (C^{+3}); а другие атомы углерода в радикале гомолога бензола (C^{-2} и C^{-3}) превращаются в диоксид углерода (C^{+4}).

***Взаимодействие металлов с азотной кислотой зависит от концентрации кислоты и активности металла. Активность металла определяется его положением в электрохимическом ряду напряжения.

HNO₃ (конц.), приблизительно 65 %

 HNO_3 (1:1), приблизительно 30%

 HNO_3 (1:10), приблизительно 6-8 %

HNO₃ (оч.разб.), приблизительно 3-5 %

Если реакция взаимодействия азотной кислоты HNO_3 происходит с металлами, то в результате реакции никогда не образуется H_2 , т.к. он окисляется до H_2O .

Продуктом реакции является соль азотной кислоты (нитрат), вода , роме этого всегда образуется третий продукт – продукт восстановления азотной кислоты HNO₃.

$$HNO_3 + металл \rightarrow нитрат + H_2O + (NO_2, NO, N_2O, N_2, NH_4NO_3)$$

	+ 1 e →	+4
		NO_2
	+3 e →	+2
		NO
$HNO_3 \rightarrow$	+4 e →	+1
111(03)		N_2O
	+5 e →	0
		N_2
	+8 e →	-3 +5
		NH_4NO_3

HNO₃ (конц.) реагирует обычно по схеме:

$$^{+5}$$
 HNO $_3$ (конц.) + металл → нитрат + H_2 O + NO $_2$ ↑ бурый

При этом реагируют все металлы, кроме Au и Pt. Кроме того пассивируются Fe, Al, Cr

$$Cu + 4 HNO_3 \rightarrow Cu(NO_3)_2 + 2H_2O + 2NO_2 \uparrow$$

$$\overset{^{0}}{\text{Cu}}$$
 – 2 е $\overset{^{+2}}{\longrightarrow}$ Си | 1 – восстановитель, процесс окисления

$${\stackrel{_{+5}}{\rm N}}$$
 + 1 е \rightarrow N | 2 — окислитель, процесс восстановления

HNO₃ (1:1). Реагируют все металлы без исключения.

HNO_3 (1:1) + металл→	Li-Zn	+1 N ₂ O
	после Zn	+2 NO

$$^{+5}$$
 $10~\text{HNO}_3(1:1) + \text{Ca} \xrightarrow{} ^{+2} ^{+5} \text{ A Ca(NO}_3)_2 + 5\text{H}_2\text{O} + \text{N}_2\text{O} \uparrow$ $\text{Ca} - 2~\text{e} \xrightarrow{} ^{+2} \text{Ca} \mid 2 \mid 4 - \text{восстановитель, процесс окисления}$ $^{+5}$ $\text{N} + 4~\text{e} \xrightarrow{} ^{+1} \mid 1 \mid 2 - \text{окислитель, процесс восстановления}$

 $^{+5}$ 4 HNO₃(1:1) + Fe \rightarrow Fe(NO₃)₃ + 2H₂O + NO \uparrow

 $\stackrel{^{0}}{\mathrm{Fe}}$ – 3 е \rightarrow $\stackrel{^{+3}}{\mathrm{Fe}}$ | 1 – восстановитель, процесс окисления

 $\stackrel{_{+5}}{N} + 3 \; e \stackrel{_{+2}}{\longrightarrow} \stackrel{_{+2}}{N} \; \mid 1$ — окислитель, процесс восстановления

 HNO_3 (1:10) или HNO_3 (оч.разб.). Реагируют только металлы, стоящие до H_2 , обычно по реакции:

 HNO_3 (1:10) + металл \rightarrow нитрат + H_2O + NH_4NO_3

 $30 \text{ HNO}_{3}(1:10) + 8 \overset{0}{\text{Al}} \rightarrow 8 \overset{+3}{\text{Al}} (\overset{+5}{\text{NO}_{3}})_{3} + 9 \overset{-3}{\text{NH}_{4}} \overset{+5}{\text{NO}_{3}}$

 $Al - 3 e \rightarrow Al \mid 8$ – восстановитель, процесс окисления

 $N+8 \ e \rightarrow N$ 3 – окислитель, процесс восстановления

 $^{+5}$ 10 HNO₃(1:10) +4 Ca \rightarrow 4 Ca(NO₃)₂ + 3H₂O + NH₄NO₃

 $\stackrel{^{0}}{\text{Ca}} - 2 \stackrel{^{+2}}{\text{e}} \rightarrow \stackrel{^{+2}}{\text{Ca}} \mid 4$ – восстановитель, процесс окисления

 ${\stackrel{_{+5}}{\rm N}}$ + 8 е \rightarrow ${\stackrel{_{-3}}{\rm N}}$ | 1 — окислитель, процесс восстановления

***Взаимодействие металлов с серной кислотой: чем выше активность восстановителя и выше температура, при которой протекает реакция, тем глубже протекает процесс восстановления H_2SO_4 и тем ниже степень окисления в продуктах взаимодействия

	+ 2 e	SO ₂
H_2^{+6} H ₂ SO ₄ + восстановитель \rightarrow	+ 6 e	o S
	+ 8 e	H ₂ S

***Значительные затруднения возникают у экзаменующихся вопросы, связанные со скоростью химических реакций и факторах, влияющих на скорость реакции. К важнейшим факторам, влияющим на скорость реакции, относятся следующие:

- природа реагирующих веществ;
- концентрации реагирующих веществ (давление для газообразных веществ);
- величина поверхности соприкосновения реагирующих веществ (для гетерогенных реакций);
- температура;
- наличие катализатора.

При рассмотрении влияния концентрации (давления, если в реакции участвуют газы) на скорость химической реакции, необходимо записать формулы исходных реагентов - веществ в левой части уравнения.

- ***Если в реакцию вступает вещество, находящееся в твердой фазе, то его концентрация в единицу времени является величиной постоянной и не влияет на изменение скорости реакции (гетерогенные реакции). В общем случае скорость гетерогенной реакции зависит от площади соприкосновения реагирующих веществ. Чем больше дисперсность твердого вещества, тем выше скорость реакции. Более подробно скорость реакции зависит от:
- а) скорости подвода реагентов к границе раздела фаз;
- б) скорости реакции на поверхности раздела фаз, которая зависит от площади этой поверхности;
- в) скорости отвода продуктов реакции от границы раздела фаз.
- *** Изменение давления равносильно изменению концентрации частиц в единице объема. Таким образом, увеличение давления в системе приводит к увеличению концентрации каждого из исходных газообразных веществ во столько же раз и, следовательно, возрастанию скорости реакции. Уменьшение давления вызывает обратный эффект.
- *** С повышением температуры возрастает число активных молекул, увеличивается скорость реакции.
- *** Введение катализатора увеличивает скорость химической реакции. Катализаторы — вещества, изменяющие скорость реакции за счет участия в промежуточном химическом взаимодействии с компонентами реакции, но восстанавливающие после каждого цикла промежуточного взаимодействия свой химический состав.
- *** Если на систему, находящуюся в равновесии, оказывать внешнее воздействие, то равновесие смещается в направлении того процесса, протекание которого уменьшает эффект произведенного воздействия, а именно:
- повышение концентрации реагирующих веществ смещает равновесие вправо;
- повышение концентрации продуктов реакции смещает равновесие влево;
- повышение температуры благоприятствует эндотермической реакции;

- понижение температуры благоприятствует экзотермической реакции;
- повышение давления смещает равновесие в сторону образования меньшего числа молекул газа;
- понижение давления в сторону образования большего числа молекул газа
- *** Если в ходе реакции не происходит изменение объема газообразных веществ, то изменение давления не влияет на смещение равновесия.
- *** Катализатор не влияет на смещение равновесия, т.к. он в одинаковой степени увеличивает скорость и прямой, и обратной реакций. Катализатор влияет на время установления равновесия.

Рассмотрим несколько примеров.

Пример. Рассмотрите факторы, которые влияют на скорость процесса разложения

$$CaCO_{3(TB)} \rightarrow CaO_{(TB)} + CO_{2(\Gamma a3)}$$

Решение:

- концентрация CaCO₃ не влияет на скорость реакции
- при повышении температуры скорость реакции увеличивается
- давление не влияет на скорость реакции, исходный реагент твердое вещество
- при размельчении СаСО₃ скорость реакции увеличивается
- перемешивание порошка CaCO3 увеличивает скорость реакции

Процесс разложения карбоната кальция является обратимым. Рассмотрим влияние различных факторов на смещение равновесия в этой системе:

$$CaCO_3(TB) \leftrightarrow CaO(TB) + CO_2(\Gamma a3)$$

Процесс разложения является эндотермическим.

- Повышение температуры приводит к смещению равновесия вправо, в сторону прямой реакции, образования продуктов реакции.
- При повышении давления, равновесие смещается в сторону реакции с меньшим объемом газообразных веществ – влево, в сторону исходных веществ.

- Отведение из системы газообразного вещества ${\rm CO_2}$ приводит к смещению равновесия вправо, в сторону прямой реакции.
- AB JACO3

 A. ACO3

 A. - Изменение концентрации (количества) вещества СаСО3 не влияет на смещение равновесия. Измельчение (увеличение дисперсности) СаСО3