УЧЕБНО-МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ ДЛЯ ВЫПОЛНЕНИЯ КОНТРОЛЬНОЙ РАБОТЫ ПО ТЕМЕ: «ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ОДНОЙ НЕЗАВИСИМОЙ ПЕРЕМЕННОЙ» КУРСА «МАТЕМАТИКА»

О.В. Сорокина

Учебное пособие для студентов нематематических направлений подготовки

СОДЕРЖАНИЕ

	Введение	3
	1. Методические рекомендации по выполнению контрольной работы	4
	2. Критерии оценивания контрольной работы	5
	3. Контрольные вопросы к теме «Дифференциальное исчисление	,o ⁽
	функций одной независимой переменной»	6
	4. Примерные варианты контрольной работы	7
	5. Задачи для самостоятельного решения	14
	Список рекомендованной литературы	16
CARA	Введение. 1. Методические рекомендации по выполнению контрольной работы	

Введение

Учебно-методические материалы для выполнения контрольной работы по теме «Дифференциальное исчисление функций одной независимой переменной» курса «Математика» составлены в соответствии с Государственным образовательным стандартом высшего образования, рабочей программой и фондом оценочных средств курса «Математика» для студентов-бакалавров по направлению подготовки 04.03.01 «Химия» Института химии СГУ.

Курс «Математика» является фундаментальной общеобразовательной дисциплиной. Ее изучение предусматривает:

- развитие логического и алгоритмического мышления;
- овладение основными методами исследования и решения математических задач;
- овладение некоторыми численными методами;
- выработку умения самостоятельно расширять математические знания и проводить математический анализ прикладных задач.

В процессе практических занятий по курсу «Математика» студенты учатся применять теоретические знания, полученные на лекциях, к решению конкретных задач математики. Текущий контроль освоения дисциплины «Математика» во втором семестре проводится в виде устного опроса и письменного контроля знаний по разделам: «Дифференциальное исчисление функций одной независимой переменной», «Интегральное исчисление функции одной независимой переменной», «Комплексные числа», «Обыкновенные дифференциальные уравнения».

Цель пособия – помочь студентам подготовиться к выполнению контрольной работы по теме «Дифференциальное исчисление функций одной независимой переменной» курса «Математика».

В пособии даны методические рекомендации по выполнению контрольной работы и критерии ее оценивания, приведены контрольные вопросы, позволяющие оценить качество освоения теоретического материала, разбирается решение задач примерных вариантов контрольной работы, приводятся задачи для самостоятельного решения с ответами. Ответы к задачам помогут осуществить контроль за правильностью решения. Для освоения темы приведен необходимый список учебно-методической литературы.

Пособие может быть полезно студентам нематематических специальностей и иных направлений подготовки, изучающих высшую математику.

1. Методические рекомендации по выполнению контрольной работы

В соответствие с рабочей программой курса «Математика» первая контрольная работа во втором семестре проводится по теме: «Дифференциальное исчисление функций одной независимой переменной». На выполнение данной контрольной работы отводится 1 час. Контрольная работа проводится в письменной форме без привлечения какой-либо справочной информации и вспомогательных вычислительных средств (калькулятор, телефон и т.п.).

Для успешного выполнения заданий контрольной работы необходимо повторить основной теоретический материал по теме работы с использованием лекций и списка рекомендованной литературы (см. [1]-[8]) и ответить на контрольные вопросы по теме.

На аудиторном занятии студент получает билет с вариантом контрольной работы. Каждый вариант контрольной работы состоит из нескольких задач. После получения билета необходимо:

- внимательно прочитать условие каждой задачи;
- выбрать алгоритм ее решения;
- провести подробное решение задачи со всеми промежуточными выкладками в соответствии с выбранным методом решения задачи;
 - провести анализ полученных результатов и их интерпретацию;
- изложить полученные результаты ясным научным языком, пользуясь научными терминами в соответствии с их смыслом.

Контрольная работа выполняется на отдельном чистом листе, сверху которого обязательно должны быть написаны фамилия студента и номер группы. Для черновых записей используется дополнительный лист.

Задачи контрольной работы можно выполнять в произвольном порядке. Условие каждой задачи должно быть кратко и понятно записано. Результат решения каждой задачи отражается в конечном ответе. Запись решения задач контрольной работы должна быть выполнена аккуратно.

После выполнения, или по окончании времени, отведенном на выполнение, контрольная работа сдается на проверку и оценивается в соответствии с критериями оценивания.

2. Критерии оценивания контрольной работы

Максимально возможное количество баллов, которое может получить студент по теме – 5 баллов.

Каждая задача варианта контрольной работы также оценивается в 5 баллов:

0 баллов – решение задачи отсутствует или выполнено полностью неверно;

1 балл – выбран неоптимальный метод решения; решение не доведено до конца; имеются многочисленные логические и вычислительные ошибки; отсутствуют промежуточные выкладки;

2 балла – выбран неоптимальный метод решения, решение доведено до конца, но с вычислительными ошибками; либо выбран оптимальный метод решения, решение доведено не до конца, но прописан алгоритм решения;

3 балла — выбран оптимальный метод решения, но при решении допущены вычислительные ошибки, или выбран неоптимальный метод решения, но решение получено верно;

4 балла — выбран оптимальный метод решения задачи; решение задач произведено верно, но не совсем подробно, нет обоснований для некоторых действий; получен аналитически и численно верный результат;

5 баллов — выбран оптимальный метод решения поставленной задачи; решение задачи произведено полностью верно, последовательно, подробно; получен аналитически и численно верный результат).

Итоговые баллы за контрольную работу рассчитываются как среднеарифметическое результатов решения каждой задачи.

При получении итоговых баллов от 0 до 2 данная тема определяется как неосвоенная и требуется повторное выполнение контрольной работы.

Повторное выполнение контрольной работы проводится в назначенное дополнительное и свободное от занятий время.

3. Контрольные вопросы к теме: «Дифференциальное исчисление функций одной независимой переменной»

- 1. Что называется приращением функции y = f(x) в точке x_0 ?
- 2. Дать определение производной функции y = f(x) в точке x_0 .
- 3. Каков физический смысл производной функции y = f(x) в точке x_0 ?
- 4. Какое движение точки описывается уравнением $y = v_0 x + y_0$ $(x \text{время}, v_0)$ и $y_0 \text{постоянные}$?
- 5. Каков геометрический смысл производной функции y = f(x) в точке x_0 ?
- 6. Когда говорят, что функция имеет в точке x_0 бесконечную производную?
- 7. Привести формулы для производных суммы, разности, произведения и частного двух функций.
 - 8. Сформулировать теорему о производной сложной функции.
 - 9. Дать определение дифференцируемости функции в данной точке.
- 10. Какова связь между дифференцируемостью функции в точке и существованием в этой точке производной функции?
- 11. Что такое дифференциал функции в данной точке? От какого аргумента он зависит?
- 12. Может ли дифференциал функции в данной точке быть постоянной величиной?
- 13. Для каких функций дифференциал равен приращению функции? Привести примеры.
 - 14. Каков геометрический смысл дифференциала?
 - 15. Каков физический смысл дифференциала?
- 16. Что понимается под инвариантностью формы первого дифференциала?
- 17. Как можно использовать дифференциал функции для приближенных вычислений?
- 18. Дать определение второй производной функции y = f(x) в точке x_0 .
- 19. Может ли существовать вторая производная $f''(x_0)$, если не существует первая производная $f'(x_0)$?
- 20. Дать определение n -ой производной функции y = f(x) в точке x_0 .
- 21. Дать определение дифференциала n-ого порядка функции y=f(x) в точке x_0 .
- 22. Сформулировать правило Лопиталя раскрытия неопределенностей при вычислении пределов функций.

4. Примерные варианты контрольной работы

Вариант №1

1. Найти производные следующих функций:

a)
$$y = \frac{1}{\sqrt{x^2 + x + 1}}$$
; b) $y = 4^{\sin^2 x}$; c) $y = \ln \ln x$; d) $y = e^{tgx} - x\cos 2x$;

e)
$$y = \frac{(x+5)^2(x-4)^3}{(x+2)^5(x+4)^2}$$
.

- 2. Найти y'' функции $y = \frac{1+x}{1-x}$.
- 3. Используя правило Лопиталя, найти предел функции: $\lim_{x\to 0} \frac{x-\sin x}{x^3}$.

 4. Найти предел функции: $\lim_{x\to +0} x^x$.

Решение.

1. Заданные функции являются сложными функциями, поэтому при их дифференцировании будем применять правило дифференцирования сложных функций и соответствующие формулы таблицы производных основных функций.

функции.

a)
$$y' = \left(\frac{1}{\sqrt{x^2 + x + 1}}\right)' = -\frac{1}{x^2 + x + 1} \cdot \left(\sqrt{x^2 + x + 1}\right)' =$$

$$= -\frac{1}{x^2 + x + 1} \cdot \frac{1}{2\sqrt{x^2 + x + 1}} \cdot (x^2 + x + 1)' =$$

$$= -\frac{1}{x^2 + x + 1} \cdot \frac{1}{2\sqrt{x^2 + x + 1}} \cdot (2x + 1) = -\frac{2x + 1}{2(x^2 + x + 1)\sqrt{x^2 + x + 1}} \cdot \blacksquare$$

b) $y' = \left(4^{\sin^2 x}\right)' = 4^{\sin^2 x} \ln 4 \cdot \left(\sin^2 x\right)' = 4^{\sin^2 x} \ln 4 \cdot 2\sin x \cdot \left(\sin x\right)' =$

$$= 4^{\sin^2 x} \ln 4 \cdot 2\sin x \cdot \cos x = 4^{\sin^2 x} \ln 4 \cdot \sin 2x \cdot \blacksquare$$

c) $y' = (\ln \ln x)' = \frac{1}{\ln x} \cdot (\ln x)' = \frac{1}{\ln x} \cdot \frac{1}{x} = \frac{1}{x \ln x} \cdot \blacksquare$

$$d) y' = (e^{tgx} - x\cos 2x)' = (e^{tgx})' - (x\cos 2x)' =$$

$$= e^{tgx} \cdot (tgx)' - \left((x)' \cdot \cos 2x + x \cdot (\cos 2x)'\right) =$$

$$= e^{tgx} \cdot \frac{1}{\cos^2 x} - \left(\cos 2x + x \cdot (-\sin 2x)(2x)'\right) = \frac{e^{tgx}}{\cos^2 x} - \cos 2x + 2x \cdot \sin 2x \cdot \blacksquare$$

е) В данном примере целесообразно воспользоваться логарифмическим дифференцированием.

Прологарифмируем обе части данного равенства по основанию e. $\ln y = 2\ln(x+5) + 3\ln(x-4) - 5\ln(x+2) - 2\ln(x+4)$.

Дифференцируя обе части последнего равенства, в котором функция $\ln y$ является сложной функцией переменной x и $\left(\ln y\right)' = \frac{1}{y}y'$, получим

$$\frac{1}{y}y' = \frac{2}{x+5} + \frac{3}{x-4} - \frac{5}{x+2} - \frac{2}{x+4}.$$

Умножая обе части этого равенства на y, получим искомую производную.

yio.

$$y' = \frac{(x+5)^{2}(x-4)^{3}}{(x+2)^{5}(x+4)^{2}} \left(\frac{2}{x+5} + \frac{3}{x-4} - \frac{5}{x+2} - \frac{2}{x+4}\right). \blacksquare$$
2.
$$y' = \left(\frac{1+x}{1-x}\right)' = \frac{(1-x) - (1+x) \cdot (-1)}{(1-x)^{2}} = \frac{2}{(1-x)^{2}};$$

$$y'' = 2 \cdot \left((1-x)^{-2}\right)' = -4 \cdot (1-x)^{-3}. \blacksquare$$
3.
$$\lim_{x \to 0} \frac{x - \sin x}{x^{3}} = \left[\frac{0}{0}\right] = \lim_{x \to 0} \frac{(x - \sin x)'}{(x^{3})'} = \lim_{x \to 0} \frac{1 - \cos x}{3x^{2}} = \left[\frac{0}{0}\right] = \lim_{x \to 0} \frac{(1 - \cos x)'}{(3x^{2})'} = \lim_{x \to 0} \frac{\sin x}{6x} = \frac{1}{6} \lim_{x \to 0} \frac{\sin x}{x} = \frac{1}{6} \cdot 1 = \frac{1}{6}. \blacksquare$$

4. Представленная задача относится к задачам, имеющими неопределенность вида: 0^0 ; ∞^0 ; 1^∞ , которые можно свести к неопределенности вида $0\cdot\infty$, которые, в свою очередь, можно решить с помощью правила Лопиталя. Это достигается с помощью тождества

$$[f(x)]^{\varphi(x)} = e^{\varphi(x)\ln f(x)},$$

в предположении, что f(x) > 0. Тогда

$$\lim_{x \to a} [f(x)]^{\varphi(x)} = \lim_{x \to a} e^{\varphi(x)\ln f(x)} = e^{\lim_{x \to a} \varphi(x)\ln f(x)},$$

и дело сводится к определению $\lim_{x\to a} \varphi(x) \ln f(x)$.

Используя вышеизложенный прием, можно записать: $x^x = e^{x \ln x}$, а потому

$$\lim_{x \to +0} x^{x} = \left[0^{0} \right] = \lim_{x \to +0} e^{x \ln x} = e^{\lim_{x \to +0} x \ln x} =$$

$$= \left\{ \lim_{x \to +0} x \ln x = \left[0 \cdot \infty \right] = \lim_{x \to +0} \frac{\ln x}{x^{-1}} = \left[\frac{\infty}{\infty} \right]^{(2.29)} = \lim_{x \to +0} \frac{x^{-1}}{x^{-2}} = -\lim_{x \to +0} x = 0 \right\} =$$

$$= e^{0} = 1. \blacksquare$$

Вариант №2

1. Найти производные следующих функций:

a)
$$y = \left(3x^4 - \frac{6}{\sqrt{x}} - 2\right)^7$$
; b) $y = e^{ctgx}$; c) $y = \log_2(x + \sqrt{x})$; d) $y = tg\frac{1+x}{x}$;
e) $y = \frac{\sqrt[4]{x^2 + 7x - 8 \cdot \sqrt[6]{x^4 - 1}}}{\sqrt[3]{x^3 - 3x^2 + x - 4}}$.

- 2. Найти y'' функции $y = \arcsin x$.
- 3. Используя правило Лопиталя, найти предел функции $\lim_{x\to 1} \frac{x^2-1+\ln x}{e^x-e}.$
 - 4. Найти предел функции: $\lim_{x \to +\infty} x^{\frac{1}{x}}$.

Решение.

1. Заданные функции являются сложными функциями, поэтому при их дифференцировании будем применять правило дифференцирования сложных функций и соответствующие формулы таблицы производных основных функций.

a)
$$y' = \left(3x^4 - \frac{6}{\sqrt{x}} - 2\right)^7 = 7\left(3x^4 - \frac{6}{\sqrt{x}} - 2\right)^6 \cdot (3x^4 - 6x^{-\frac{1}{2}} - 2)' = 7\left(3x^4 - \frac{6}{\sqrt{x}} - 2\right)^6 \left(3 \cdot 4 \cdot x^3 - 6 \cdot \left(-\frac{1}{2}\right)x^{-\frac{3}{2}}\right) = 7\left(3x^4 - \frac{6}{\sqrt{x}} - 2\right)^6 \left(12x^3 + 3 \cdot \frac{1}{\sqrt{x^3}}\right) = 21\left(3x^4 - \frac{6}{\sqrt{x}} - 2\right)^6 \left(4x^3 + \frac{1}{x\sqrt{x}}\right) = 7\left(3x^4 - \frac{6}{\sqrt{x}} - 2\right)^6 \left(4x^3 + \frac{1}{x\sqrt{x}}\right) = 7\left(3x^4 - \frac{6}{\sqrt{x}} - 2\right)^6 \left(4x^3 + \frac{1}{x\sqrt{x}}\right) = 7\left(3x^4 - \frac{6}{\sqrt{x}} - 2\right)^6 \left(4x^3 + \frac{1}{x\sqrt{x}}\right) = 7\left(3x^4 - \frac{6}{\sqrt{x}} - 2\right)^6 \left(4x^3 + \frac{1}{x\sqrt{x}}\right) = 7\left(3x^4 - \frac{6}{\sqrt{x}} - 2\right)^6 \left(4x^3 + \frac{1}{x\sqrt{x}}\right) = 7\left(3x^4 - \frac{6}{\sqrt{x}} - 2\right)^6 \left(4x^3 + \frac{1}{x\sqrt{x}}\right) = 7\left(3x^4 - \frac{6}{\sqrt{x}} - 2\right)^6 \left(4x^3 + \frac{1}{x\sqrt{x}}\right) = 7\left(3x^4 - \frac{6}{\sqrt{x}} - 2\right)^6 \left(4x^3 + \frac{1}{x\sqrt{x}}\right) = 7\left(3x^4 - \frac{6}{\sqrt{x}} - 2\right)^6 \left(4x^3 + \frac{1}{x\sqrt{x}}\right) = 7\left(3x^4 - \frac{6}{\sqrt{x}} - 2\right)^6 \left(4x^3 + \frac{1}{x\sqrt{x}}\right) = 7\left(3x^4 - \frac{6}{\sqrt{x}} - 2\right)^6 \left(4x^3 + \frac{1}{x\sqrt{x}}\right) = 7\left(3x^4 - \frac{6}{\sqrt{x}} - 2\right)^6 \left(4x^3 + \frac{1}{x\sqrt{x}}\right) = 7\left(3x^4 - \frac{6}{\sqrt{x}} - 2\right)^6 \left(4x^3 + \frac{1}{x\sqrt{x}}\right) = 7\left(3x^4 - \frac{6}{\sqrt{x}} - 2\right)^6 \left(4x^3 + \frac{1}{x\sqrt{x}}\right) = 7\left(3x^4 - \frac{6}{\sqrt{x}} - 2\right)^6 \left(4x^3 + \frac{1}{x\sqrt{x}}\right) = 7\left(3x^4 - \frac{6}{\sqrt{x}} - 2\right)^6 \left(4x^3 + \frac{1}{x\sqrt{x}}\right) = 7\left(3x^4 - \frac{6}{\sqrt{x}} - 2\right)^6 \left(4x^3 + \frac{1}{x\sqrt{x}}\right) = 7\left(3x^4 - \frac{6}{\sqrt{x}} - 2\right)^6 \left(4x^3 + \frac{1}{x\sqrt{x}}\right) = 7\left(3x^4 - \frac{6}{\sqrt{x}} - 2\right)^6 \left(4x^3 + \frac{1}{x\sqrt{x}}\right) = 7\left(3x^4 - \frac{6}{\sqrt{x}} - 2\right)^6 \left(4x^3 + \frac{1}{x\sqrt{x}}\right) = 7\left(3x^4 - \frac{6}{\sqrt{x}} - 2\right)^6 \left(4x^3 + \frac{1}{x\sqrt{x}}\right) = 7\left(3x^4 - \frac{6}{\sqrt{x}} - 2\right)^6 \left(4x^3 + \frac{1}{x\sqrt{x}}\right) = 7\left(3x^4 - \frac{6}{\sqrt{x}} - 2\right)^6 \left(4x^3 + \frac{1}{x\sqrt{x}}\right) = 7\left(3x^4 - \frac{6}{\sqrt{x}} - 2\right)^6 \left(4x^3 + \frac{1}{x\sqrt{x}}\right) = 7\left(3x^4 - \frac{6}{\sqrt{x}} - 2\right)^6 \left(4x^3 + \frac{1}{x\sqrt{x}}\right) = 7\left(3x^4 - \frac{6}{\sqrt{x}} - 2\right)^6 \left(4x^3 + \frac{1}{x\sqrt{x}}\right) = 7\left(3x^4 - \frac{6}{\sqrt{x}} - 2\right)^6 \left(4x^3 + \frac{1}{x\sqrt{x}}\right) = 7\left(3x^4 - \frac{6}{\sqrt{x}} - 2\right)^6 \left(4x^3 + \frac{1}{x\sqrt{x}}\right) = 7\left(3x^4 - \frac{6}{\sqrt{x}} - 2\right)^6 \left(4x^3 + \frac{1}{x\sqrt{x}}\right) = 7\left(3x^4 - \frac{6}{\sqrt{x}} - 2\right)^6 \left(4x^4 - \frac{1}{x\sqrt{x}}\right) = 7\left(3x^4 - \frac{6}{\sqrt{x}} - 2\right)^6 \left(4x^4 - \frac{1}{x\sqrt{x}}\right) = 7\left(3x^4 - \frac{1}{x\sqrt{x}}\right) = 7\left(3x^4 - \frac{1}{x\sqrt{x}}\right) = 7\left(3x^4 - \frac{1}{x\sqrt{x}}\right) =$$

e) В данном примере целесообразно воспользоваться логарифмическим дифференцированием.

Прологарифмируем обе части исходного равенства по основанию e.

$$\ln y = \frac{1}{4}\ln(x^2 + 7x - 8) + \frac{1}{6}\ln(x^4 - 1) - \frac{1}{3}\ln(x^3 - 3x^2 + x - 4).$$

Дифференцируя обе части последнего равенства с учетом того, что

$$(\ln y)' = \frac{1}{y} \cdot y'$$
, получим
$$\frac{1}{y}y' = \frac{1}{4(x^2 + 7x - 8)} \cdot (2x + 7) + \frac{1}{6(x^4 - 1)} \cdot 4x^3 - \frac{1}{3(x^3 - 3x^2 + x - 4)} \cdot (3x^2 - 3x + 1).$$

Умножая обе части этого равенства на y, получаем окончательно выражение для производной:

$$y' = \frac{\sqrt[4]{x^2 + 7x - 8 \cdot \sqrt[6]{x^4 - 1}}}{\sqrt[3]{x^3 - 3x^2 + x - 4}} \left(\frac{2x + 7}{4(x^2 + 7x - 8)} + \frac{4x^3}{6(x^4 - 1)} - \frac{3x^2 - 3x + 1}{3(x^3 - 3x^2 + x - 4)} \right). \blacksquare$$

2.
$$y' = \frac{1}{\sqrt{1 - x^2}}$$
;

$$y'' = \left((1 - x^2)^{-\frac{1}{2}} \right)' = -\frac{1}{2} \cdot (1 - x^2)^{-\frac{3}{2}} \cdot (-2x) = \frac{x}{(1 - x^2)\sqrt{1 - x^2}} . \blacksquare$$

3.
$$\lim_{x \to 1} \frac{x^2 - 1 + \ln x}{e^x - e} = \left[\frac{0}{0}\right] = \lim_{x \to 1} \frac{(x^2 - 1 + \ln x)'}{(e^x - e)'} = \lim_{x \to 1} \frac{2x + \frac{1}{x}}{e^x} = \frac{3}{e} . \blacksquare$$

4. Представленная задача относится к задачам, имеющими неопределенность вида: 0^0 ; ∞^0 ; 1^∞ , которые можно свести к неопределенности вида $0\cdot\infty$, которые, в свою очередь, можно решить с помощью правила Лопиталя. Это достигается с помощью тождества

$$[f(x)]^{\varphi(x)} = e^{\varphi(x)\ln f(x)},$$

в предположении, что f(x) > 0. Тогда

$$\lim_{x \to a} [f(x)]^{\varphi(x)} = \lim_{x \to a} e^{\varphi(x)\ln f(x)} = e^{\lim_{x \to a} \varphi(x)\ln f(x)}$$

и дело сводится к определению $\lim_{x\to a} \varphi(x) \ln f(x)$.

Используя вышеизложенный прием, можно записать: $x^{\frac{1}{x}} = e^{\frac{1}{x} \ln x}$, потому

$$\lim_{x \to +\infty} x^{\frac{1}{x}} = \left[\infty^0 \right] = \lim_{x \to +\infty} e^{\frac{1}{x} \ln x} = e^{\lim_{x \to +\infty} \frac{1}{x} \ln x} =$$

$$= \left\{ \lim_{x \to +\infty} \frac{1}{x} \ln x = \left[0 \cdot \infty \right] = \lim_{x \to +\infty} \frac{\ln x}{x} = \left[\frac{\infty}{\infty} \right]^{(2.29)} = \lim_{x \to +\infty} \frac{1}{x} = 0 \right\} = e^0 = 1. \blacksquare$$

Вариант №3

1. Найти производные следующих функций:

1. Найти производные следующих функций:
 a)
$$y = \sqrt[3]{\frac{\sin x - \cos x}{\sin x + \cos x}}$$
. b) $y = 2^{x^2}$; c) $y = \ln\left(1 - \frac{1}{x}\right)$; d) $y = \operatorname{arcctg} 5x^3$;

e)
$$y = (x+5)^2 (2x-7)^3 (x-2)(x+3)$$
.

- 2. Найти y'' функции $y = \sqrt{x+5}$.
- 3. Используя правило Лопиталя, найти предел функции: $\lim_{x \to \frac{\pi}{2}} \frac{tg \, 5x}{tg \, 5x}$.
- 4. Найти предел функции: $\lim_{x \to +0} (1+x)^{\ln x}$.

Решение.

1. Заданные функции являются сложными функциями, поэтому при их дифференцировании будем применять правило дифференцирования сложных функций и соответствующие формулы таблицы производных основных функций.

a)
$$y' = \left(\frac{\sin x - \cos x}{\sin x + \cos x}\right)^{\frac{1}{3}} = \frac{1}{3} \left(\frac{\sin x - \cos x}{\sin x + \cos x}\right)^{\frac{1}{3} - 1} \left(\frac{\sin x - \cos x}{\sin x + \cos x}\right)'$$
.

Вычислим отдельно

$$\left(\frac{\sin x - \cos x}{\sin x + \cos x}\right)' = \frac{(\sin x - \cos x)' \cdot (\sin x + \cos x) - (\sin x - \cos x) \cdot (\sin x + \cos x)'}{(\sin x + \cos x)^2} =$$

$$= \frac{((\sin x)' - (\cos x)') \cdot (\sin x + \cos x) - (\sin x - \cos x) \cdot ((\sin x)' + (\cos x)')}{(\sin x + \cos x)^2} =$$

$$= \frac{(\cos x + \sin x) \cdot (\sin x + \cos x) - (\sin x - \cos x) \cdot (\cos x - \sin x)}{(\sin x + \cos x)^2} =$$

$$= \frac{(\cos x + \sin x)^2 + (\sin x - \cos x)^2}{(\sin x + \cos x)^2} = \frac{2}{(\sin x + \cos x)^2} = \frac{2}{1 + \sin 2x}.$$

Подставим полученный результат в выражение для y'. Тогда

$$y' = \frac{1}{3} \left(\frac{\sin x - \cos x}{\sin x + \cos x} \right)^{-\frac{2}{3}} \cdot \frac{2}{(\sin x + \cos x)^2} = \frac{2}{3} \left(\frac{\sin x + \cos x}{\sin x - \cos x} \right)^{\frac{2}{3}} \cdot \frac{1}{(\sin x + \cos x)^2} =$$

$$= \frac{2}{3} \frac{1}{(\sin x - \cos x)^{\frac{2}{3}} (\sin x + \cos x)^{\frac{4}{3}}} \cdot \frac{2}{3} \frac{2}{3} \frac{1}{(\sin x - \cos x)^2 (\sin x + \cos x)^4} \cdot \blacksquare$$

$$b) \ y' = \left(2^{x^2} \right)' = 2^{x^2} \ln 2 \cdot \left(x^2 \right)' = 2^{x^2} \ln 2 \cdot 2x = x2^{x^2 + 1} \ln 2 \cdot \blacksquare$$

$$c) \ \Piepenumem \text{ логарифмическую функцию в виде}$$

$$\ln \left(1 - \frac{1}{x} \right) = \ln \left(\frac{x - 1}{x} \right) = \ln(x - 1) - \ln x \cdot \blacksquare$$

$$Torдa$$

$$y' = \left(\ln(x - 1) - \ln x \right)' = \frac{1}{x - 1} \cdot (x - 1)' - \frac{1}{x} = \frac{1}{x - 1} - \frac{1}{x} = \frac{1}{x(x - 1)} \cdot \blacksquare$$

$$d) \ y' = (arcctg 5x^3)' = -\frac{1}{1 + (5x^3)^2} (5x^3)' = -\frac{1}{1 + 25x^6} \cdot (5 \cdot 3x^2) =$$

$$= -\frac{15x^2}{1 + 25x^6} \cdot \blacksquare$$

е) В данном примере целесообразно воспользоваться логарифмическим дифференцированием, считая функцию ln у сложной функцией переменной x, для которой $(\ln y)' = \frac{1}{v}y'$.)

 $y = (x+5)^2 (2x-7)^3 (x-2)(x+3)$, то логарифмируя обе части данного выражения по основанию e, получим

$$\ln y = 2\ln(x+5) + 3\ln(2x-7) + \ln(x-2) + \ln(x+3).$$

Вычислив производную левой и правой части равенства, получим

$$\frac{1}{y}y' = \frac{2}{x+5} + \frac{3}{2x-7} \cdot 2 + \frac{1}{x-2} + \frac{1}{x+3}.$$

Умножая обе части последнего равенства $y = (x+5)^2(2x-7)^3(x-2)(x+3)$, получим $y' = (x+5)^2(2x-7)^3(x-2)(x+3) \left[\frac{2}{x+5} + \frac{6}{2x-7} + \frac{1}{x-2} + \frac{1}{x+3}\right]$. на

$$y' = (x+5)^{2}(2x-7)^{3}(x-2)(x+3)\left[\frac{2}{x+5} + \frac{6}{2x-7} + \frac{1}{x-2} + \frac{1}{x+3}\right]. \blacksquare$$

2.
$$y' = \left((x+5)^{\frac{1}{2}} \right)' = \frac{1}{2} (x+5)^{-\frac{1}{2}};$$
 $y'' = -\frac{1}{4} (x+5)^{-\frac{3}{2}}.$

$$3. \lim_{x \to \frac{\pi}{2}} \frac{tg3x}{tg5x} = \left[\frac{\infty}{\infty}\right] = \lim_{x \to \frac{\pi}{2}} \frac{(tg3x)'}{(tg5x)'} = \lim_{x \to \frac{\pi}{2}} \frac{\left(\frac{3}{\cos^2 3x}\right)}{\left(\frac{5}{\cos^2 5x}\right)} =$$

$$= \frac{3}{5} \lim_{x \to \frac{\pi}{2}} \frac{\cos^2 5x}{\cos^2 3x} = \left[\frac{0}{0}\right] = \frac{3}{5} \lim_{x \to \frac{\pi}{2}} \left(\frac{\cos 5x}{\cos 3x}\right)^2 = \frac{3}{5} \left(\lim_{x \to \frac{\pi}{2}} \frac{\cos 5x}{\cos 3x}\right)^2 =$$

$$= \frac{3}{5} \left(\lim_{x \to \frac{\pi}{2}} \frac{-5\sin 5x}{-3\sin 3x}\right)^2 = \frac{3}{5} \cdot \frac{25}{9} \left(\lim_{x \to \frac{\pi}{2}} \frac{\sin 5x}{\sin 3x}\right)^2 = \frac{5}{3} \left(\frac{1}{-1}\right)^2 = \frac{5}{3}.$$

4. Представленная задача относится к задачам, имеющими неопределенность вида: 0^0 ; ∞^0 ; 1^∞ , которые можно свести к неопределенности вида $0\cdot\infty$, которые, в свою очередь, можно решить с помощью правила Лопиталя. Это достигается с помощью тождества

$$[f(x)]^{\varphi(x)} = e^{\varphi(x)\ln f(x)},$$

в предположении, что f(x) > 0. Тогда

$$\lim_{x \to a} [f(x)]^{\varphi(x)} = \lim_{x \to a} e^{\varphi(x) \ln f(x)} = e^{\lim_{x \to a} \varphi(x) \ln f(x)},$$

и дело сводится к определению $\lim_{x\to a} \varphi(x) \ln f(x)$.

вышеизложенный ОНЖОМ записать: $(1+x)^{\ln x} = e^{\ln x \ln(1+x)}$, a notomy

$$\lim_{x \to +0} (1+x)^{\ln x} = \left[1^{\infty}\right] = \lim_{x \to +0} e^{\ln x \ln(1+x)} = e^{\lim_{x \to +0} \ln x \ln(1+x)} =$$

$$= \left\{ \lim_{x \to +0} (\ln x \cdot \ln(1+x)) = \left[\infty \cdot 0\right] = \lim_{x \to +0} \frac{\ln(1+x)}{(\ln x)^{-1}} = \left[\frac{0}{0}\right]^{(2.29)} =$$

$$= \lim_{x \to +0} \frac{\left(\frac{1}{1+x}\right)}{-(\ln x)^{-2} \frac{1}{x}} = -\lim_{x \to +0} \frac{x \ln^2 x}{1+x} = -\lim_{x \to +0} \frac{\ln^2 x}{\frac{1}{x}+1} = \left[\frac{\infty}{\infty}\right]^{(2.29)} = -\lim_{x \to +0} \frac{2 \ln x \cdot \frac{1}{x}}{-x^{-2}} =$$

$$= 2 \lim_{x \to +0} \frac{\ln x}{x^{-1}} = \left[\frac{\infty}{\infty}\right]^{(2.29)} = 2 \lim_{x \to +0} \frac{x^{-1}}{-x^{-2}} = -2 \lim_{x \to +0} x = 0 \right\} = e^0 = 1. \blacksquare$$

$$=2\lim_{x\to+0}\frac{\ln x}{x^{-1}} = \left[\frac{\infty}{\infty}\right]^{(2.29)} = 2\lim_{x\to+0}\frac{x^{-1}}{-x^{-2}} = -2\lim_{x\to+0}x = 0\right\} = e^0 = 1. \blacksquare$$

5. Задачи для самостоятельного решения

1. Найти производные функций.

1.1.
$$y = \left(1 + 2\sqrt{x} - \frac{3}{x^2}\right)^4$$
.

1.3.
$$y = e^x arctg e^x - \ln \sqrt{1 + e^{2x}}$$
.

1.5.
$$y = 2^{\sin x} + \sqrt{x} ctg 3x$$
.

1.7.
$$y = arctg \frac{\cos x}{1 + \sin x}$$
.

1.9.
$$y = \ln(x + \sqrt{x^2 + 1})$$
.

Ответы.

1.1.
$$y' = 4\left(1 + 2\sqrt{x} - \frac{3}{x^2}\right)^3 \left(\frac{1}{\sqrt{x}} + \frac{6}{x^3}\right)$$
. 1.2. $y' = 5\sin^2 x \cos^3 x$.

1.3.
$$y' = e^x \operatorname{arctg} e^x$$
.

1.2.
$$y = \left(\cos^2 x + \frac{2}{3}\right) \sin^3 x$$
.

1.4.
$$y = e^{\sqrt{x}} - x^2 t g 2x$$
.

1.6.
$$y = \arccos\sqrt{\frac{\cos 3x}{\cos^3 x}}$$
.

1.8.
$$y = \ln \frac{x^2 - 2}{\sqrt{(6 - 2x^2)^3}}$$
.

1.10.
$$y = \frac{1}{2}tg^2\sqrt{x} + \ln\cos\sqrt{x}$$
.

1.2.
$$y' = 5\sin^2 x \cos^3 x$$
.

1.4.
$$y' = \frac{e^{\sqrt{x}}}{2\sqrt{x}} - 2xtg \, 2x - \frac{2x^2}{\cos^2 2x}$$
.

1.5.
$$y' = 2^{\sin x} \ln 2 \cos x + \frac{1}{2\sqrt{x}} ctg 3x - \frac{3\sqrt{x}}{\sin^2 3x}$$
.
1.6. $y' = -\sqrt{\frac{3}{\cos x \cos 3x}}$.
1.7. $y' = -\frac{1}{2}$.
1.8. $y' = \frac{x^3}{(x^2 - 2)(3 - x^2)}$.
1.9. $y' = \frac{1}{\sqrt{x^2 + 1}}$.
1.10. $y' = \frac{1}{2\sqrt{x}} tg^3 \sqrt{x}$.

1.6.
$$y' = -\sqrt{\frac{3}{\cos x \cos 3x}}$$
.

1.7.
$$y' = -\frac{1}{2}$$
.

1.8.
$$y' = \frac{x^3}{(x^2 - 2)(3 - x^2)}$$

1.9.
$$y' = \frac{1}{\sqrt{x^2 + 1}}$$

1.10.
$$y' = \frac{1}{2\sqrt{x}}tg^3\sqrt{x}$$

2. Найти производные функций.

2. Найти производные функций.
2.1.
$$y = \frac{(2x-1)^3 \sqrt{3x+2}}{(5x+4)^2 \sqrt[3]{1-x}}$$
. 2.2. $y = x^{x^2} (x > 0)$. 2.3. $y = (\sin x)^{tgx} (0 < x < \pi)$.

2.2.
$$y = x^{x^2} (x > 0)$$

2.3.
$$y = (\sin x)^{tgx} (0 < x < \pi)$$

2.1.
$$y = \frac{(2x-1)^3 \sqrt{3x+2}}{(5x+4)^2 \sqrt[3]{1-x}}$$
. 2.2. $y = x^{x^2} (x > 0)$. 2.3. $y = (\sin x)^{\frac{1}{2}}$
Ответы.
2.1. $y' = \frac{(2x-1)^3 \sqrt{3x+2}}{(5x+4)^2 \sqrt[3]{1-x}} \left[\frac{6}{2x-1} + \frac{3}{2(3x+2)} - \frac{10}{5x+4} + \frac{1}{3(1-x)} \right]$.
2.2. $y' = x^{x^2+1} (1+2\ln x)$. 2.3. $y' = (\sin x)^{tgx} (1+\sec^2 x)^{\frac{1}{2}}$

2.2.
$$y' = x^{x^2+1} (1 + 2 \ln x)$$

2.2.
$$y' = x^{x^2 + 1} (1 + 2\ln x)$$
. 2.3. $y' = (\sin x)^{tgx} (1 + \sec^2 x \cdot \ln \sin x)$.

3. Найти производные высших порядков функций.

3.1. Найти
$$y''$$
 функции $y = \frac{1}{3}x^2 \cdot \sqrt{1-x^2} + \frac{2}{3}\sqrt{1-x^2} + x \arcsin x$.

3.2. Найти
$$y'''$$
 функций: $a)$ $y = \frac{x}{6(x+1)}$; $b)$ $y = \frac{1}{2} \ln^2 x$; $c)$ $y = \frac{1}{\sqrt{x}}$.

3.3. Найти $y^{(n)}$ функций: a) $y = e^{kx}$; b) $y = \sin x$; c) $y = 2^x + 2^{-x}$. Ответы.

3.1.
$$y'' = 2\sqrt{1-x^2}$$
.

3.2. a)
$$y''' = \frac{1}{(x+1)^4}$$
; b) $y''' = \frac{2\ln x - 3}{x^3}$; c) $y''' = -\frac{15}{8x^3\sqrt{x}}$.

3.3. *a*)
$$y^{(n)} = k^n e^{kx}$$
; *b*) $y^{(n)} = \sin\left(x + n\frac{\pi}{2}\right)$; *c*) $y^{(n)} = \left[2^x + (-1)^n 2^{-x}\right] \ln^n 2$.

4. Используя правило Лопиталя, найти пределы функций.

4.1.
$$\lim_{x \to 2} \frac{x^4 - 5x^2 + 4}{x^4 - 3x^2 - 4}$$
. 4.2. $\lim_{x \to 0} \frac{e^x - e^{-x} - 2x}{x - \sin x}$. 4.3. $\lim_{x \to 0} \frac{\sin x - x \cos x}{\sin^3 x}$

4.4.
$$\lim_{x \to +\infty} \frac{e^x}{x^2}$$
. 4.5. $\lim_{x \to +0} \frac{\ln tgx}{\ln tg 2x}$. 4.6. $\lim_{x \to +0} \frac{\ln x}{1 + 2\ln \sin x}$

4.7.
$$\lim_{x \to 0} (xctg\pi x)$$
. 4.8. $\lim_{x \to 1} \left(\frac{1}{x-1} - \frac{1}{\ln x} \right)$. 4.9. $\lim_{x \to 0} \left(\frac{1}{\sin x} - \frac{1}{x} \right)$.

3.2. a)
$$y''' = \frac{1}{(x+1)^4};$$
 b) $y''' = \frac{2\ln x - 3}{x^3};$ c) $y''' = -\frac{15}{8x^3\sqrt{x}}.$
3.3. a) $y^{(n)} = k^n e^{kx};$ b) $y^{(n)} = \sin\left(x + n\frac{\pi}{2}\right);$ c) $y^{(n)} = \left[2^x + (-1)^n 2^{-x}\right] \ln^n 2.$
4. Используя правило Лопиталя, найти пределы функций.
4.1. $\lim_{x \to 2} \frac{x^4 - 5x^2 + 4}{x^4 - 3x^2 - 4}.$ 4.2. $\lim_{x \to 0} \frac{e^x - e^{-x} - 2x}{x - \sin x}.$ 4.3. $\lim_{x \to 0} \frac{\sin x - x \cos x}{\sin^3 x}.$
4.4. $\lim_{x \to +\infty} \frac{e^x}{x^2}.$ 4.5. $\lim_{x \to +0} \frac{\ln tgx}{\ln tg2x}.$ 4.6. $\lim_{x \to +0} \frac{\ln x}{1 + 2\ln \sin x}.$
4.7. $\lim_{x \to 0} (xctg\pi x).$ 4.8. $\lim_{x \to 1} \left(\frac{1}{x-1} - \frac{1}{\ln x}\right).$ 4.9. $\lim_{x \to 0} \left(\frac{1}{\sin x} - \frac{1}{x}\right).$
4.10. $\lim_{x \to +0} (\sin x)^x;$ 4.11. $\lim_{x \to 0} (tgx)^{\sin 2x}$ 4.12. $\lim_{x \to +0} (\cos 2x)^{\frac{3}{x^2}}.$

Ответы.
4.1. $\frac{3}{5}.$ 4.2. 2. 4.3. $\frac{1}{3}.$ 4.4. $+\infty.$ 4.5. 1. 4.6. $\frac{1}{2}.$
4.7. $\frac{1}{\pi}.$ 4.8. $-\frac{1}{2}.$ 4.9. 0. 4.10. 1. 4.11. 1. 4.12. $e^{-6}.$

4.1.
$$\frac{3}{5}$$
. 4.2. 2. 4.3. $\frac{1}{3}$. 4.4. $+\infty$. 4.5. 1. 4.6. $\frac{1}{2}$.

4.7.
$$\frac{1}{\pi}$$
. 4.8. $-\frac{1}{2}$. 4.9. 0. 4.10. 1. 4.11. 1. 4.12. e^{-6} .

Список рекомендованной литературы

- 1. *Баранова Е.С., Васильева Н.В., Федотов В.П.*. Практическое пособие повысшей математике. Типовые расчеты: Учебное пособие. СПб.: Питер, 2009.
- 2. Данко П. Е., Попов А. Г., Кожевникова Т. Я. Ч.1: Высшая математика в упражнениях и задачах: Учеб. пособие для вузов. М.: Издательский дом «ОНИКС 21 век»: Мир и Образование, 2003.
- 3. Демидович В.П., Кудрявцев В.А., Краткий курс высшей математики: Учеб. пособие. М.: Астрель, 2005.
- 4. *Лунгу К. Н., Письменный Д.Т., Федин С.Н., Шевченко Ю.А.* Сборник задач по высшей математике. 1 курс. 3-е изд., испр. и доп. М.: Айрис-пресс, 2004.
- 5. *Минорский В. П.* Сборник задач по высшей математике: Учеб. пособие. М.: Физ.-мат. лит., 2006.
- 6. *Письменный Д.Т.* Конспект лекций по высшей математике: полный курс. Дмитрий Письменный. 8-е изд. М.: Айрис-пресс, 2009.
- 7. *Щипачев В. С.* Высшая математика: Учебник для немат. спец. вузов / Под ред. акад. А. Н. Тихонова. М.: Высшая школа, 1994.
- 8. Сорокина О.В., Основы дифференциального исчисления функций одной независимой переменной [Электронный ресурс]: учебное пособие для студентов нематематических направлений подготовки/ О.В.Сорокина; ФГБОУ ВПО "Саратовский государственный университет им. Н.Г.Чернышевского".-Саратов:[б.и.], 2015-84 с. Библиогр.: с.84 (6 назв.)