Гидрология суши

Учебно-методическое пособие для студентов, обучающихся по направлению 05.03.05 Прикладная гидрометеорология

Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского

М.Ю. Червяков, Я.А. Нейштадт

AT LIFE HIBITIE BOROFO CV. Гидрология суши

Учебно-методическое пособие для студентов, обучающихся по направлению Πpr CARPATOBCKNIN FOCYTIARPCTBELLIHIBIN FOCYTIARPCTBELLIHIBI 05.03.05 Прикладная гидрометеорология

> Саратов Издательство Саратовского университета 2018

УДК 556.5

Червяков М.Ю., Нейштадт Я.А. Гидрология суши. Учебно-методическое пособие для студентов, обучающихся по направлению 05.03.05 Прикладная гидрометеорология. — Саратов: Изд-во Сарат. ун-та, 2018. — 80 с.: ил.

В учебно-методическом пособии рассматриваются основы теории гидрологии суши и методы обработки гидрологической информации.

Представленное пособие необходимо для выполнения практических работ по дисциплине «Гидрология суши» студентами очной формы обучения и контрольных работ студентами заочной формы обучения.

Рекомендуют к печати:

кафедра метеорологии и климатологии

Саратовского национального исследовательского государственного университета имени Н.Г. Чернышевского

Издается в электронном виде в авторской редакции

- © Червяков М.Ю., Нейштадт Я.А., 2018
- © Саратовский государственный университет, 2018

СОДЕРЖАНИЕ

	Стр.
1. Скоростной режим речного потока	4
2. Уровенный режим рек	10
2.1 Типы уровневого режима	11,(
2. Тольный помый помы	12
3.1 Изменение температуры воды во времени	13
3.2 Тепловой баланс	14
3.3. Гидрологические сезоны	18
3.4. Тепловой режим донных отложений	27
3.5. Расчета температуры воды	28
3.6. Тепловое загрязнение	32
3.7. Тепловой режим соляных озер	32
3.8. Термические классификации озер	34
3.9. Ледовые явления	37
3.1 Изменение температуры воды во времени 3.2 Тепловой баланс 3.3. Гидрологические сезоны 3.4. Тепловой режим донных отложений 3.5. Расчета температуры воды 3.6. Тепловое загрязнение 3.7. Тепловой режим соляных озер 3.8. Термические классификации озер 3.9. Ледовые явления ПРАКТИЧЕСКАЯ ЧАСТЬ Практическая работа № 1. «Морфология русла и	43
Практическая работа № 1. «Морфология русла и	43
гидродинамические характеристики потока».	
Практическая работа №2. «Построение кривых повторяемости	47
и продолжительности уровней»	
Годовые таблицы уровней воды для различных рек	52
Практическая работа № 3. «Построение гидрографа и его	65
генетический анализ»	
Практическая работа № 4. «Термический режим озер»	69
Список гидрологических объектов	77
Список литературы	79
CAP ATOBOKNÍN TOCYTIANÝ	

1. Скоростной режим речного потока

Скорость течения представляет собой путь, пройденный частицами воды потока в единицу времени, и измеряется в метрах за одну секунду (м/с).

Движение воды в естественных потоках представляет собой очень сложное явление. Распределение скоростей в реке может быть самым разнообразным в зависимости от очертания русла реки в плане, чередования глубин на плесах и перекатах, наличия водной растительности или ледовых образований, изменения уклона по длине реки, шероховатости дна и берегов и от влияния ветра. Характер течения воды в потоке на прямолинейном участке отличается от характера течения на закруглениях; течение также различно на глубоких и мелких участках, в русле реки и на пойме. Поэтому соотношения скоростей в разных сечениях и точках потока могут быть самыми различными. Кроме того, скорости меняются при изменениях уровня воды; обычно с повышением уровня при правильной форме русла скорости течения воды возрастают.

Изменение скоростей в потоке осложняется еще наличием явления пульсации, которое заключается в том, что в каждой точке потока скорость непрерывно изменяется по величине и направлению около какого-то среднего своего значения. Величина пульсации имеет наименьшее значение обычно у поверхности потока и достигает наибольшего значения у дна, берегов, под ледяным покровом, где увеличивается влияние шероховатости.

В каждой данной точке поперечного сечения реки, кроме местной мгновенной скорости, изменяющейся во времени по величине и направлению, различают еще так называемую осредненную скорость. Под осредненной скоростью следует понимать среднее значение скорости, вычисленной по мгновенным скоростям в данной точке для некоторого промежутка времени. По сравнению с непрерывно меняющимися мгновенными скоростями измеренная за достаточно длительный промежуток времени (обычно не менее 100 секунд) осредненная скорость имеет устойчивое значение. В дальнейшем

изложении, говоря об осредненных скоростях в различных точках потока, будем называть их просто скоростями, без упоминания термина «осредненные».

Многочисленные исследования потоков позволили установить некоторые закономерности в распределении скоростей по ширине и глубине реки.

По ширине реки со свободной водной поверхностью скорости обычно увеличиваются от берегов к середине реки. Распределение поверхностных скоростей по ширине реки может быть представлено плавной кривой, называемой эпюрой скоростей по ширине реки (рис. 1.1). Наибольшая скорость обычно наблюдается в местах наибольших глубин; на изгибах русла она располагается ближе к вогнутому берегу, а на прямолинейном участке реки — в средней части потока; на пойме скорости значительно меньше, чем в коренном русле.

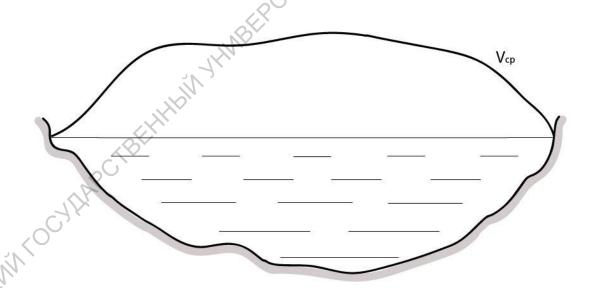


Рис. 1.1 Эпюра распределения средних скоростей по живому сечению реки.

Распределение скорости по глубине реки можно изобразить графически путем построения так называемого годографа — эпюры распределения скоростей по вертикали. Для нормальных условий в период открытого русла годограф будет иметь вид, показанный на рис. 1.2 - I.

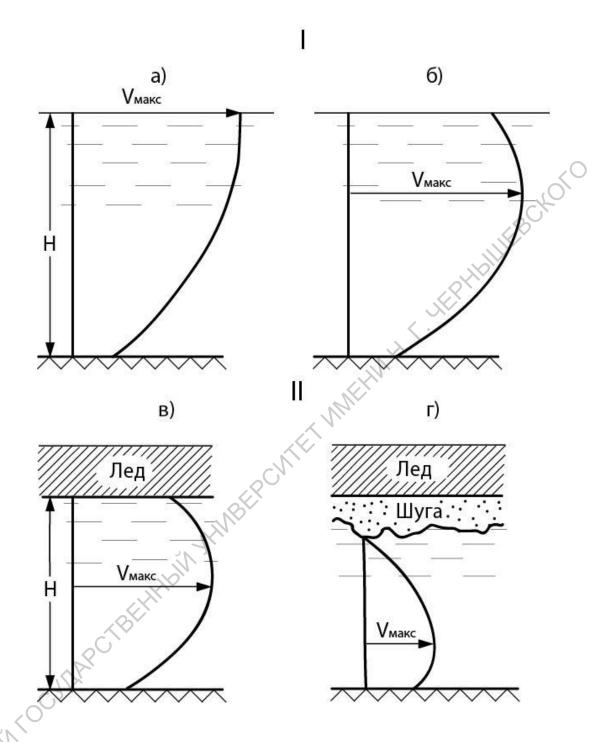


Рис. 1.2 Распределение скоростей течения по вертикали.

I - эпюры скоростей в русле, свободном от ледяного покрова: а - при отсутствии ветра, б - при встречном ветре;

II - в русле под ледяным покровом: в - при отсутствии шуги, г - при наличии шуги.

Наибольшая скорость находится у поверхности воды и плавно уменьшается ко дну, вблизи которого имеет наименьшее значение. Очертания

эпюр скоростей в зависимости от разных местных условий (неровности дна, ветра, подводной растительности) могут быть самыми различными. На плесе скорости меньше, чем на перекате, и скорости у дна значительно отличаются от поверхностных. На перекате скорости значительно больше, чем на плесе, и у дна имеют значения, в некоторых случаях мало отличающиеся от поверхностных. Скорость течения на участке перед резким повышением дна уменьшается; эпюра скоростей в этом случае может иметь излом на высоте гребня препятствия, ниже которого скорости резко уменьшаются, и у дна иногда имеют нулевые значения.

При зарастании русла водной растительностью в значительной мере уменьшается скорость у дна потока вследствие увеличения шероховатости. В устьях некоторых рек, подверженных влиянию сгонно-нагонных явлений, а также действию прилива и отлива, могут возникать течения противоположных направлений.

Существенное отличие представляет распределение скоростей по глубине при наличии ледяного покрова. В этом случае максимальная скорость наблюдается ближе к середине глубины потока, что объясняется наличием дополнительного трения о нижнюю поверхность льда, которая может быть гладкой при кристаллическом льде или очень неровной при наличии губчатого льда — шуги (рис. 1.2 - II).

Распределение скоростей в любом поперечном сечении реки может быть наглядно представлено при помощи линий равных скоростей — изотах, соединяющих точки с одинаковыми скоростями течения. На рис. 1.3 представлены изотахи для свободного русла и под ледяным покровом. Изотахи для свободного русла располагаются разомкнутыми линиями, причем максимальные скорости имеют место близко к середине поверхности живого сечения; при ледяном покрове изотахи с максимальными скоростями располагаются замкнутыми линиями, обычно ниже поверхности воды. Линия, соединяющая (в продольном направлении потока) точки с наибольшими скоростями в поперечном сечении потока, называется динамической осью

потока.

Стрежнем называется линия, соединяющая точки наибольших скоростей на поверхности реки.

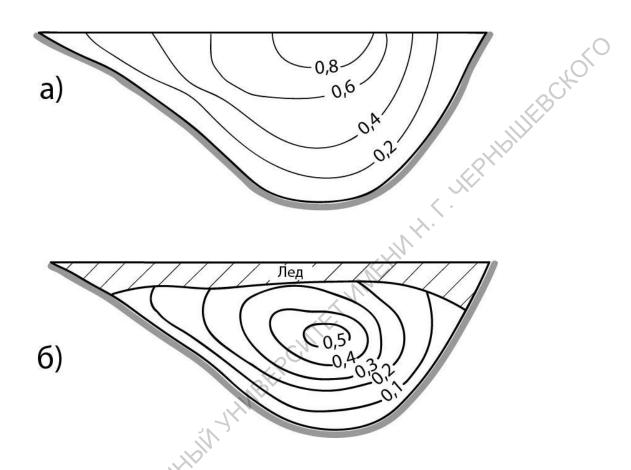


Рис. 1.3 Изотахи при открытой водной поверхности (а) и при ледяном покрове (б).

Изменение скоростей происходит также и по длине реки, что вызывается сужением или расширением русла, изменением продольного уклона реки и шероховатости.

Скорости обычно постепенно уменьшаются вниз по течению к ее устью так же, как и продольный уклон. Имеется много случаев, когда равнинная река, пересекая каменные гряды или горные хребты, приобретает горный характер.

Выше было рассмотрено распределение скоростей течения главным образом равнинных рек, протекающих в размываемых песчано-илистых грунтах с относительно спокойным течением.

Горные реки протекают в долинах с большим продольным уклоном по скалистым руслам, обычно загроможденным валунами, крупными камнями. Наличие валунов, каменистых выступов и резких изломов рельефа дна реки создает волнистый вид поверхности воды с бурунами и завихрениями. Движение воды носит явно выраженный турбулентный характер с беспорядочным перераспределением скоростей в живом сечении и по длине реки. Таким образом, горные реки отличаются от равнинных наличием больших скоростей течения, а также большей амплитудой изменения скоростей по длине реки.

Многие реки Евразии на разных участках имеют разный характер. Например, Амударья в верховьях имеет горный характер, протекая в горах Памиро-Алая и Гиндукуша с высотами от 2000 до 7500 м, а по выходе из гор протекает по местности с высотами от 200 до 55 м и приобретает равнинный характер; Енисей в верховьях является горной рекой, а по выходе из Саян - полуравнинной.

Для практических целей часто требуется знать среднюю скорость по вертикали (глубине потока), которую можно определить путем деления площади эпюры скоростей по вертикали (годографа) на глубину вертикали.

При отсутствии непосредственных измерений скоростей средняя скорость для живого сечения реки может быть вычислена по формуле Шези (1.1), имеющая вид:

$$v_{\rm cp} = C\sqrt{Ri} \tag{1.1}$$

где v_{cp} — средняя скорость потока в м/с; R — гидравлический радиус в метрах; i — уклон водной поверхности на участке реки; C — скоростной коэффициент, зависящий от шероховатости русла и гидравлического радиуса.

Для вычисления скоростного коэффициента имеется ряд формул. Например, формула Базена (1.2):

$$C = \frac{87}{1 + \frac{Y}{\sqrt{R}}} \tag{1.2}$$

где у - коэффициент шероховатости; R- гидравлический радиус. Формула Н. П. Павловского (3):

$$C = \frac{1}{n} R^y \tag{1.3}$$

где n — коэффициент шероховатости (численно не равный коэффициенту шероховатости y); R – гидравлический радиус; y – переменный показатель степени, который можно вычислить по таким упрощенным формулам:

при
$$R < 1$$
 м $y \approx 1.5\sqrt{n}$,

при
$$R > 1$$
 м $y \approx 1.3\sqrt{n}$

при R < 1 м $y \approx 1.5 \sqrt{n}$, при R > 1 м $y \approx 1.3 \sqrt{n}$.

Уровнем воды в реке называется положение свободной поверхности над некоторой условной плоскостью. Уровень воды в реке постоянно изменяется. Основной причиной его изменений является приток воды в реку от талых вод снегов и ледников, дождей и подземных вод. Чем больше приток воды, тем значительнее повышается уровень; малому притоку соответствуют низкие меженные уровни [3].

Уровни воды, систематически измеряются на гидрологических постах и станциях, используются не только для определения средних суточных расходов воды на реках, но и для других целей. Наивысшие уровни половодья и паводков необходимы при проектировании гидротехнических сооружений, промышленном строительстве, при оценке возможного затоплении местности при строительстве водохранилищ и т. д.; летними минимумами уровней интересуется судоходство, а зимние необходимы для определения режима работы ГЭС. Для практических целей наиболее важными являются характерные уровни воды, определяемые по данным многолетних наблюдения. К ним относятся: 1) наивысший годовой, 2) наивысший весеннего ледохода (без затора и при заторе), 3) наивысший осеннего ледохода, 4) наивысший летне-осенних паводков. 5) наивысший летний и зимний.

2.1 Типы уровневого режима

Уровень воды в реке зависит от расхода и отражает изменение водности реки во времени. Следовательно, уровенный режим находится под влиянием тех же факторов, что и режим расходов - особенностей источников питания и расходования запасов влаги в бассейне, поэтому основные черты внутригодовых колебаний уровней под влиянием изменения водности соответствуют типам водного режима.

На равнинных реках, питающихся в основном талыми водами, наивысшие уровни наблюдаются в период половодья. На одной и той же реке амплитуда колебания уровня увеличивается, но течению и достигает максимума на предустьевом участке. На больших реках Европейской территории России (Волга, Ока, Дон) амплитуда колебания уровня (после регулирования водохранилищами) достигает 14-18 м, а на сибирских реках (Енисей, Лена) - 17-20 м. На Дальнем Востоке наивысшие уровни наблюдаются летом или в начале осени в период прохождения летнего половодья, вызванного муссонными дождями. На Амуре и Зее амплитуда уровня достигает 10-14 м.

Колебания уровня заметно уменьшаются под влиянием озерного регулирования и отличаются сравнительно плавным ходом. На Северной Двине и Печоре амплитуда их около 10-12 м, а на Онеге, сток которой зарегулирован озерами Лаче и Воже, она менее 8 м.

Аналогичное влияние оказывает и речная долина. Широкая пойма уменьшает, а узкая, наоборот, увеличивает амплитуду колебаний уровня.

Кроме того, колебания уровней вызываются и другими причинами: изменением сопротивления в русле, сгонно-нагонными и приливными явлениями, наличием естественного и искусственного подпора.

Изменение сопротивления в русле вызывается появлением на реке ледовых образований и развитием водной растительности. При замерзании рек вследствие возрастания сопротивления движению воды уровень повышается. При этом в начальный период льдообразования, включающий период осеннего ледохода, повышение уровня относительно небольшое и происходит плавно по мере увеличения массы льда. В момент образования ледостава на крупных реках сопротивление значительно увеличивается и уровни резко повышаются, до 1-2 м. В дальнейшем под воздействием потока шероховатость нижней поверхности льда уменьшается и уровни начинают понижаться, но все же остаются выше предзимних.

Водная растительность в теплый период года развивается в небольших реках. Начиная с весны по мере ее развития увеличиваются шероховатость и стеснение потока, в результате чего уровни плавно повышаются. С отмиранием водной растительности начинается обратный процесс - плавное падение уровня. Нагонные явления могут эпизодически наблюдаться под действием ветра в устьевых участках рек, имеющих небольшие уклоны, и вызывать значительные колебания уровня. Наибольшие подъемы уровней под действием нагонов на наших реках обычно не превышают 1-2 м. Известные наводнения в Санкт-Петербурге на р. Неве (до строительства дамбы в Финском заливе) вызывались несколькими причинами, одной из которых являлись нагонные явления.

Приливные колебания уровня возникают только на реках, впадающих в моря, на которых приливы и отливы четко выражены. Амплитуда приливных колебаний уровня на реках России сравнительно невелика и достигает 1 м в

устье Печоры и Северной Двины. В зависимости от уклона реки приливная волна может распространяться на большие расстояния от предустьевого взморья. На р. Хатанге, впадающей в море Лаптевых, приливная волна распространяется почти на 500 км. Значительные колебания уровней могут искусственных возникать под влиянием естественных И подпоров. Естественными подпорами являются заторы и зажоры. При образовании зажоров, когда живое сечение забивается шугой, подъемы уровня выше зажора могут достигать 2-4 м, в то же время ниже зажора уровни резко снижаются. Особенно сильные повышения уровней наблюдаются во время весенних заторов льда, образующихся при ледоходе. Наиболее ярко это выражено на больших реках Сибири (Енисей, Нижняя Тунгуска, Лена), где заторные подъемы достигают 15-20 м и более.

3. Термический режим рек 3.1 Изменение температуры воды во времени

Изменение составляющих теплового баланса реки в течение суток, сезона, года вызывает соответствующее колебание температуры воды в реках. Суточный ход температуры воды наиболее четко выражен в теплую часть года. Наибольшая амплитуда суточных колебаний наблюдается летом, когда днем вода нагревается под действием солнечного тепла, а ночью остывает в результате преобладания эффективного излучения. Минимальные температуры летом наблюдаются в утренние часы перед восходом Солнца, а максимальные - в 15-17 ч.

Амплитуда суточных колебаний температуры воды зависит от широты места, водности реки, погодных условий. В северных районах суточная амплитуда меньше вследствие меньшей длительности ночи (ночного выхолаживания) и не превышает 1 °C на больших реках. К югу амплитуда возрастает до 2-3 °C. Амплитуды для рек с большими расходами воды из-за

большой тепловой инерции меньше, чем для маловодных рек; при ясной погоде амплитуда больше, чем при облачной.

Годовой ход температуры воды также тесно связан с изменением теплового баланса. После вскрытия реки температура воды повышается и достигает максимума в июле, реже в августе, а затем понижается, достигая PHPIIIEBCKO минимума в начале ледостава.

3.2 Тепловой баланс

Тепловой баланс зависит от климата и метеорологических условий Влияние морфометрических особенностей водоёмов отдельных лет. сказывается на структуре теплового баланса и на внутригодовом ходе его элементов.

Расчёт теплового баланса, как правило, выполняется помесячно. По полученным данным вычисляется годовой и средний многолетний баланс.

Некоторые составляющие теплового баланса, такие, как изменение количества тепла, связанное с атмосферными осадками, биохимическими процессами и переходом механической энергии в тепловую, малы по абсолютному значению и могут не приниматься в расчёт. Отбросив их, можно представить уравнение теплового баланса для всего водоёма (водной массы и донных отложений) в следующем виде:

$$R \pm LE \pm P + Q_{np} - Q_{cr} \pm Q_{\pi} \pm \Delta Q_{B} \pm \Delta Q_{r} = 0 \qquad (3.1)$$

где R – радиационный баланс, равный разности поглощённой водой солнечной радиации Q_p и эффективного излучения Q_{3u} ; LE — потери тепла на испарение или приход его при конденсации водяных паров на поверхность водоёма (L – удельная теплота испарения, Е – испарение); Р – потери или приход тепла в результате турбулентного теплообмена поверхности воды с атмосферой; $Q_{\text{пр}}, \ Q_{\text{ст}}$ – тепло, приносимое притоком речных вод в водоём и теряемое со стоком из водоёма; Q_{π} – тепло, затрачиваемое на таяние льда или выделяемое при льдообразовании; $\Delta Q_{\scriptscriptstyle B}$ и $\Delta Q_{\scriptscriptstyle \Gamma}$ – изменения количества тепла (теплозапаса) за расчётный период в водной массе и донных отложениях.

Тепловой баланс может быть рассчитан в абсолютных значениях составляющих (Дж) или в относительных единицах — Дж/см² акватории водоёма, что позволяет сравнить тепловой режим различных водоёмов.

Радиационный баланс водоёмов рассчитывается по формуле:

$$R = Q_{\Pi} - Q_{\Theta} \tag{3.2}$$

где $Q_{\rm n}$ – поглощённая радиация, $Q_{\rm 2n}$ – эффективное излучение.

Потери тепла на испарение определяются по формуле:

$$LE = E (595 - 0.565t_{II})$$
 (3.3)

где t_n — температура поверхности воды.

Изменение количества тепла в процессе турбулентного теплообмена с атмосферой рассчитывается по формуле:

$$P = 5.07n (t_n - t_2) (1 + 0.72u_2)$$
 (3.4)

где n — число дней в месяце; t_2 , u_2 — температура воздуха и скорость ветра на высоте 2 м над водной поверхностью.

Изменения количества тепла, связанные с притоком в водоём или стоком из него, определяются по формуле:

$$Q_{\text{np,cr}} = 100 \text{Vtpc/f}_0 \tag{3.5}$$

где V – объём притока (стока) воды за месяц, км 3 ; t – средняя месячная температура воды притока или вытекающего водотока, $^{\circ}$ C; f $_0$ – средняя за расчётный период площадь зеркала водоёма, км 2 ; ρ – плотность; с – теплоёмкость воды для пресных вод, равная единице.

Теплопоток от дна характеризуется уравнением:

$$Q_{TA} = -\lambda dt/dh \qquad (3.6)$$

где λ — коэффициент теплопроводности грунта дна; dt/dh — вертикальный градиент температуры в грунте.

Потери тепла на таяние льда и выделение тепла при льдообразовании связаны с плотностью льда $\rho_{\scriptscriptstyle \Pi}$, его толщиной $h_{\scriptscriptstyle \Pi}$ и удельной теплотой плавления $L_{\scriptscriptstyle \Pi\Pi}$ зависимостью

$$Q_{\pi} = \rho_{\pi} h_{\pi} L_{\pi\pi} \tag{3.7}$$

В приходной части теплового баланса водоёмов главной составляющей является поглощённая водой солнечная радиация Q_p . Она отражена в уравнениях (3.1) и (3.2) через радиационный баланс R.

Основной составляющей расходной части теплового баланса как крупных глубоких, так и мелких водоёмов являются потери тепла на испарение LE.

Вследствие более высокой температуры воды в мелких озёрах потери их на испарение больше, чем в крупных. (Кубенское в среднем за май-октябрь 94,2 кДж/см², Онежское – 62,8 кДж/см²). Значение Р в годовом тепловом балансе большинства водоёмов не превышают 10 % (Онежское, Кубенское озёра, Рыбинское водохранилище и др.).

Тепловой приток и сток для крупных глубоких озёр составляет 2-3 % от Q_p . Для мелких водоёмов со значительным внешним водообменом значения Q_{np} , Q_{cr} и P соизмеримы и должны учитываться. Например, для Кубенского озера Q_{np} за май – октябрь составляет 14 % R, а Q_{cr} – 24 % R при P = 10 % R; в Новосибирском водохранилище разность Q_{np} – Q_{cr} в 1963-1965 гг. достигала в мае 60-98 % R.

Запас тепла в единице объёма воды определяется по формуле:

$$q = tc\rho$$
 (3.8)

Для пресной воды в пределах точности расчёта можно принять c=1 и $\rho=1$, тогда q будет численно равно t_{cp} и запас тепла всей водной массы водоёма того или иного района или слоя определится по формуле

$$Q = Vq = Vt_{cp} \tag{3.9}$$

где V — это объём воды водоёма, района, слоя, определяемый по объёмной кривой.

Расчёт запаса тепла водоёмов со сложной конфигурацией и рельефом дна выполняется по участкам (зонам, плесам), для которых построены объёмные кривые. Для небольших водоёмов простой формы рассчитывается только общий теплозапас.

Для крупных водоёмов, отличающихся неоднородностью распределения температуры по глубине, запас тепла определяется графически с использованием объёмной шкалы.

Тепловой бюджет — изменение количества тепла в водоёме за некоторый промежуток времени. Обычно определяется годовой, сезонный или месячный тепловой бюджет водоёмов.

Распределение тепла в водоёмах. Почти вся поглощённая водой солнечная радиация аккумулируется в самом верхнем слое водоёмов, мощность которого связана с оптическими свойствами воды — прозрачностью и цветностью — и обычно не превышает 1 м. Так, в центральной части Онежского озера в слое 1 м аккумулируется 75-85 % проникающей радиации, а у берегов в северо-восточной части озера при большой мутности воды — 90-93 %.

Перемещение тепла в глубины водоёмов может практически осуществляться только при различных видах движения вод, так как молекулярная теплопроводность воды ничтожно мала (значительно ниже, чем у таких горных пород, как гранит, песок).

Обмен теплом между различными слоями воды по вертикали осуществляется при свободной или вынужденной конвекции. Первая связана с разностью плотности частиц воды, вторая — с воздействием какого-либо внешнего фактора, большей частью ветра.

Различия плотности по вертикали обуславливают устойчивость водной массы — сопротивляемость её перемешиванию. Поскольку устойчивость зависит от разности плотностей слоёв воды, её обычно характеризуют вертикальным градиентом плотности $G_{\rho} = d\rho/dh$.

При высоких температурах плотность воды изменяется интенсивнее, чем при низких, и соответственно значения G_{ρ} больше, больше и устойчивость. Так, например при изменении температуры на 1° от 3 до 4 °C плотность изменится на $8\cdot10^{-7}$ г/см³, а при изменении температуры также на 1°, но от 20-21 °C – на $221\cdot10^{-7}$ г/см³. В связи с этим воды тропических озёр при

малых различиях температуры по вертикали имеют большую устойчивость. Перечисленные выше причины приводят к вертикальной неоднородности распределения температуры в озёрах и водохранилищах.

Распределение температуры по акватории и объёму озёр и водохранилищ также отличается неоднородностью, связанной в первую очередь с морфологией котловин, движением вод в водоёмах и внешним водообменом. Эта неоднородность проявляется по-разному в различные гидрологические сезоны года.

3.3 Гидрологические сезоны

В годовом термическом цикле водоёмов разграничиваются периоды нагревания и охлаждения. Соответственно этому выделяются гидрологические сезоны: весеннего нагревания, летнего нагревания, осеннего охлаждения и зимнего охлаждения.

Весеннее нагревание начинается с перехода теплового баланса к положительным значениям и заканчивается переходом температуры водоёма через температуру большей плотности (для пресных вод до 4 °C), после чего начинается летнее нагревание, завершающееся годовым максимумом температуры и теплозапаса. Осеннее охлаждение продолжается от годового термического максимума до перехода температурой воды через температуру наибольшей плотности, знаменующего начало зимнего охлаждения.

Термическая структура водоёма — распределение тепла во всём его объёме — отличается неоднородностью и в течение каждого гидрологического сезона характеризуется сочетанием вертикальной изотермии (одинаковой температуры) с горизонтальной неоднородностью температуры или горизонтальной изотермии с вертикальной неоднородностью. В начале каждого гидрологического сезона характерная для него термическая структура формируется сначала в прибрежной мелководной части водоёма, в

то время как структура предыдущего сезона ещё сохраняется в глубоководных районах.

В начале зимнего периода в мелких озёрах вода охлаждается почти до нуля. В крупных глубоких озёрах верхний слой воды также сильно охлаждается и только на глубинах в несколько десятков метров достигает 0,5 °C и у дна 2-3 °C. Таким образом для озёр умеренной климатической зоны с устойчивым ледоставом характерна обратная термическая стратификация (слоистость), при которой температура воды у поверхности ниже, чем у дна (кривая 1 на рис. 3.1).

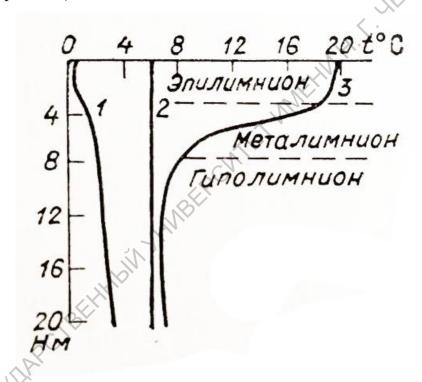


Рис. 3.1. Распределение температуры воды по глубине в оз. Сарочанском (Беларусь). 1)16/II 1968 г., 2) 30/X 1966 г., 3) 6/VII 1967 г.

Из-за малой теплопроводности льда и снега через них проникает в воду только ничтожная часть падающей солнечной радиации.

В крупных глубоких водоёмах в течение всей зимы происходит охлаждение водной массы и минимум температуры наступает перед весенним прогревом. Например, в Онежском озере за период с 1948 — 1967 г. средняя месячная температура воды убывала с 1,5 в январе до 0,6 °С в марте-апреле. Различия температуры по горизонтали на любой глубине обычно находится в

пределах точности измерений и практически зимой в озёрах наблюдается горизонтальная изотермия при вертикальной неоднородности температуры (обратной стратификации).

В течение зимы общий запас тепла водной массы и донных отложений в мелких озёрах также уменьшается. Однако тепло донных отложений частично поступает в воду, повышая её температуру, максимум которой наступает в конце зимы, перед началом весеннего нагревания. Например, в оз. Великом на Валдае зимой в 1962-63 г. температура воды возрастала от 2 (15/XI) до 3,1°C (15/IV).

В мелких водоёмах с большим водообменом часть поступающего от дна тепла уносится вытекающей рекой, запас тепла донных отложений и водной массы истощается быстрее. Подлёдный максимум температуры воды наблюдается вскоре после ледостава или в середине зимы, после чего температура понижается до начала весеннего подлёдного нагрева. Так, зимой 1960-61 г. в Горьковском водохранилище придонная температура воды (Н= 17,5 м) убывала с 1,5 (30/XII) до 0,1°C (11/III).

Весной, после стаивания снега, покрывающего лёд, солнечная радиация начинает интенсивнее проникать через лёд в воду и вызывает подлёдный нагрев воды.

В глубоких озёрах после вскрытия нагрев продолжается при обратной стратификации. При нагреве воды до 4 °C частички воды верхнего слоя погружаются, происходит свободная конвекция, которая вместе с ветровым перемешиванием приводит водную массу в каждой точке водоёма к гомотермии – одинаковой температуре воды по всей вертикали при различиях температуры по горизонтали между вертикалями (кривая 2 на рис. 3.1).

Во время нагрева при обратной температурной стратификации часто наблюдается дихотермия (минимум температуры на некоторой глубине), возникающая в штилевые дни при повышении температуры верхнего слоя воды и слабом перемешивания.

Мелкие водоемы при подлёдном подогреве воды тепловым потоком от дна и солнечной радиаций, проникающей через лед, к моменту вскрытия приходят в состояние гомотермии, а затем быстро переходят к прямой температурной стратификации (понижению температуры от поверхности до дна). Нагрев воды в прибрежных мелководных участках водоемов весной происходит быстрее, чем в открытых глубоководных районах, в связи с чем возникают различия температуры по акватории, которые в крупных озерах к концу периода весеннего нагревания достигает 10-20 °C. Например, 12-13/VII 1960 г. температура поверхности воды в северной глубокой части Ладожского озера была 3,8 °C, а в относительно мелководной южной 24,2 °C. Такие же различия бывают и в крупных водохранилищах. Так, 12/V 1961 г. в основном плесе Рыбинского водохранилища от поверхности до дна наблюдалась температура 2,2-2,3 °C, а в Моложском плесе – на поверхности 9,2, у дна 7,1 °C. Весьма значительны различия температуры по длине долинных поступлением В c водохранилищ СВЯЗИ вод питающей вышерасположенного водохранилища каскада. Так, в верхнюю часть Красноярского водохранилища 30/V-2/VI 1971 г. поступали воды Енисея, имеющие температуру 11,6 °C, в то врем как температура вод приплотинного участка была 3,6 °С.

В крупных глубоких озерах (Ладожское, Онежское) к концу весеннего периода воды прибрежных участков нагреваются до 8-10 °C и выше, в то время как температура вод открытой центральной часть остается ниже 4 °C. При таки различиях температуры в крупных пресных озерах и водохранилищах возникает термический бар (термобар). Это явление, впервые отмеченное Ф. Форелем, долгое время было забыто и вновь обнаружено и изучено А. И. Тихомировым на Ладожском и Онежском озерах в 1959-1976 гг. Оно заключается в том, что между прибрежными водами, нагретыми ниже 4 °C, располагается вертикальный или слабонаклонный слой с температурой 4 °C — термический бар (рис. 3.2 а). Благодаря наибольшей плотности вод этого слоя в нем несколько понижен уровень воды и происходит вертикальная

циркуляция. Термический бар изолирует прибрежные нагретые воды от холодных вод открытого озера и делит водоем на теплоактивную прибрежную область (ТАО), продолжающую быстро нагреваться, теплоинертную область (ТИО) открытой глубокой части водоема, долго сохраняющую температуру ниже 4 °C. Водообмен между ТАО и ТИО через термобар весьма затруднен. Это приводит к формированию в каждой из областей (ТИО и ТАО) своего гидрологического режима. В теплоактивной области аккумулируются в жидкий, твердый и ионный сток впадающих рек. Соответственно меняются физиико-химические свойства воды (прозрачность, цветность, содержание отдельных ионов, органических веществ, биогенов и др.) и интенсивно развиваются биологические процессы. Вода теплоинертной области консервативна, сохраняет свойства, сформировавшиеся в зимний период и в ней долгосохраняется гомотерия или слабо выраженная обратная стратификация. В теплоактивной области быстро образуется прямая

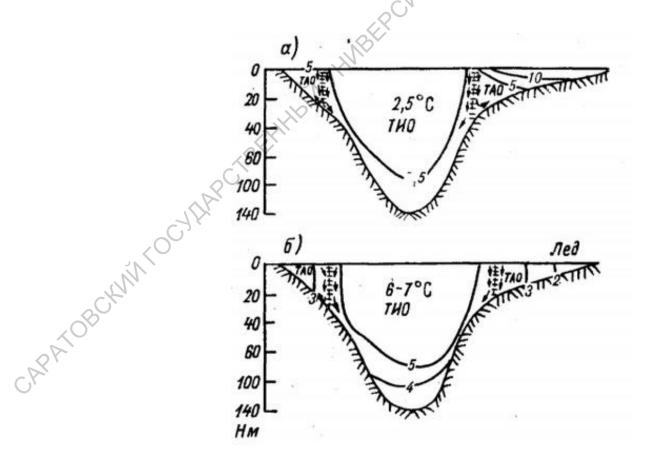


Рис. 3.2 Схемы термического бара (по А.И. Тихомирову) весной (а) и осенью (б)

стратификация и слой температурного скачка. Таким образом, возникают различия между этими областями и не только по температуре, но и по ряду других свойств и элементов режима (табл. 3.1), формируются свои водные массы. По мере нагрева вод теплоинертной области термобар продвигается к глубоководной части водоема, и при достижении температуры вод ТИО 4 °C ликвидируется, после чего в глубокой части крупных озер остается масса холодных вод (4-6 °C), расположенных в виде купола и перекрытых сверху теплыми водами.

Таблица 3.1 Гидрометеорологические условия в районе термобара Ладожское озеро 31/V 1960 г., по А.И. Тихомирову

Глубина	Температура, °С					Ветер,	Волнение,	Прозрачность,	
станции,	воды				воздуха	м/с	баллы	M	
M	0 м	2 м	5 м	15 м	35 м		•		
35	10,2	9,9	4,2	3,6	3,7	9,0	c-1,0	1	4,5-4,7
36	3,4	3,2	3,3	3,3	3,7	5,9	0	0	4,9-5,2

В водохранилищах образование термобара связано как с различием температуры вод мелководий и глубокой части. Так и с контактом водных масс впадающих рек. Последний факт играет основную роль в формировании термобара водохранилищах (например, Красноярское) термобар и в период нагрева, и в период охлаждения придвигается от верхней части к приплотинной. В крупных неглубоких водохранилищах озерного типа, таких, как Рыбинское. Термобар ограничивает центральный плес со стороны речных участков и подвигается к глубокой части как крупных озерах.

В термике водохранилищ и проточных озер значительную роль играет поступление ручных вод и их трансформация. Влияние речных вод сказывается на распределении температуры и запаса тепла в водоемах сильнее всего в периоды весеннего нагревания, осененного и зимнего охлаждения, а попуски из вышележащих водохранилищ – в периоды сработки.

Холодные воды притоков, поступающие в начале весеннего половодья в мелководные озера и водохранилища с большим водообменом, вытесняют из относительно теплые «зимние» воды и приводят к охлаждению этих водоемов. Во второй волне половодья более теплые воды притоков способствуют прогреву озерных вод, а в крупных водоемах обостряют различия температуры прибрежных и центральных водных масс. Например, в начале мая 1950 г. на вскрывшихся мелких плесах Рыбинского водохранилища температура достигала 9-10 °C, а у кромки льда в центральном плесе только 1,3-1,7 °C.

Продолжительность и интенсивность весеннего перемешивания чрезвычайно важны для развития жизни в водоемах, так как в этот период в глубинные слои обогащаются кислородом, происходит равномерное распределение биогенных элементов по водной толщине.

Гомотерия устанавливается обычно при температурах, близкие к 4 °C, но при продолжающемся ветровом перемешивании, может существовать и при более высокой температуре, а в сильно перемешиваемых неглубоких водоемах с большей акваторией или в водоемах с интенсивным водообменом даже все лето.

В период летнего нагревания энергия ветра оказывается недостаточно для полного перемешивания водоема и в нем образуются три вертикальные термические зоны (кривая 3 на рис. 3.1). Верхняя зона — эпилимнион — отличается высокой температурой, изменяющейся по глубине благодаря ветровому перемешиванию весьма незначительно. Для средней зоны — металимниона (термклина), или слоя температурного скачка — характерно резкое понижение (скачок) температуры с глубиной. Мощность метелимниона невелика по сравнению с двумя другими зонами (от нескольких децибелов до нескольких метров). Разность значения температуры на его верхней и нижней границах может достигать 20 °C и более, а вертикальный градиент температуры — 8-10 °C и более на 1м. Нижняя относительно холодная зона —

гиполимнион — отличается плавным и незначительным понижением температуры с глубиной.

В озерах со слабым перемешиванием эпилимнион, металимнион и гиполимнио не только отличаются друг от друга температурой, но и являются слоями воды, в которых резко различен химический, газовый и биологический режимы. Эпилимнион получает кислород из воздуха, и благодаря фотосинтезу в нем благоприятен световой режим развита жизнь.

Металимнион из-за значительных градиентов плотности является преградой для перемещения и переноса кислорода и гиполимнион, в связи с чем в последнем, особенно при наличии мощных донных отложений, богатых органическим веществом, происходит интенсивное преобладание кислорода и При штормовых ветрах и сильном волнении образуется его дефицит. значительной происходит перемешивание толщи воды, слой скачка небольших глубинах перемещается глубже, при тэжом совсем ликвидироваться. Летом в утренние часы при штилевой погоде нередко наблюдается мезотеримия – максимум температуры воды на некоторой глубине. Она образуется за счет конвекции, возникающей при охлаждении водоема в ночное время. В этот период года температура воды акватории выравнивается и различается на 2-3, и только при ветровых сгонах и нагонах у противоположных берегов различие может быть значительным. Так, температура поверхности воды в нагонном участке Онежского озера 4-10/VIII 1966 г. достигла 15,5-16,5 °C и слой скачка был резко выражен на глубинах 15-20 м, а на сгонном участке температура воды в крупных водохранилищах связано с рельефом дна и системой течения. На застойных мелководьях летом устанавливается прямая стратификация с термическими зонами, а на проточных участках затопленных русел – гомотерия и прямая стратификация с малыми различиями температуры поверхности и дна.

Моментом максимального нагрева водоемов заканчивается летний период и начинается осенний период охлаждения. В первую фазу этого

периода охлаждения идет при прямой стратификации. Тепловой баланс становится отрицательным. Запас тепла и температуры эпилимниона понижаются. Соответственно уменьшается разность плотности воды по вертикали и устойчивость. Часть тепла поступает при перемешивании в глубине слоя, повышая их температуру и запас тепла.

Осеннее охлаждение приводит в крупных озерах к горизонтальной неоднородности температуры воды. В их мелководных прибрежных районах понижается, устанавливается гомотермия, в то время как центральных глубоких районах сохраняется более высокая температура и прямая стратификация. Слой температурного скачка благодаря уменьшению устойчивости погружается на большие глубины. При такой неоднородности температуры возникает термичекий бар, но, в отличие от весеннего периода, температура в теплоактивной зоне ниже, чем в теплоинертной (рис. 3.2 б)

В мелководных сильно перемешиваемых озерах описанный выше процесс охлаждения проходит быстрее, с меньшими горизонтальными различиям температуры, гомотермия наступает раньше и продолжается при температурах ниже 4 °C.

При осеннем охлаждении крупных долинных водохранилищ вытеснение теплых вод идет поверх холодных глубинных вод гиполимниона приплотинной части до момента образования гомотерии.

Для суточного и внутригодового хода температуры воды на различных глубинах характерно убывание с глубинной амплитуды колебаний и запаздывание наступления экстремальных значений температуры. Амплитуда колебаний температуры воды Онежского озера в безледный период значительно в поверхностных слоях воды и невелика на глубине не более 40 м; максимум температуры наступает в поверхностном слое 1/VIII, на глубинах 10, 20, 30, 40 м соответственно 15/VIII, 15/IX, 1/X, 15/X.

В приплотинной части Братского водохранилища годовая амплитуда температуры в 1967 г. на глубине 0,5 м достигла 14,9 °C, на глубине 10 м - 8,7 °C, 50 м - 3,1 °C, 70 м - 2,2 °C. Максимум температуры наступил на глубине 10 и на 21 сутки позже, чем на глубине 0,5 м, 70 м - 80 суток позже.

Суточные колебания температуры поверхности воды достигают 5-6 и даже 10 °C (Рыбинское водохранилище), особенно при сгонах и нагонах. Они больше на мелководьях и меньше в глубоких районах.

3.4. Тепловой режим донных отложений

Теплопроводность и теплоемкость грунтов дна значительно меньше, чем у воды. Нагревание и охлаждение грунтов дна идет медленно, и наступление тех или иных фа теплового режима запаздывает по сравнению с водой.

В донных отложениях мелководных озер средних широт ЕТС прямая температурная стратификация наступает в конце мая. В теплоакивном слое донных отложений термические сезоны и экстремальные значения температуры наступают позже, чем в воде. Годовая амплитуда колебаний температуры грунта быстро убывает с глубиной (в оз. Великом в 1963-1964 гг. от 11,3 °C а глубине 0,5 м до 1,7 °C на глубине 5 м).

При осеннем охлаждении наступает мезотермия с максимумом на глубинах около 2 м, затем обратная стратификация, при которой в деятельном слое температура достигает 6-8 °C. Зимой запас тепла донных отложений превышает запасы тепла воды в весьма значительно (в Кубенском озере в 6-13 раз). Летом же в воде содержится в 2-2,5 раза больше тепла, чем в грунтах дна. Тепловой поток от дна повышает зимой придонные температуры воды мелководных водоемов до 4 °C и выше и приводит к возрастанию теплозапаса водной массы в течение зимы до предвесеннего максимума.

3.5. Расчета температуры воды

Для расчета температуры воды озеровидных водоемов разработаны различные методы, учитывающие характер водо- и теплообмена и морфометрические особенности котловин. Наиболее употребительны методы расчета: 1) ПО уравнению теплового баланс, 2) ПО уравнению теплопроводности, 3) по эмпирическим зависимостям.

Уравнение теплового баланса позволяет определить изменение теплозапаса ΔQ за расчетный период $\Delta \tau$ (тепловой бюджет)

$$\Delta Q = c\rho H(t_{\rm BK} - t_{\rm BH})/\Delta \tau \tag{3.10}$$

где с – теплоемкость; р – плотность воды; Н – средняя глубина водоема; $t_{\text{вн}}$ и $t_{\text{вк}}$ – средняя температура воды в начале и конце периода.

Для определения средней температуры поверхности $t_{\scriptscriptstyle \rm II}$ используется соотношение $\mu = t_{\rm B}/t_{\rm m}$, где $t_{\rm B}$ –средняя температура воды водоема. Значение $t_{\rm m}$ находится по прямолинейной зависимости $t_{пк}=2t_{п}-t_{пн}$. Тогда уравнение (3.10) примет вид:

$$\Delta Q = 2c\rho\mu H(t_{\rm II} - t_{\rm IIH})/\Delta\tau \quad (3.11)$$

 $\Delta Q = 2c\rho\mu H(t_{\Pi}-t_{\Pi H})/\Delta \tau$ (3.11) По формуле (3.11) находится t_{Π} , а значение t_{B} находится по коэффициенту ц.

Для упрощения расчетов составляющих баланса и коэффициента и используется ряд номограмм и таблиц. Расчет обычно ведется для условного водоема со средней глубиной 5 м при скорости ветра 4 м/с и глубине, стремящейся к нулю, с последующим пересчетом для реального водоема.

При расчете по уравнению теплопроводности вводится ряд допущений. Так, для состояния гомотермии принимается, что теплообмен через водную поверхность постоянен и нагрев или охлаждение происходит равномерно по всей глубине. Тогда уравнение примет вид:

$$c\rho\gamma_{\rm K}\partial t/\partial y = \sum Q/H$$
 (3.12)

где γ_{κ} - коэффициент конвективной теплопроводности.

Для неоднородного распределения температуры по вертикали применятся более сложное выражение, упрощаемое при введении ряда допущений.

В последние десятилетия находит применение также основанный на решении уравнение теплопроводности метод суперпозиций, разработанный А.И. Пеховичем и В.М. Жидких. Сущность этого метода заключается в разложении решаемой сложной термической задачи на несколько более простых с последующим алгебраическим суммированием результатов. Расчет ведется на основе решении дифференциального уравнения теплообмена в воде при различных краевых условиях. Уравнение для слабопроточных водоемов имеет вид

$$\partial t/\partial \tau = (\gamma/c\rho)\partial^2/\partial H^2$$
 (3.13)

Расчет весьма громоздкий, для его выполнения разработан ряд таблиц и номограмм.

Для расчетов рассмотренными выше методами необходимы детальные гидрометеорологические данные.

Эмпирические методы. При наличии данных термосъемок наблюдений на рейдовых вертикалях и гидрологических постах осреднение на температуры на дату или период расчета производится послойно по общим для всех вертикалей горизонтам. Для водоемов простой формы осреднение выполняется графически, путем построения кривой t=f(H) по точкам, нанесенные для соответствующих горизонтов всех вертикалей.

Для крупных глубоких водоемов со значительной неоднородностью распределения температуры воды по акватории и водной массе на плане водоема наносятся изотермы для каждого горизонта и находятся средние

взвешенные значения температуры на этих горизонтах, определенные по формуле:

$$t_{\Gamma} = \frac{f_1 t_1 + f_2 t_2 + \dots + f_n t_n}{f_0} \quad (3.14)$$

где $f_1,\ f_2,\ \dots,\ f_n$ – площади между изотермами; $t_1,\ t_2,\ \dots,\ t_n$, - среднее значения температуры воды между изотермами.

По средним значения температуры воды горизонтов стоится кривая t=f(H), средняя температура водной массы определяется делением площади между кривой и осями координат на глубину.

По данным детальных термосъемок и наблюдений за температурой на гидрологических постах выявляются зависимости между перечисленными выше значениями температуры (t_n , t_r , t_c , t_b , t_{bn}). Эти зависимости, выраженные в аналитической ли графической форме, в дальнейшем используются для расчетов и избавляют от необходимости производить частные трудоемкие термосъемки.

При наличии синхронных наблюдений на постах и вертикалях можно вывести уравнение связи t_n =f (t_{Bn}), где t_{Bn} – среднее значение температуры по данным одного или нескольких наиболее репрезентативных постов. Связи эти строятся для крупных озер и водохранилищ по участкам с различными глубинами. Уравнение имеет вид:

$$t_{\pi i}=a_it_{B\pi}+b_{i,}$$
 (3.15)

где $a_{i,}$ b_{i} - численные параметры, различные для разных периодов (месяцев) в разных районах водоема.

По данным А.И.Тихомирова, коэффициенты корреляции r связей $t_{\text{пі}}=f(t_{\text{вп}})$ для Онежского озера $(0.96-0.97)\pm(0.01-0.08)$.

Для всего озера t_{π} находится как средневзвешенное по значениям $t_{\pi i}$ для участков с разными глубинами.

Графические зависимости $t_{n=}f(t_{6})$ получены для водохранилищ Волжского и Днепропетровского каскадов. Для речных участков связи имеют вид прямой, для озерных участков-петлеобразный (рис. 3.3 а, б). Верхняя ветвь характеризует период нагрева $(t_{6}>t_{n})$, нижняя — период охлаждения $(t_{6}<t_{n})$.

По данным термосъемок находятся переходные коэффициенты от t_n к $t_{\bar t_s}$ t_c , t_s :

$$K_{\Gamma} = t_{\Gamma}/t_{\Pi}, Kc = t_{c}/t_{\Pi}, K_{B} = t_{B}/t_{\Pi},$$
 (3.16)

которые используются далее в расчетах.

Графические зависимости $t_B=f(t_n)$, построенные для ряда озер и водохранилищ (рис. 3.3 в, г), имеют для крупных водоемов петлеобразный вид — верхняя ветвь характеризует период нагрева $(t_n>t_B)$, нижняя — период охлаждения $(t_n< t_B)$.

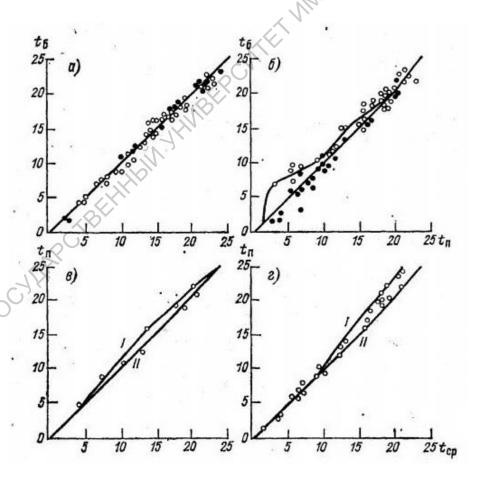


Рис. 3.3. Зависимости температуры поверхности воды в открытой части (t_n) и на гидрологических постах (t_6) и температуры водной массы (t_{cp}) и температуры поверхности воды (t_n) для верхневолжских водохранилищ.

а, в – Угличское, б, г – Рыбинское. I – период нагревания, II – период охлаждения.

3.6. Тепловое загрязнение

Для охлаждения различных агрегатов промышленных предприятий и особенно тепловых электростанций (ТЭС) требуется большое количество воды. Подогретые воды сбрасываются в водоемы-охладители, в качестве которых используются как специальные пруды, так и озера и водохранилища. Крупные ТЭС мощностью 2100-2400 МВт требуют для охлаждения своих агрегатов 70-90 м³/с воды и сбрасывают в водоемы-охладители тепловые потоки, соизмеримые со средними годовыми расходами воды таких рек, как Воронеж, Сейм, Сена. Для охлаждения агрегатов атомных станций требуется в среднем 1,5 раза больше воды, чем для ТЭС.

Поступление подогретых вод сказывается на условиях жизни водных организмов и продуктивности водоемов. Повышение температуры воды до 20-25 °C обычно оказывает положительное воздействие на рост и размножение водных организмов. При нагреве до 27-30 °C удлиняется вегетационный период и возрастает количество планктона. Повышение температуры до 30-33 °C на отдельных участках приводит к явлениям, аналогичным замору, дефициту кислорода у дна, образованию сероводорода и гибели гидробионтов, в том числе и рыб.

В связи с воздействием подогретых вод на режим водоемов и качество воды возникло понятие о тепловом загрязнении. Под зоной теплового загрязнения понимается часть водоема, в которой превышение наблюденной температуры $t_{\rm h}$ над естественной $t_{\rm e}$ более допустимой нормы.

В ряде стран ограничения по температуре в подогревании водоемов сводятся к установлению предельной температуры: в Англии, Франции, Германии - до 30 °C, в Голландии 32 °C, в Польше 26 °C. В России разрешается нагрев воды летом 3°C выше максимума естественной температуры, зимой – на 5 °C.

3.7. Тепловой режим соляных озер

Большинство минеральных (соляных) озер характеризуется резкими различиями плотности воды по вертикали, связанными с различной ее

минерализацией в поверхностных и глубинных слоях. Верхний слой, пополняемый атмосферными осадками и поверхностным стоком, распреснен, глубже залегает насыщенный солями раствор (рапа), имеющий значительно большую плотность. С такими различиями плотности воды связана большая устойчивость водной толщи, в результате которой ветровое перемешивание не затрагивает глубинные высокоминерализованных вод значительно ниже 0°С, и рапа многих соляных озер зимой имеет температуру -20 °С и ниже. Летом-изза слабого перемешивания и меньшей, чем у пресных вод, теплоемкости рапы она прогревается до 50-70 °С. Годовая амплитуда колебаний температуры таких озер очень велика и достигает 60-90 °С.

В некоторых минеральных озерах может наблюдаться в течение всего года только прямая или только обратная температурная стратификация в зависимости от того, какова температура наиболее минерализованных вод, попадающий в придонные слои. Так, в оз. Эльтон, по данным Г.А. Васильева, рапа на глубине более 4,5 м весь год имеет положительную температуру, среднее годовое значение которой около 10 °C.

С глубиной амплитуда температуры рапы быстро убывает. В оз. Эльтон годовая амплитуда колебаний температуры рапы убывает от 31°С на поверхности до 3,5 °С на глубине 12 м. Максимум температуры отмечен на поверхности в июле, на глубине 12 м в октябре-ноябре.

В глубоких высокоминерализованных озерах, расположенных в районах с холодной зимой, низкие (часто отрицательные) температуры придонных слоев рассолов сохраняются весь год. Это обусловлено сильным зимним выхолаживанием, сопровождающимся конвекцией, малой теплопроводностью рассолов, отсутствием перемешивания в теплый период. В некоторых таких озерах наблюдается явление «многолетней озерной мерзлоты» - отрицательные температуры придонных слоев рапы и смерзание донных отложений, сохраняющиеся из года в год. Примером таких водоемов может служить оз. Развал на Южном Урале глубиной более 20 м, спущенное в 1970 г., образовавшееся на месте затопленных копей Илецкого соляного

купола. Зимой оно не замерзало из-за высокой минерализации рапы; температура поверхностного слоя понижалась до -20 °C, летом же она достигала +38 °C, причем прогревался только верхний слой (3-4 м), ниже которого температура весь год оставалась отрицательной. Падение температуры в слое скачка было более 20 °C.

В мелких соляных озерах летом сильно нагреваются рапа и особенно донные отложения. Этому способствует меньшая теплоемкость соляных озер и тонкий слой опресненной воды, покрывающий сверху рапу и создающий парниковый эффект. Например, в оз. Тузулучном глубинами 0,2-0,3 м, расположенном в Илецком соляном куполе в 150 м от оз. Развал, летом температура поверхностного слоя рапы достигает 25-30 °C, придонного слоя 55-60 °C, а донных отложений под рапой 67 °C.

В зоне многолетней мерзлоты пресные озера являются аккумуляторами тепла и способствуют протаиванию мерзлого грунта. Соляные озера этой зоны, в глубинные слои которых при осенне-зимнем охлаждении опускаются воды с температурой -20 °C и ниже, являются «аккумуляторами холода». Температура у дна их весь год отрицательная, и слой мерзлого грунта под ними ближе к поверхности, чем под пресными водоемами.

3.8. Термические классификации озер

Рядом исследователей разработаны термические классификации озер, учитывающие распределение температуры в водной массе и особенности связанной с термикой циркуляции вод.

Швейцарский лимнолог Ф. А. Форель (1895 г.) подразделил озера мира на три термических типа: 1) полярные с температурой в течение всего года ниже 4°С, с преобладанием обратной стратификации и циркуляцией летом; 2) умеренные с температурой летом выше, а зимой ниже 4 °С, прямой стратификацией летом, обратной — зимой, циркуляцией при гомотермии весной и осенью; 3) тропические с температурой выше 4 °С в течение всего года, преобладанием прямой стратификации и циркуляцией зимой.

Классификация Фореля расширена и детализирована Иошимурой (1936 г.), дополнившим ее субтропическим и субполярным типами озер и охарактеризовавшим особенности циркуляции по сезонам в озерах различных типов.

Наиболее детальная термическая классификация озер мира разработана Хатчисоном и Лёфлером (1956 г.). В основу выделения типов озер положены особенности циркуляции, связанной с термикой.

Для большинства озер Мира характерна регулярная циркуляция, повторяющаяся один или несколько раз в году, которая в зависимости от различий плотности воды по вертикали может захватывать либо всю водную толщу, либо часть ее. Среди таких озер выделяются два основных типа: голомиктические с полной циркуляцией один или несколько раз в году и меромиктические, в которых из-за большой разности плотности воды по вертикали, связанной с различиями минерализации, циркуляция охватывает только верхний слой.

Голомиктические озера в свою очередь делятся на два подтипа: димиктические с двумя периодами циркуляции (весной и осенью) и устойчивой стратификацией летом и зимой, характерные для умеренной климатической зоны, и мономиктические с одним периодом циркуляции в районах с В тропическим или умеренно теплым климатом распространены теплые мономиктические озера, соответствующие тропическим озерам по Форелю, в полярных районах - холодные мономиктические озера, соответствующие полярным озерам.

В. Хомскисом (1969 г.) предложена термоглубинная классификация озер, разработанная на примере водоемов Литовской ССР. В качестве классификационного признака принята разность температуры придонного слоя воды летом и зимой: $\Delta t = t_{\pi} - t_{3}$. Это различие температуры зависит не только от глубины озера, но и от формы его котловины и связанного с ней ветрового перемешивания. Озера делятся на четыре группы: 1) термически

очень глубокие ($\Delta t \approx 0$ °C); 2) термически глубокие (0,5 °C< $\Delta t \leqslant 5$ °C); 3) среднеглубокие (5 °C< $\Delta t \leqslant 15$ °C); 4) мелкие ($\Delta t \approx 20$ °C).

Предложенный принцип может быть использован в классификации озер, но с соответствующими изменениями значений Δt для других географических районов.

А. И. Тихомировым (1970 г.) разработана термическая классификация пресных озер умеренной климатической зоны. В ее основу положены особенности годового цикла термического режима и в первую очередь летнего периода, для которого характерно формирование термических зон: эпилимниона, металимниона и гиполимниона. Соответственно пресные озера умеренной климатической зоны делятся на три класса: эпитермические, гипотермические и метатермические. Для каждого класса отмечаются особенности термического режима по гидрологичесим сезонам.

К эпитермическим относятся неглубокие (4-6 м) озера, вода которых в течение всего безледного периода находится в состоянии гомотермии или слабовыраженной прямой стратификации, т. е. представляет собой сплошной эпилимнион. Летом донные отложения аккумулируют большое количество тепла, за счет которого обеспечивается зимний подледный прогрев воды.

Класс гипотермических озер включает крупные глубокие водоемы, из которых наиболее типично Ладожское озеро. Весеннее нагревание и осеннее охлаждение в них длительны и сопровождаются явлением термобара. Летом хорошо выражены эпи-, мета- и гиполимнион; последний занимает преобладающую часть объема озера. Охлаждение воды происходит в течение всего зимнего периода, прогрева от дна нет.

Промежуточный класс составляют метатермические озера со средними глубинами 6-10 м, в которых летом существуют все вертикальные термические зоны, но металимнион кначалу осеннего охлаждения опускается в придонные слои. Осеннее охлаждение происходит преимущественно при гомотермии. Қак весной, так и осенью термобар существует непродолжительное время. Зимой

нагрев от дна не так интенсивен, как в эпитермических озерах, и весеннее нагревание идет в основном после вскрытия.

3.9. Ледовые явления

Процессы образования льда, замерзания, нарастания ледяного покрова, вскрытия на озеровидных водоемах, так же как и на реках, зависят в первую очередь от климата, метеорологических условий отдельных лет. Вместе с тем эти процессы на озерах и водохранилищах отличаются рядом специфических особенностей, связанных с теплозапасами водной массы, ветро-волновым режимом, морфометрическими особенностями котловин, а в соляных озерах – также с минерализацией воды.

Образование внутриводного льда происходит в водоемах только в слое воды, подверженном перемешиванию. Оно наиболее интенсивно в прибрежных волноприбойных районах.

На малых водоемах с незначительным теплозапасом к моменту ледостава и слабым перемешиванием замерзание обычно происходит одновременно по всей акватории и может завершиться в течение суток. На крупных глубоких озерах благодаря значительному запасу тепла, сложному строению котловин и интенсивному перемешиванию период от возникновения первых ледяных образований до сплошного ледостава может доходить до двух-трех месяцев, а в теплые зимы центральные районы многих из них (Ладожское, Телецкое озера и др.) не замерзают.

При интенсивном перемешивании во время осеннего охлаждения тенлоотдача происходит за счет теплозапаса всей водной массы, ледостав наступает поздно и зима отличается малым запасом тепла и низкой температурой воды. В штилевую осень теплоотдача идет только из поверхностного слоя воды, водоем замерзает быстро, подо льдом сохраняется значительный теплозапас и сравнительно высокая температура воды.

Озерный лед имеет слоистое строение. На поверхности воды лежит водный кристаллический наиболее прозрачный лед, на котором при выходе

воды по трещинам образуется из пропитанного водой снега мутно-белый малопрозрачный водно-снеговой лед (наслуз). При подтаивании и последующем смерзании лежащего на льду снега возникает снеговой лед.

При значительных теплозапаçах, сохранившихся подо льдом, н повышении температуры воздуха может произойти частичное или полное вскрытие озера. Осеннее вскрытие бывает и при взламывании образовавшегося ледяного покрова ветром. Такие вскрытия отмечены на оз. Ильмень при толщине льда 20 см, а на Байкале даже 30 см.

Замерзание водохранилищ может происходить с различной скоростью в зависимости от интенсивности теплоотдачи, колебаний уровня и динамики вод.

Ледяной покров водоемов подвергается термическим деформациям, связанным с изменениями плотности льда при колебаниях температуры, и динамическим, вызываемым действием ветра или колебаниями уровня воды. При резких изменениях температуры воздуха происходят разрывы ледяного покрова - трещины, которые часто возникают в одних и тех же районах водоема. На крупных озерах часто под воздействием ветра происходит разрыв льда с последующим перемещением льдин и надвигом их на берега или на сплошной лед. с понижением уровня связано оседание льда на дно мелководий и разрыв его (трещины) на их границах. Особенно значительно оседание льда на водохранилищах при зимней сработке.

Изменения толщины льда, обусловленные соотношением тепловых потоков через лед в атмосферу $Q_{\scriptscriptstyle \rm I}$ и из воды к нижней поверхности льда $Q_{\scriptscriptstyle \rm B}$

$$dh_{\pi}/dr = (Q_{\pi}-Q_{B})/(Lp_{\pi}) (3.17)$$

где h_{π} — толщина льда; L - удельная теплота льдообразования; p_{π} - плотность льда; τ — время нарастания льда;

$$Q_{\pi} = \lambda_{\pi} dt_{\pi} / (dh_{\pi}) (3.18)$$

$$Q_{B}=K_{B}dt_{B}/(dh_{B})$$
 (3.19)

где $t_{_{\rm I}}$ и $t_{_{\rm B}}$ - температура льда и воды; $h_{_{\rm J}}$ и $h_{_{\rm B}}$ -толщина льда и глубина воды; $\lambda_{_{\rm I}}$ - теплопроводность льда; $K_{_{\rm B}}$ - коэффициент турбулентной теплопроводности воды.

При $Q_{\scriptscriptstyle B} > Q_{\scriptscriptstyle B}$ происходит нарастание льда, при $Q_{\scriptscriptstyle B} > Q_{\scriptscriptstyle D}$ — таяние. Для начального периода нарастания льда при отсутствии снежного покрова толщина льда, образовавшегося за время τ , может быть рассчитана по формуле:

$$h_{\pi} = \sqrt{2\lambda_{\pi}t_{\pi}} \, \tau/(L_{\pi}p_{\pi}) \, (3.20)$$

или при подстановке значений постоянных величин

$$h_{\pi} = 3,56 \sqrt{3} \sum_{\tau} \tau = 0 t_{\pi} (3.21)$$

Температура поверхности льда $t_{\scriptscriptstyle \rm I}$ из-за недостатка данных обычно принимается равной температуре воздуха $t_{\scriptscriptstyle \rm cyr}$ и для расчета применяются формулы вида:

$$h_{\pi} = \varphi \left[\sum -t_{cp.cyr} \right]^{m} (3.22)$$

Значения коэффициентов ф и m получают по данным многолетних наблюдений за толщиной льда и температурой воздуха.

На основе полученных данных строятся графические связи:

$$h_{\pi} = f \left[\sum (-t) \right]$$

Толщина льда на озерах России колеблется от нескольких сантиметров в районах с неустойчивой и мягкой зимой до 1,5-2,0 м и больше в условиях сурового континентального климата.

Вскрытие водоемов происходит под воздействием термических факторов; солнечной радиации, в том числе и проникшей через лед, адвективного тепла воздушных масс, тепла, поступающего с талыми и дождевыми водами, и механических факторов — воздействия текучих вод и ветра. Количество тепла, необходимое для таяния снежно-ледяного покрова, выражается уравнением:

$$L_{\scriptscriptstyle I}(\rho_{\scriptscriptstyle I}h_{\scriptscriptstyle I}+\rho_ch_c)=\sum_{\sigma\tau}=R\pm LE\pm P+Q_{\scriptscriptstyle TB}(3.23)$$

где $Q_{\mbox{\tiny TB}}$ – теплообмен воды с воздухом; σ – теплоотдача снего-ледяного покрова.

Стаивание льда происходит как с верхней, так и с нижней поверхности. Слои стаивания льда $h_{\scriptscriptstyle B}$ и $h_{\scriptscriptstyle H}$ связаны с поступлением тепла на верхнюю $Q_{\scriptscriptstyle B}$ и нижнюю $Q_{\scriptscriptstyle H}$ поверхности:

$$h_{\text{B}} = Q_{\text{B}} / (L_{\pi} \rho_{\pi}); h_{\text{H}} = Q_{\text{H}} / (L_{\pi} \rho_{\pi}) (3.24)$$

На мелких озерах лед тает на месте, на крупных после образования закрайн ледяной покров под воздействием ветра разламывается, дрейфует и нередко нагромождается на берегах; часть льдин выносится в вытекающую реку.

Сроки наступления и продолжительность ледовых явлений на водохранилищах существенно отличаются от таковых на реках в тех же географических условиях. Осенний ледоход начинается позже, чем на реках (на Волжском каскаде на 4-7, на Камском на 10-14), но продолжительность его меньше. Только в каскадах благодаря попускам, особенно при суточном и регулировании, продолжительность периода недельном замерзания увеличивается до 30 сут и более. Ледостав устанавливается раньше, чем на свободных реках, на большинстве Волжских водохранилищ на 2-6 сут, на Камском – на 5-15 сут, на Иркутском — на 20-30 сут. Период вскрытия и очищения ото льда водохранилищ в различных географических условиях продолжается в среднем 10-40 сут. Наиболее длителен он на Братском (40 сут), Новосибирском (30 сут), Рыбинском (26 сут). Продолжительность периода ледостава увеличивается по сравнению с реками на 5-20 сут и более.

Толщина льда в среднем больше, чем на реках, на 10-15 %. В результате зимней сработки в осушной зоне, достигающей на ряде водохранилищ 20—35 % общей площади льда, осаждается значительная масса льда, достигающая, например, на Камском водохранилище 400 млн. м. Для водохранилищ характерны значительные различия в сроках и характере ледовых явлений на отдельных участках. Так, на Камском водохранилище

долинного типа сроки замерзания изменяются по длине от 2-5/XI в верховьях и заливах до 18-19/XI у плотины, вскрытия — от 28/IV до 7-8/V; на Рыбинском водохранилище озерного типа прибрежные участки замерзают 1-6/XI, центральная часть — 21-26/XI, вскрытие происходит соответственно в период от 15-20/IV до 5/V.

Ледовые явления на соляных озерах отличаются специфическими особенностями, связанными как с повышенной минерализацией, так и с ионным составом воды, различным в разных водоемах. Минеральные озера замерзают значительно позже пресных, а при высокой концентрации рассолов не замерзают совсем. Лед минеральных озер имеет различную соленость в зависимости от солености воды, состава солей и метеорологических условий периода замерзания. Под соленостью льда понимается соленость воды, образующейся при его таянии.

При медленном замерзании воды в условиях штиля и постепенного понижения температуры воздуха кристаллы льда имеют форму игл, ориентированных вертикально, рассол успевает стечь из льда в воду и соленость льда невелика. При быстром замерзании, связанном с резким понижением температуры или перемешиванием, кристаллы ориентированы беспорядочно, и значительная часть рассола остается во льду; лед имеет повышенную соленость. Так, например, лед, образовавшийся из морской воды при температуре воздуха –16°C, имел соленость 5,64 ‰ образовавшийся при –40 °C, имел соленость 10,2 ‰.

Различия температуры замерзания растворов разных солей вызывают изменения в солевом составе и минерализации как рассолов, заключенных во льду, так и воды подо льдом. Из морской воды и близких к ней растворов раньше всего выпадает (при температуре, близкой к температуре замерзания) карбонат кальция, затем при температуре ниже –8° С — сульфат натрия, а при температуре ниже –23 °С — хлориды. Этим вызвано вертикальное расслоение льда минеральных озер по ионному составу и минерализации. Қарбонаты и

сульфаты, выпадающие при сравнительно высокой температуре, концентрируются в верхнем слое льда и частью на его поверхности, раствор хлоридов стекает в нижние слои льда и частью в воду. При низкой температуре рассол на поверхности льда замерзает, превращаясь в криогидрат — смесь кристаллов льда и солей, который разрушаясь превращается в соляную пыль, легко выносимую ветром на значительные расстояния.

В результате стекания рассолов в воду и вытеснения части солей на поверхность льда в течение зимы лед распресняется. Так, например, соленость льда оз. Тальми уменьшилась с 3,82 % в середине декабря до 1,4 % в середине ET MEATINGER THE LINE OF THE POST THE CAPATOR CHARLES AND THE POST THE CAPATOR CHARLES AND THE POST THE CAPATOR CHARLES AND TH февраля. В результате стекания рассола изо льда увеличивается минерализация и плотность подледного слоя воды и возникает медленная зимняя циркуляция

ПРАКТИЧЕСКАЯ ЧАСТЬ

Практическая работа № 1

«Морфология русла и гидродинамические характеристики потока».

Понятия и определения.

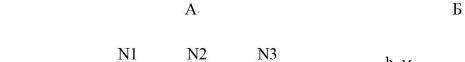
Морфологические особенности русла реки охарактеризованы с помощью плана или поперечного профиля. Поперечный **профиль реки** — это график изменения отметок дна и водной поверхности русла поперек Сечение реки вертикальной русла. плоскостью перпендикулярной направлению течения называется водным сечением *потока*. Часть площади водного сечения, где наблюдаются скорости течения, является *площадью живого сечения* (W, м²).

Ширина реки (В, м) – это кратчайшее расстояние между урезами воды на обоих берегах.

Средняя глубина (H_{cp}, м) – отношение площади живого сечения к ширине реки:

$$H_{cp}=W: B. \qquad (1)$$

Смоченный периметр (P, M) — длина линии дна между урезами воды на поперечном профиле речного русла. Для крупных рек $P \approx B$.


Гидравлический радиус (R, M) – отношение площади живого сечения к смоченному периметру:

$$R = W : P. \tag{2}$$

Распределение скоростей в живом сечении русла можно представить с помощью изотах и эпюр (рис. 1).

Изотахи — линии, соединяющие в живом сечении реки точки с одинаковыми скоростями воды, т.е. это линии равных скоростей.

Эпюры (годографы)— кривые изменения скоростей воды в реке по вертикали, изображенные на плоскости параллельной направлению течения.

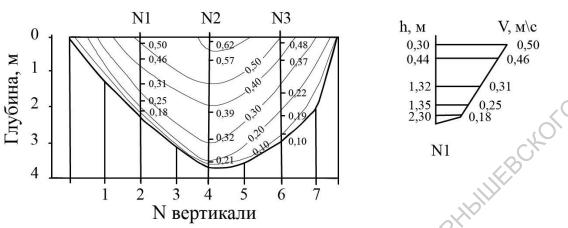


Рис. 1. Изотахи (А) и эпюры (Б) в живом сечении реки.

Динамическая ось потока (стрежень) – линия, соединяющая по длине потока (в плане) точки отдельных живых сечений с наибольшими скоростями.

Материалы и оборудование:

Миллиметровка (30 х 15 см);

Простой карандаш, ластик, линейка;

Калькулятор.

Задание 1.

По данным таблицы 1 построить профиль водного сечения реки, определить его площадь, ширину реки, смоченный периметр, гидравлический радиус, среднюю и максимальную глубины реки и провести изотахи.

Методические указания.

1. По данным о глубине промерных вертикалей и расстоянию от берега (колонки 2 и 3 таблицы 1) построить на миллиметровке профиль дна, получив, таким образом, водное сечение. Вертикальный и горизонтальный масштаб выбрать самостоятельно в соответствии с форматом миллиметровки и размахом значений в таблице 6. Точки дна соединить прямыми линиями.

Таблица 1 Ведомость измеренных скоростей течения в живом сечении р. Ока, пост №1, 27.07.1990.

№ промерной	Расстояние от левого	Глубина, (H, м)	Скоро		Вариант			
вертикали	берега, м		0,1Н (от поверх.)	0,2Н	0,6Н	0,8Н	0,1H (от дна)	CKOKO
Ур.л.б.	0	0,00				.02	PILL	Общ.
1	10	0,66			<	JE.		Общ.
2	20	0,78	0,48	0,45	0,43	0,42	0,35	A
3	30	0,90	0,51	0,49	0,46	0,43	0,28	Б
4	40	1,14	0,49	0,46	0,43	0,34	0,28	A
5	50	1,30	0,46	0,45	0,44	0,39	0,27	Б
6	60	1,50	0,47	0,46	0,43	0,39	0,31	A
7	70	1,96	0,51	0,51	0,45	0,42	0,38	Б
8	80	2,16	0,60	0,58	0,50	0,46	0,44	A
9	90	2,32	0,72	0,70	0,62	0,55	0,48	Б
10,00	100	2,00	0,69	0,67	0,59	0,48	0,42	A
(A)	110	1,44	0,64	0,62	0,57	0,48	0,41	Б
12	120	0,78						Общ.
Ур.п.б.	130	0,00						Общ.

2. Определить площадь каждой части водного сечения, заключенной между промерными вертикалями:

$$W_i = a(h_i + h_{i+1}) : 2,$$

- где а расстояние между промерными вертикалями; h_i и h_{i+1} глубина соседних промерных вертикалей.
 - 3. Определить общую площадь живого сечения реки:

$$\sum W = W_i + W_{i+1} + \ldots + W_n.$$

- 4. Определить смоченный периметр, измерив его на чертеже с помощью линейки и переведя в метры согласно выбранному горизонтальному масштабу.
 - 5. Используя формулу (2), рассчитать гидравлический радиус.
 - 6. Используя формулу (1), вычислить среднюю глубину реки.
- 7. Определить максимальную глубину по промерной ведомости (табл. 1).

Выделить на каждой промерной вертикали своего варианта точки, соответствующие 0,1H (от поверхности), 0,2H, 0,6H, 0,8H и 0,1 (от дна). Проставить возле них значения скорости течения (колонки 4-8).

Методом интерполяции провести изотахи через каждые 0,05 м/с, начиная с 0,30 м/с. Каждая изотаха должна плавно, не упираясь в дно, выходить на поверхность. В разрывах указать ее значение.

Задание 2.

По данным таблицы 1 построить эпюры на промерных вертикалях №2 и №10 (вариант A), №3 и №11 (вариант Б), сравнить их средние скорости и сделать вывод о влиянии на морфологию русла.

Методические указания.

- 1. При построении эпюр скоростей отложить в вертикальном направлении общую глубину промерной вертикали и отметить на ней точки измерения скоростей. Из этих точек в горизонтальном направлении в соответствии с самостоятельно выбранным масштабом отложить скорости течения, изображенные в виде отрезков. Концы отрезков соединить плавной линией (рис. 1, Б).
- 2. Для левой и правой эпюры рассчитать средние значения скорости, которые сравнить между собой.

3. На основании сравнения средних скоростей и конфигурации эпюр сделать заключение о причинах различной крутизны правого и левого склонов русла, положении фарватера, соотношении эрозионных и аккумулятивных процессов.

Практическая работа №2

MAREHINH. LIEPHIBILI «Построение кривых повторяемости и продолжительности уровней»

Статистическая обработка уровней воды.

Материалы и оборудование:

Миллиметровка (30 х 15 см);

Простой карандаш, ластик, линейка;

Калькулятор.

Годовые таблицы уровней воды для различных рек (по вариантам).

составить ведомость a) ДЛЯ построения повторяемости (частоты) и продолжительности (обеспеченности) уровней;

б) построить кривые повторяемости и продолжительности уровней.

Методические указания.

Рассчитать характерные уровни.

По данным наблюдений за уровнем воды, кроме построения годовых графиков колебания, комплексных графиков и связи соответственных уровней, производится статистическая обработка, основанная на методах математической статистики. К этому виду обработки относятся следующие методы: построение кривых повторяемости и продолжительности; расчеты характерных уровней.

а) кривые повторяемости (частоты) и продолжительности (обеспеченности) за выбранный период могут быть построены для любой изучаемой величины уровней, расходов воды и взвешенных наносов, инфильтрационного питания, осадков и пр.

Повторяемостью уровня (в данном случае) называется число случаев (дней или лет) появления уровня в пределах какого-либо заданного интервала. Повторяемость, выраженная в процентах от общей длительности рассматриваемого периода, называется частотой.

Продолжительностью стояния уровня называется число дней (или лет) в расчетном периоде, когда наблюдались уровни выше или равные данному уровню. Продолжительность, выраженная в % от всего расчетного периода, называется обеспеченностью уровня.

Для составления ведомости повторяемости и продолжительности стояние уровней вся амплитуда колебания в пределах рассматриваемого периода разбивается на некоторые интервалы (или градации), например, 10, 20, 30, 40, 50 см, а затем производится выборка числа дней в каждом интервале.

Таблица 1 р. Клязьма, г. Орехово-Зуево, 1979 г. Отметка нуля графика 112,39 м абс.

Число	I	II	 XI	XII
1	183	181	 155	174
• • •	•••	•••	 • • •	•••
30	178	-	 177	-
31	186	-	 -	179
Сред.	177	182	 156	175
Высш.	187	187	 179	181
Низш.	172	176	 129	165

Ведомость повторяемости (частоты) и продолжительности (обеспеченности) уровней р. Клязьма, г. Орехово-Зуево, 1979 г.

Интервалы							Повторя	емость	Продолжи	гельность
уровней							(част		(обеспече	енность)
над нулем	I	II	III	IV		XII				CH
графика,							дни	%	дни	%
СМ									Hell	
560-540	-	-	-	1		-	1	0,27	1	0,27
539-520	-	-	-	-	•••	-	-	- <	. 1	0,27
519-500	-	-	-	1	•••	-	1	0,27	2	0,54
			•••		•••				•••	
199-180	5	24	27	-	•••	<	68	18,63	109	29,86
179-160	26	4	-			31	114	31,24	223	61,10
159-140	-	-	-			?	141	38,63	364	99,73
139-120	-	-	-		W	•••	1	0,27	365	100
Итого	31	28	31	30		31				

Амплитуда колебания уровня р. Клязьмы у г. Орехово-Зуево (по табл. 2) 327 см. Всю амплитуду разбиваем на интервалы по 20 см, начиная со значения уровня 560 см и кончая 120 см. Число интервалов п приближенно можно рассчитать по соотношению $n \le 5 \lg N$, где N - число дней (или лет) наблюдений.

Из таблицы 2 выбирается помесячно число дней стояния уровня в пределах каждого интервала. Проще выборку числа дней производить за каждый месяц для всех интервалов (а не по отдельным интервалам за год в целом). Следует проверить строку «Итого», в которой при вертикальном суммировании должно получиться число дней в месяце.

Таблица 2

Повторяемость уровней за год для каждого интервала определяется суммированием числа случаев для каждого интервала за все месяцы.

Например, для интервала 179-160 см повторяемость равна 114 дням. Частота уровня (или относительная повторяемость) вычисляются в % по отношению к 365 дням.

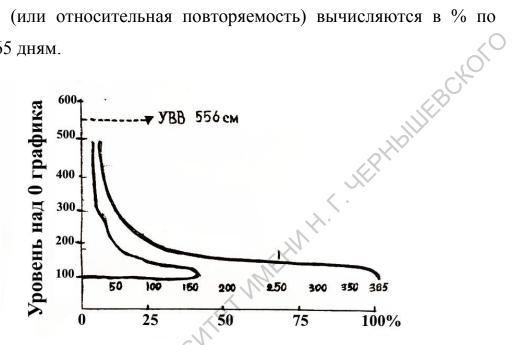


Рис. 1. Кривые повторяемости (частоты) (I) и продолжительности (обеспеченности) (II) уровня воды р. Клязьма, г. Орехово-Зуево, 1979 год.

Продолжительность стояния уровня в днях вычисляется как сумма повторяемости. Для интервала 560-540 повторяемость и обеспеченность равны одному дню, или 0,27%, для интервала 519-500 повторяемость 1 день, а продолжительность у уровня 139-120 см равна 365 дням, что соответствует обеспеченности 100 %.

б) Построение кривых повторяемости и продолжительности уровней на рис. 1 производится в днях по данным первой графы 1, 14 и 1, 16 табл. 2 и по данным граф 15 и 17. Повторяемость откладывается в середине интервала, продолжительность относится к концу интервала. Как видно из табл. 2 и рис. 1, кривая обеспеченности является интегральной по отношению к кривой частоты.

Рассмотрим практическое значение кривых на двух примерах. Можно определить значение уровня обеспеченностью 50 %, т.е. уровень, ниже которого в течение 183 дней (50 % от 365 дней) вода в реке Клязьме не опускалась. Значение такого уровня определяются по кривой, как это показано на рис. 1; уровень равен 168 см. Аналогично изложенному можно определить уровни с продолжительностью в днях: 30, 90, 180, 270, 365.

Можно определить сколько дней в году был обеспечен уровень, равный 250 см. Как показано на рис. 1, уровень воды на реке Клязьме у г. Орехово-Зуево не опускался ниже 250 см в течение 25 дней в году (или 7 %), т.е. высота уровня, равная 250 см и выше, наблюдалась в 7 % всех случаев. Если нужно определить обеспеченность уровня, 250 и меньше, то 100–7=93 %. Рассмотренный пример можно пояснить и следующим образом. Если при обеспеченности 7 % значение уровня H=250 см, а в 93 % случаях меньше. Следовательно, значение уровня 250 см как бы обеспечено на 7 %, отсюда и понятно название кривой обеспеченности.

характерных уровней ОНЖОМ произвести обеспеченности, также следует использовать ряд наблюдений, расположенный в убывающем порядке (одинаковые значения уровней в ряду повторяется столько раз, сколько они наблюдаются). В данном случае; т порядковый номер ряда, расположенного в убывающем порядке. Характерные определяемые статистическому ряду, уровни, ПО расположенному убывающем порядке, следующие: медианный, верхний нижний квадрильянные.

Место уровня в убывающем ряду заданной обеспеченности вычисляется по формуле: $m_P=1-P(n-1)/100$. По нижеприведенным формулам определяются порядковые номера членов ряда:

медианный — средний
$$m_{50}=1+50(n-1)/100$$
 (1)

верхний – квадрильянный
$$m_{25}=1+25(n-1)/100$$
 (2)

нижний — квадрильный
$$m_{75}=1+75(n-1)/100$$
 (3)

Годовые таблицы уровней воды для различных рек (по вариантам):

]	р. Дон	- пос.	Перв	омайс	кий				
			Вы	сота н	уля гр	афика	a 83,00	Ои БС	1			
Число	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII
1												
2	-	-	310	1040	322	258	255	237	228	243	240	262
3	-	-	314	1073	320	256	251	236	228	244	238	258
4	-	-	312	1080	318	252	249	234	230	246	239	256
5	-	-	314	1063	318	252	246	233	230	245	239	254
6	-	-	312	1029	317	252	246	232	228	244	238	252
7	-	-	306	970	312	250	246	233	229	242	238	251
8	-	-	304	928	308	249	246	233	229	240	238	252
9	-	-	302	887	303	250	246	236	228	240	238	252
10	-	-	300	843	296	249	246	236	228	242	238	250
11	-	-	296	804	292	250	250	235	231	243	238	248
12	-	-	294	756	291	250	254	234	234	242	238	242
13	-	-	297	711	288	247	252	232	236	242	239	234
14	-	-	296	670	286	246	252	232	238	242	240	230
15	-	-	294	626	284	244	254	232	240	242	239	204
16	ı	324	294	582	280	246	248	233	240	240	237	202
17	1	320	293	538	278	248	246	232	238	238	236	214
18	ı	316	292	495	276	248	244	231	238	236	236	220
19	ı	312	292	454	273	248	240	230	240	236	236	224
20	1	312	294	422	272	249	240	232	240	236	235	235
21	ı	310	294	398	272	250	241	232	238	233	236	252
22	ı	305	294	380	270	251	239	229	238	234	239	262
23	ı	304	298	366	268	263	238	228	242	235	242	258
24	ı	300	346	356	266	280	238	228	244	235	248	259
25	_	298	771	349	264	286	238	228	246	235	252	258
26	-0	297	1018	340	264	280	240	227	248	236	256	256
27	9	296	1250	330	263	272	240	226	247	238	257	253
28	-	296	1228	328	262	263	241	227	246	238	260	254
29	ı	3021	1134	325	260	265	240	228	242	238	260	253
30	-		1040	324	259	262	240	228	242	240	262	251
31	-		996	322	258	258	238	228	243	241	262	248

				р. Кум	a - c.]	Влади	мироі	зка				
				ысота								
Число	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII
1	427	412	584	605	534	503	610	472	466	460	440	468
2	428	418	587	600	538	495	609	466	466	459	442	450
3	418	453	596	590	536	492	609	466	466	457	442	447
4	415	488	602	586	528	495	617	455	468	454	432	448
5	410	505	604	591	524	503	626	468	468	455	444	448
6	410	502	601	606	520	518	634	428	466	456	454	452
7	415	488	588	612	512	526	640	422	466	448	446	449
8	422	479	582	604	510	531	642	434	463	440	442	447
9	424	485	542	581	514	538	641	444	460	444	446	448
10	420	475	546	568	514	536	640	441	462	452	403	446
11	416	474	538	558	505	534	638	444	463	461	440	446
12	414	472	534	548	502	530	634	457	464	462	444	442
13	410	474	546	539	502	520	635	458	458	458	458	444
14	401	474	539	539	496	510	632	462	460	455	450	438
15	400	474	541	536	492	508	623	468	458	456	444	440
16	399	470	548	531	498	510	603	468	452	451	446	441
17	401	470	548	530	498	513	584	471	457	450	444	440
18	398	470	553	528	498	508	568	472	462	450	445	442
19	400	470	552	526	512	500	556	480	464	450	450	440
20	400	464	548	524	526	508	546	483	467	448	451	440
21	402	480	560	522	544	538	544	476	465	446	446	442
22	406	506	562	524	558	575	536	474	464	446	453	442
23	406	528	550	524	560	592	533	470	460	446	452	442
24	408	554	547	530	549	598	526	468	454	448	449	442
25	407	505	554	529	538	601	522	458	466	414	446	442
26	411	510	538	528	531	602	510	454	466	438	448	442
27	447	541	536	524	527	606	496	454	462	447	450	427
28	446	572	535	524	522	608	499	455	458	447	450	446
29	438	590	533	519	519	610	486	454	458	452	452	446
30	422		561	521	516	610	480	470	460	434	460	446
31	412		591		508		479	468		440		443

				p. ,	Дон -	г. Зад	онск					
			Вы	сота ну	уля гр	афика	98,04	4 и БС				
Число	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII
1	120	128	144	319	108	76	56	52	54	72	71	76
2	122	129	146	310	105	75	59	52	52	71	72	78
3	122	129	145	323	100	72	64	54	54	72	72	80
4	122	129	145	294	98	74	64	56	57	73	70	79
5	123	129	146	232	94	78	65	54	57	7	72	80
6	123	129	146	175	92	94	66	53	54	372	70	76
7	123	130	146	172	88	87	66	54	55	72	71	74
8	123	130	146	291	89	78	70	52	56	70	65	74
9	123	130	144	342	87	76	70	52	58	69	74	75
10	124	126	142	314	82	72	68	52	58	68	77	74
11	124	130	144	276	84	71	74	52	57.	68	78	74
12	124	134	146	202	84	70	76	52	56	66	80	74
13	124	132	146	170	84	70	73	51	56	66	84	76
14	125	132	144	152	83	68	72	46	58	68	84	74
15	125	134	146	138	82	67	68	46	58	68	86	75
16	125	136	158	130	81	68,	66	51	58	70	87	74
17	125	134	180	114	81	70	62	51	58	72	80	74
18	125	136	260	113	78	68	60	50	60	76	77	74
19	126	136	394	107	78	64	60	50	62	77	76	36
20	126	136	479	106	80	62	58	52	62	76	80	68
21	126	136	501	106	78	60	54	54	63	78	80	100
22	126	138	501	106	75	59	58	50	62	78	80	116
23	126	138	500	105	76	60	61	48	62	77	80	114
24	127	140	509	104	75	60	57	54	63	78	80	111
25	127	138	522	102	74	60	56	53	63	82	80	114
26	127	139	507	99	73	61	56	50	63	79	80	114
27	127	143	450	96	74	59	57	52	64	78	78	116
28	127	144	374	99	76	56	56	52	67	76	74	120
29	128	144	314	104	79	60	54	49	68	74	72	127
30	128		311	107	77	58	54	53	72	74	80	132
31	128		311		75		55	58		70		138

			p. I	Тодкум	иок - с	т.ца Ј	Іысого	орская				
				сота ну								
Число	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII
1	10	18	25	43	62	64	128	34	36	27	21	23
2	10	11	24	53	60	68	154	36	35	22	20	20
3	8	6	12	47	59	62	145	36	34	24	18	20
4	10	6	16	44	58	83	120	36	41	28	22	22 (
5	13	4	17	46	64	78	124	36	39	37	22	22
6	10	3	20	42	59	76	133	43	36	34	22	22
7	10	11	16	40	56	72	104	38	32	28	18	22
8	10	11	15	40	54	67	95	36	32	28	20	20
9	9	12	113	44	54	58	90	50	30	26	20	20
10	10	9	113	46	52	59	88	42	30	27	20	20
11	3	12	85	46	48	70	82	40	32.	29	19	20
12	12	18	29	44	48	58	77	46	34	28	18	20
13	9	17	21	44	52	50	70	61	34	26	18	20
14	12	16	23	44	60	48	64	50	37	26	15	22
15	14	20	20	44	70	60	61	44	38	25	17	22
16	14	24	24	48	85	67	60	40	38	25	14	24
17	12	22	22	48	84	93	62	39	37	25	16	24
18	10	25	22	50	76	71	74	38	34	26	14	24
19	12	25	16	58	68	82	62	36	35	25	20	22
20	16	27	21	62	65	109	61	34	35	20	20	18
21	16	42	18	61	62	104	61	34	34	24	16	20
22	10	30	20	62	62	120	58	32	32	26	18	22
23	12	32	19	60	62	119	52	30	32	25	23	19
24	11	31	22	59	58	108	52	43	32	24	24	15
25	15	29	25	60	52	98	50	44	34	25	23	12
26	8	30	27	80	48	111	45	40	32	24	17	16
27	9	30	26	82	46	138	42	42	33	24	18	17
28	8	26	26	74	42	108	42	42	32	24	18	20
29	\mathcal{M}	28	26	66	40	96	39	44	30	20	21	18
30	21		30	61	40	98	36	42	28	22	20	21
31	29		34		59		34	38		20		22

			p. Eca	уловсь	сий Аі	ксай -	x. Bo	дянск	<u></u> ий			
			*	сота ну								
Число	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII
1	224	246	225	284	310	268	274	273	272	278	310	295
2	222	247	224	252	316	270	274	273	272	278	311	294
3	224	249	222	232	312	270	275	272	273	278	311	294
4	226	247	222	226	238	272	275	272	272	279	312	294
5	224	246	228	225	219	274	282	272	272	279	312	294
6	225	247	231	224	218	276	282	272	274	280	312	293
7	227	247	230	224	230	278	284	271	274	280	313	293
8	227	247	234	223	250	278	285	271	274	280	314	293
9	228	246	234	22	262	277	286	271	274	279	315	293
10	228	245	223	222	271	278	286	271	274	279	315	293
11	229	244	222	220	270	278	286	271	274	279	314	292
12	226	242	232	220	224	278	285	271	273	280	313	292
13	228	236	232	219	219	276	284	270	273	281	312	291
14	229	232	224	219	219	275	284	270	273	282	310	291
15	230	230	224	219	220	274	282	270	272	282	310	291
16	231	229	226	219	220	274	282	270	273	282	307	291
17	232	230	228	220	226	274	281	270	274	282	304	290
18	235	230	235	220	238	273	280	272	274	294	302	290
19	236	228	242	219	252	272	278	273	275	304	300	290
20	237	227	234	219	262	272	278	273	276	308	298	290
21	238	226	229	219	268	272	277	272	276	310	296	290
22	238	223	229	219	270	271	277	272	276	311	296	290
23	237	222	226	220	273	272	276	272	276	312	265	290
24	237	220	226	220	274	272	276	272	276	312	265	289
25	239	220	224	226	272	272	276	274	276	309	294	289
26	240	221	224	240	270	272	276	274	277	308	296	289
27	241	221	226	256	270	272	274	276	277	307	296	289
28	242	222	250	274	270	272	274	276	277	306	296	289
29	242	224	270	288	269	272	274	274	278	307	295	289
30	244		276	298	269	273	274	274	278	308	295	289
31	245		299		268		273	272		309		289

				p. Ma	артан	- c. Гр	ушев	oe				
			Вы	сота н	уля гр	афика	a 7,50	м усл.				
Число	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII
1	62	48	38	43	35	40	32	32	28	27	25	24
2	58	45	38	46	34	39	33	31	28	26	25	25
3	53	37	36	46	34	40	38	31	27	27	25	26
4	47	36	34	45	34	42	50	31	31	27	25	26
5	42	34	38	44	39	40	46	31	30	27	24	28
6	40	28	36	41	37	46	53	30	28	27	24	30
7	33	32	36	40	36	44	43	30	28	27	24	30
8	60	42	35	40	35	42	39	30	27	27	24	28
9	58	40	36	41	34	40	37	30	27	26	24	26
10	58	48	34	44	34	36	35	30	27	26	24	26
11	55	57	35	54	34	36	34	36	27.	26	24	27
12	58	54	32	57	33	35	36	38	28	26	24	24
13	53	53	30	49	33	34	40	34	28	26	24	24
14	65	52	34	46	33	33	36	32	28	26	24	25
15	68	51	34	44	38	32	35	32	33	25	24	24
16	66	50	36	43	42	32	34	31	41	25	24	31
17	49	50	36	43	51	32	33	29	40	25	24	32
18	34	52	34	42	63	32	33	29	30	25	26	28
19	33	52	32	42	48	31	32	30	29	25	26	26
20	42	50	33	42	45	39	44	30	28	25	29	26
21	53	56	34	41	42	43	50	29	28	28	26	26
22	42	50	35	40	42	40	42	28	28	27	25	26
23	40	44	34	41	67	36	39	28	28	26	25	25
24	38	43	34	42	51	34	38	33	28	26	24	25
25	36	41	36	40	45	32	36	33	27	25	24	24
26	33	42	38	40	42	34	34	34	27	25	24	25
27	34	40	42	38	40	38	34	35	27	25	24	27
28	34	40	44	38	38	35	34	32	27	25	24	27
29	41	40	46	36	38	34	33	30	27	25	24	24
30	60		46	36	38	33	32	30	27	25	24	36
31	55		46		47		32	29		25		30

				p.	Дон -	г. Да	НКОВ					
			Выс	сота ну	<i>'</i> '			8 м БО	7			
Число	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII
1	84	82	83	173	88	81	74	83	65	74	72	73
2	84	79	83	174	86	78	75	86	64	84	76	74
3	85	80	84	179	84	78	77	84	63	82	76	72
4	83	81	84	144	84	109	76	83	64	76	76	74
5	83	83	82	106	83	85	76	72	66	82	76	75
6	83	83	82	98	83	78	76	70	65	78	74	74
7	83	90	83	101	82	78	76	82	66	80	74	74
8	84	86	81	129	80	78	77	80	66	80	76	73
9	74	84	83	176	81	78	74	70	66	76	74	74
10	80	82	82	168	80	78	76	71	64	76	71	74
11	83	80	82	122	79	79	76	64	66	76	72	76
12	86	82	82	107	79	78	73	60	67	78	73	79
13	76	80	83	104	80	80	62	66	68	79	72	80
14	80	80	84	99	80	80	54	71	68	80	72	76
15	78	81	84	98	78	80	54	72	68	80	74	78
16	80	82	101	96	79	80	54	73	70	79	73	76
17	91	82	112	98	78	80	56	69	68	78	76	76
18	88	82	140	100	78	78	56	64	69	76	75	76
19	83	80	138	100	79	78	60	62	72	74	75	75
20	76	80	165	99	78	78	66	62	66	74	76	74
21	82	81	165	95	76	78	70	64	64	76	82	76
22	82	80	193	90	77	76	70	69	66	74	81	76
23	84	81	220	88	78	76	72	68	66	77	76	78
24	83	80	243	89	78	76	74	65	66	76	78	79
25	84	82	225	87	78	76	75	62	69	76	76	80
26	82	82	190	86	78	75	78	70	70	74	76	76
27	80_	84	140	86	78	76	78	66	68	74	74	76
28	84	80	117	88	80	78	82	66	78	73	69	76
29	82	82	116	88	82	78	80	64	80	73	72	76
30	80		113	88	82	77	79	64	76	78	72	76
31	82		155		82		80	61		75		79

				p. Kv	умылг	a - x.	Япско	 й				
			Вы	сота н					\ ,			
Число	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII
1	54	81	52	72	48	46	43	40	39	40	45	49
2	54	80	52	68	48	46	43	40	39	40	45	49
3	54	79	51	66	48	46	43	40	39	40	45	49
4	54	78	51	63	48	46	43	40	39	40	45	49
5	54	78	50	62	48	46	43	40	39	40	44	49
6	54	78	51	61	48	46	43	40	39	40	44	49
7	54	78	52	60	48	46	43	40	39	40	44	49
8	54	79	52	60	48	46	43	40	39	40	44	49
9	54	79	52	60	48	46	-	40	39	40	44	49
10	54	77	51	58	48	46	-	40	39	40	44	50
11	54	76	51	58	48	46	-	40	39.	40	44	50
12	61	70	51	56	47	46	-	40	39	40	44	49
13	69	70	51	54	47	45	-	39	39	40	45	49
14	68	66	53	54	47	45		39	40	40	46	50
15	70	66	58	52	47	45	-11	39	40	40	46	50
16	78	65	76	52	47	44	<u> </u>	39	40	40	46	50
17	78	68	78	51	47	44	_	39	40	40	46	50
18	78	68	87	50	47	44	-	39	40	46	47	50
19	77	65	116	49	47	43	41	39	39	46	47	50
20	77	65	113	49	47	43	41	39	39	46	47	50
21	76	64	110	49	47	43	41	39	39	46	47	51
22	76	62	108	49	47	43	41	39	39	46	48	51
23	76	61	106	48	47	43	41	39	39	46	48	51
24	75	58	98	48	46	43	41	39	39	46	48	51
25	75	ے 55	94	48	46	43	41	39	39	46	48	51
26	75	54	88	48	47	43	40	39	39	46	49	51
27	77_	5 3	83	48	47	43	40	39	39	45	49	51
28	78	53	82	48	47	43	40	39	40	45	49	51
29	78	53	75	48	47	43	40	39	40	45	49	51
30	82		74		46		40	39	40	45	49	51
31	83				46		40	39		45		51

				р.Чир)- СТ-П	а Обл	кавска	——— ìя				
			Вы	сота н					l ,			
Число	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII
1	195	209	214	228	196	182	184	180	176	183	185	191
2	196	210	214	225	196	182	184	180	176	183	185	190
3	196	210	214	222	196	182	184	181	176	184	185	189
4	196	210	214	220	196	182	183	181	178	184	185	189
5	196	210	214	213	196	182	182	180	178	184	185	189
6	196	210	214	212	194	182	182	180	178	184	185	189
7	198	210	214	210	194	182	181	180	178	184	185	189
8	198	210	214	212	194	182	181	179	177	184	186	189
9	199	210	214	211	192	182	181	178	177	184	188	189
10	201	211	214	209	192	181	182	178	177	184	191	189
11	202	211	214	206	191	182	181	178	177	184	191	189
12	202	212	214	204	191	182	180	177	177	184	191	189
13	202	212	214	203	191	184	179	177	178	184	191	189
14	202	212	214	201	190	206	180	177	178	184	191	189
15	204	213	214	201	189	200	180	176	178	185	191	189
16	204	213	214	200	188	190	180	176	179	185	191	189
17	204	213	214	199	188	187	182	176	180	185	192	189
18	204	213	218	199	188	186	180	176	180	185	192	189
19	204	213	220	199	187	185	180	176	180	186	192	189
20	204	213	221	199	187	183	180	176	180	186	192	189
21	204	213	219	199	187	182	180	176	180	186	192	188
22	204	213	216	199	186	182	180	176	180	186	192	188
23	206	214	222	198	185	182	180	176	180	186	192	188
24	206	214	274	196	184	182	180	175	181	186	192	188
25	208	214	298	195	184	182	180	175	181	185	192	188
26	208	214	294	195	184	182	180	175	181	185	192	188
27	208	214	281	195	184	182	180	175	181	185	192	188
28	208	214	266	195	183	182	180	175	181	185	192	188
29	208	214	260	195	183	184	180	175	181	185	192	188
30	208		240	195	183	184	180	176	181	185	191	188
31	209		233		182		180	176		185		188

				р. Д	[он -п	т Епі	ифань					
			Выс	ота ну	1			3 м БС	7			
Число	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII
1	116	128	113	150	119	108	106	97	96	111	112	105
2	116	129	112	168	118	108	107	97	96	115	113	102
3	116	128	113	133	116	108	107	96	96	116	110	102
4	121	123	113	128	108	113	107	96	96	114	108	104
5	125	122	112	122	107	111	108	96	96	113	106	103
6	124	122	111	122	109	113	109	96	96	114	106	103
7	118	124	111	123	109	112	109	98	96	123	106	103
8	118	122	113	128	107	112	108	98	99	126	105	103
9	117	122	113	140	108	112	108	98	107	131	106	101
10	116	123	113	140	108	112	108	98	106	116	108	102
11	115	121	112	135	107	100	107	97	106	115	113	102
12	113	119	111	131	107	97	107	96	103	115	112	107
13	114	118	114	121	108	100	106	94	104	116	113	111
14	121	116	112	122	108	102	106	93	106	117	114	112
15	120	116	112	115	108	102	106	94	106	118	113	112
16	119	116	121	114	108	103	105	96	106	118	113	111
17	119	116	132	113	108	104	105	96	106	113	111	110
18	117	116	240	113	106	106	103	95	107	112	112	108
19	118	116	174	113	106	108	100	95	106	114	114	106
20	120	115	158	116	106	108	99	94	105	116	114	106
21	119	114	168	115	105	106	100	93	105	118	113	106
22	121	112	184	113	107	106	101	93	104	116	114	108
23	119	111	2170	113	106	105	100	92	104	115	115	110
24	118	111	244o	112	105	105	100	92	105	116	113	109
25	123	112	204	110	106	105	99	92	106	116	111	109
26	128	112	162	112	107	105	99	95	107	116	110	108
27	129	111	140	119	107	105	99	95	108	113	108	106
28	128	116	143	121	106	105	99	96	109	111	105	106
29	128	116	144	120	106	105	98	97	112	111	104	106
30	126		153		106	105	98	96	110	113	104	109
31	127		145		108		98	95		110		108

				p. ,	Дон -	г. Ден	НКОВ					
			Выс	ота ну.	ля гра	фика	123,1	8 м БС	7			
Число	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII
1	7	78	77	428	84	76	74	79	80	85	79	90
2	79	80	76	479	84	74	73	78	78	82	80	90
3	78	81	76	491	84	74	75	79	80	82	78	89
4	76	81	76	408	83	74	74	78	78	82	80	88
5	78	80	78	332	84	74	78	79	80	90	80	88
6	82	80	77	269	84	73	76	78	80	90	78	89
7	83	83	78	217	82	74	77	79	80	90	80	86
8	84	82	76	170	86	74	78	80	83	90	82	87
9	80	84	77	158	85	72	76	79	80	86	84	87
10	80	82	76	149	84	72	73	78	80	82	84	88
11	79	78	78	135	83	74	73	80	79.	83	81	84
12	78	82	78	134	85	72	74	79	80	84	81	84
13	78	80	76	130	86	73	73	79	81	84	85	82
14	81	82	78	123	84	72	79	80	79	84	84	84
15	80	77	77	112	85	72	78	79	78	83	82	85
16	78	76	78	108	82	72	79	81	78	76	80	87
17	78	78	78	106	82	72	78	78	80	80	82	84
18	80	76	78	100	80	72	77	79	82	79	81	83
19	78	76	78	98	78	72	82	78	78	82	82	83
20	78	77	78	94	74	74	79	80	79	81	82	85
21	78	76	78	95	76	72	79	80	81	78	84	86
22	78	77	78	89	76	72	79	80	80	78	82	86
23	78	78	84o	83	77	72	80	78	78	79	80	84
24	77	78	420	83	78	71	80	79	78	78	82	83
25	100	76	417o	86	79	72	78	80	78	80	86	84
26	152	77	345	80	78	72	79	80	77	80	90	82
27	168	77	318	83	76	72	78	80	76	82	84	84
28	138	78	248	82	74	73	78	80	78	81	88	85
29	83		291	82	72	72	78	82	77	80	87	85
30	79		316	82	74	73	80	80	77	82	90	83
31	78		364		74		79	78		82		85

			р. Бva	 лук - х	. Боль	ьшой .	Лукъя	НОВСК	 ий			
				сота ну								
Число	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII
1	151	171	178	219	141	130	130	127	122	125	128	130
2	151	171	177	208	142	130	130	126	122	124	128	130
3	151	171	176	204	142	130	130	126	122	124	129	129
4	148	172	176	204	142	131	130	125	122	124	128	129
5	150	172	176	202	142	132	130	124	123	124	128	129
6	150	172	176	196	140	132	130	123	122	124	128	129
7	150	172	176	191	139	131	130	123	122	124	129	129
8	152	172	175	188	137	131	130	122	122	125	129	129
9	153	172	174	186	134	130	129	122	123	126	128	129
10	153	172	174	182	132	130	128	122	123	126	128	129
11	153	172	175	178	132	132	128	122	123	126	129	129
12	154	172	175	168	132	132	128	122	123	128	129	129
13	153	172	175	162	131	132	128	122	123	128	129	129
14	154	172	176	162	131	132	127	122	124	127	129	129
15	154	172	180	160	131	132	127	122	124	127	129	129
16	155	176	189	159	131	132	127	122	124	128	129	129
17	156	174	189	156	131	131	127	122	124	128	129	129
18	158	175	186	154	131	131	127	122	124	128	129	129
19	158	178	180	150	130	131	127	122	124	128	129	132
20	158	178	178	148	130	132	127	122	124	128	129	135
21	159	177	180	146	130	132	127	122	124	128	129	138
22	161	176	183	146	129	131	128	122	124	128	130	132
23	161	176	186	145	129	130	128	122	124	128	130	132
24	164	176	177	144	130	130	128	122	124	128	129	132
25	168	176	172o	143	130	130	127	121	124	128	130	130
26	169	175	171	142	130	129	127	122	125	128	130	130
27	170	177	178	142	130	129	127	122	124	128	130	128
28	170	178	204	142	130	129	127	122	125	128	130	128
29	170	178	228	142	130	129	127	122	126	127	130	134
30	170		234	141	130	130	127	122	125	128	130	144
31	171		229		130		127	122		128		133

				р. Ило	ВЛЯ - С	<u>.</u> Гвар	 одейсн	кое				
			Вы	сота ну	/ля гр	афик	138,44	н БС	,			
Число	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII
1	350	345	346	380п	357	344	339	338	335	336	339	345
2	350	345	346	386	356	344	339	338	335	336	339	345
3	350	345	346	382	357	344	340	338	335	336	339	345
4	350	344	346	380	357	343	340	339	335	336	340	345
5	350	344	346	382	356	344	339	340	335	337	339	345
6	350	345	346	370	356	343	339	338	336	338	339	345
7	350	344	346	365	354	343	338	338	336	338	340	345
8	348	344	346	364	352	344	338	338	336	336	340	345
9	348	344	346	366	348	343	338	338	336	336	340	345
10	348	344	346	366	348	343	339	338	336	339	340	345
11	348	344	346	365	348	342	339	338	336	340	340	345
12	348	344	346	366	348	342	338	338	336	338	340	345
13	348	344	346	366	348	342	338	338	336	340	341	345
14	350	344	247	362	348	342	338	338	336	341	341	345
15	349	345	359	361	347	341	338	338	336	341	342	345
16	348	344	369	360	346	340	338	338	336	340	344	345
17	348	344	403	361	346	340	338	337	336	340	344	345
18	348	344	411	360	346	340	338	337	336	339	345	345
19	347	344	427	360	346	340	339	333	336	339	345	345
20	347	344	389	359	346	340	339	335	336	339	344	344
21	346	344	388	359	346	340	338	336	336	340	344	344
22	347	343	406	358	346	340	338	335	336	340	344	343
23	347	343	421	358	346	340	338	336	336	340	344	342
24	346	343	403	357	346	339	338	335	336	339	345	342
25	346	343	390	356	346	339	338	335	336	339	345	343
26	345	344	384	356	346	340	338	335	336	340	348	344
27	345	345	378	357	346	339	338	335	336	339	352	344
28	346	346	370	356	345	339	338	335	336	339	353	343
29	346	346	372	358	345	339	338	335	336	339	348	343
30	346		381	357	344	339	338	335	336	339	346	343
31	345		380		344		338	335		339		343

Практическая работа № 3

«Построение гидрографа и его генетический анализ»

Материалы и оборудование: миллиметровка (20 х 20 см); простой карандаш, ластик, линейка; калькулятор.

Понятия и определения.

Для характеристики режима стока рек строится гидрограф — график изменения расходов воды (Q, м³/с) во времени Q = f(t). Это графическое изображение колебаний среднесуточных или среднедекадных расходов воды в течение года или в различные сезоны года. При этом водоносность реки определяется ее питанием. Выделяют снеговое, дождевое, грунтовое и ледниковоепитание. На основании различных соотношений разных видов питания строится классификация рек М.И. Львовича. Если один из видов питания дает более 80% годового стока, говорят об исключительном значении данного вида питания. Если на его долю приходится от 50 до 80% - этому виду придается преимущественное значение. Если же ни один вид питания не дает более 50% стока, такое питание называют смешанным. Для ледникового питания диапазоны градаций (50 и 80 %) снижены до 50 и 25 %.

Задание 1. По данным таблицы 1 построить гидрограф р. Сулы (вариант А), р. Сосновки (вариант Б), расчленить его по видам питания, определить величину снегового, дождевого и грунтового питания и преимущественный тип питания.

Методические указания.

1. По данным таблицы 1 и в соответствии с масштабами построить на миллиметровке график изменения расходов в течение года. На оси ординат отложить значения расхода, на оси абсцисс – месяцы, разделенные на декады.

Среднедекадные расходы (Q, м 3 /c) и температура воздуха (t, 0 C) р. Сула у с. Варва в 1982 г. (A) и р. Сосновка у с. Васильевка в 1983 г. (Б)

Дата	A		Б		Дата	A		Б	
	Q	t	Q	t		Q	t	Q	t
5.01	45	0	7	-6	5.07	20	+8	27	+8
15.01	46	-2	8	-5	15.07	15	+9	6	+8
25.01	30	-5	6	-7	25.07	20	+9	5	+10
5.02	18	-2	7	-6	5.08	35	+9	4	+12
15.02	15	0	7	-5	15.08	20	+8	3	+12
25.02	15	0	8	-5	25.08	40	+10	3	+10
5.03	195	+6	8	-3	5.09	60	+9	3	+9
15.03	150	+3	9	-1	15.09	40	+8	5	+7
25.03	165	+5	20	+4,8	25.09	30	+6	4	+4
5.04	100	+4	35	+6	5.10	35	+2	4	+2
15.04	70	+3	24	+4	15.10	37	+2	7	+1
25.04	100	+8	27	+4	25.10	30	+1	8	0
5.05	70	+7	14	+5	5.11	25	0	16	0
15.05	50	+7	8	+6	15.11	27	-1	5	-2
25.05	30	+6	8	+6	25.11	40	-2	10	-3
25.05 5.06 15.06 25.06	25	+6	10	+8	5.12	32	-3	8	-4
15.06	42	+7	8	+6	15.12	25	-6	7	-4
25.06	20	+8	8	+6	25.12	15	-6	6	-5

Вариант А. Ледостав до 1.03. и с 1.12, ледоход до 10.03, забереги с 1.11. Вариант Б. Ледостав до 25.03. и с 25.11, ледоход до 10.04, забереги с 1.11.

Таблица 1

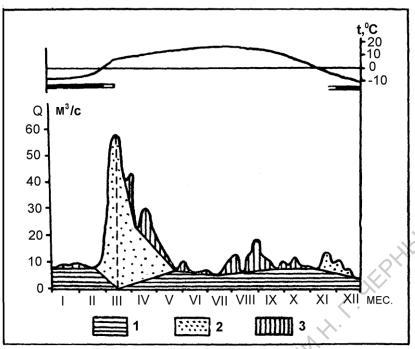


Рис. 1. Гидрограф реки с весенним половодьем

1 – грунтовое питание, 2 – снеговое питание, 3 – дождевое питание

Над графиком изменения расходов построить график ледовых явлений (данные ниже таблицы 1). Периоды ледостава обозначить заштрихованной линией толщиной 3 мм, ледохода — незаштрихованной, заберегов — вертикальной штриховкой.

Над графиком ледовых явлений вычертить график температурных изменений в течение года.

Расчленить полученный гидрограф на снеговое, дождевое и грунтовое питание. Для этого найти на графике самый высокий пик расхода, приходящийся на снеговое питание (определяется по смене отрицательных температур положительными). Считается, что в этот период грунтовое питание равно 0 (рис. 1). Ближе к лету его доля увеличивается, а количество снеговых вод уменьшается, и к концу мая они иссякают. Поэтому справа и слева от точки с нулевым питанием грунтовых вод провести отрезки к ближайшим впадинам (участки кривой, где падение расхода сменяется его увеличением) на гидрографе. Все пики расходов (кроме самого большого)

срезать отрезками, соединяющими соседние впадины кривой. Область графика, расположенная ниже срезающих отрезков, относится к грунтовому питанию. Срезанные пики, находящиеся в диапазоне положительных температур имеют дождевое питание. Остальная часть графика — снеговые воды. Участки графика с различным питанием заштриховать согласно условным знакам легенды.

Подсчитать количество см², приходящихся на каждый вид питания. Для удобства полученные результаты занести в таблицу 2.

Таблица 2 Расчет объемов разного вида питания реки

Питание	Площадь	«Цена»	Объ	ьем питания
	B CM ²	1 см ²		
		RCN	M ³	%
Снеговое	IN YHMB.			
Дождевое	O.E.HHIDIV			
Грунтовое				
Годовой об	ъем стока		Σ	100

Определить «цену» 1 см² в единицах объема (м³). Для этого 1 см вертикального масштаба (например, 10 м³/с) надо умножить на 1 см горизонтального (например, 2 декады, т.е. 20 сут): 1 см² = 10 м³/с · 20 сут · $86400 \text{ c} = 17,28 \cdot 10^6 \text{ m}^3$.

Перемножив данные колонок 2 и 3 таблицы 8, рассчитать объемы стока снегового, дождевого и грунтового питания.

Используя классификацию М.И. Львовича, проанализировать процентное соотношение разных видов питания и определить преимущественный тип питания.

Практическая работа № 4 «Термический режим озер»

Задание 1.

Построить изоплеты температуры воды наблюдениям на озере Байкал. В качестве примера приведен порядок построения изоплет температуры по данным на рейдовой вертикали, оз. Свентес — х. Спидолес 1964 г.

Дано:

- 1. Данные наблюдений за температурой воды на озере Свентес х. Спидолес (табл. 1).
 - 2. Данные наблюдений за температурой на озере Байкал (табл. 2-6) Требуется:
 - 1. Построить вспомогательные температурные графики.
 - 2. Построить изоплеты температуры воды по данным таблиц.

Методические указания

1. Изоплетами температуры (термоизоплетами) называются линии равных температур во времени по глубине, проведенные по данным измерений на одной вертикали за какой- либо период времени. За период времени можно выбрать год или отдельный летний или зимний период. В данном упражнении построение производится за период с января по ноябрь 1964 г.

Таблица 1 Данные температурных наблюдений на оз. Свентес у х. Спидолес за 1964 г. на рейдовой вертикали, азимут 210° .

Горизонт	10/I	20/I		20/V	31/V		20/VII	31/VII		20/XI	3O/ XI
измерения, м											40
0,1	0,6	0,4		10,1	17,2		21,7	21,0		5,4	2,6
3,0	1,5	1,7		9,7	16,1		21,5	20,9		4,3	2,5
6,0	1,7	1,9		9,6	11,2		20,0	20,8		4,3	2,5
9,0	2,1	2,3		9,0	10,2		12,7	12,9		4,3	2,5
10,0	-	-	•••	-	-		-	- 3	(,	-	-
11,0	-	-		-	-		-	- < ·		-	-
12,0	2,3	2,6	•••	8,2	9,1		9,5	9,6		4,3	2,5
13,0	-	-		-	-		-	-		-	-
14,0	-	-		-	-	\	Vis	-		-	-
15,0	-	-		6,0	7,7		7,9	7,5		4,2	2,5
17,0	-	-		-	- C//	•••	7,3	-		-	-
17,3	2,6	2,7		-	(-)		-	-			
17,4	-	-		-1///	-		-	-		-	-
17,5	-	-	Vij.	5,2	6,6		-	-		4,3	2,5
17,6	-	- 📈	<u> </u>	-	-		-	-		-	-
17,7	-	\$\langle \(\)		-	-		-	6,8		-	-
Глубина	17,8	17,8		18,0	17,8		18,2	18,2		18,0	18,0
вертикали, м	Pi										
Часы	12-	12-		12-	12-		12-47	12-42		12-30	12-38
наблюдений	30	20		38	52						

Озеро Свентес относится к глубоководным водоемам с максимальными глубинами порядка 20 м. На берегу озера расположен водомерный пост у х. Спидолес.

В открытой части озера температурные наблюдения проводятся на рейдовой вертикали. Вертикаль расположена на юго- запад от водпоста. Местоположение рейдовой вертикали определяется створными знаками или буем.

Наблюдения на рейдовой вертикали производились 10, 20, 30 (или 31-го) числа каждого месяца на постоянных горизонтах на глубине; время наблюдений около 13 ч. Колебание уровня озера за год в пределах 98-58 см, таким образом и глубина рейдовой вертикали изменялась в пределах 17,8-18,2 м.

Проведение изоплет температуры воды требует построения вспомогательных графиков: а) графиков распределения температуры воды по глубине для 10, 20, 30-го числа каждого месяца, б) хронологических графиков температуры воды у поверхности и у дна рейдовой вертикали.

Рассмотрим построение этих графиков.

а. Вычерчиваются графики распределения температуры воды по глубине. Таких графиков за 1964 г. по данным наблюдений необходимо построить 31. В данном пособии ограничимся построением только двух, а именно за 10 и 20 апреля 1964 г. (рис. 1). Использование этих графиков будет пояснено ниже.

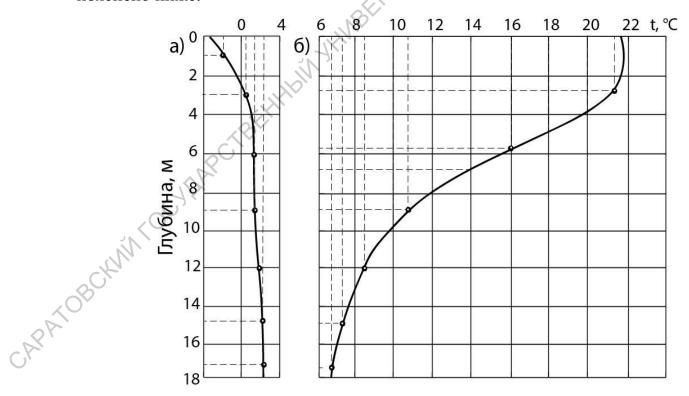


Рис.1. Графики распределения температуры на рейдовой вертикали оз. Свентес – х. Спидолес 10/V (а) и 20/VI (б) 1964 г.

- б. На рис. 2 а по оси абсцисс указаны месяцы с делением на декады. На оси ординат приведен масштаб температуры; кроме того, на этом же чертеже строятся хронологические графики температуры воды у поверхности и у дна за весь период наблюдений.
- 2. Построение термоизоплет производится следующим образом (рис. 2 б); в выбранных масштабах по оси ординат откладываются глубины, масштаб времени совпадает с масштабом для хронологических графиков на рис. 2 а.

Если годовая амплитуда колебания уровня составляет примерно 1-2 % глубины вертикали, то эту глубину можно считать постоянной. В данном примере верхний предел 2 % от 18,2 м составит 0,36 м, амплитуда колебания уровня за 1964 г. составила 0,40 м, следовательно, глубину вертикали можно считать постоянной.

Сечение изотерм в летний период принимаем через 2°C, в зимний период через 1°C.

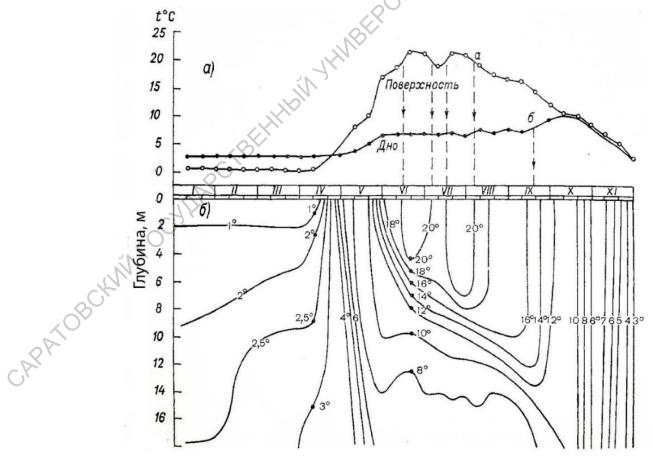


Рис. 2. Изоплеты температуры воды на рейдовой вертикали оз. Свентес у х.Спидолес за 1964.

Рассмотрим нанесение точек температур на примере рис. 1. Находим точку значения 1°С и пунктирной линией определяем положение температуры по глубине, которое получилось равным 1 м.

Аналогично найдено положение температуры 10/IV -2; 2,5 и 3 °C, а также за 20/VI температуры 20, 18,16, 14, 12, 10, 8°C.

Положение заданной температуры по глубине на вертикалях на рис. 1 показано стрелками.

Расстояния, полученные по рис. 1, переносятся на рис. 2. Для 10 и 20 июня значения температуры выписаны по вертикали. Соединяя полученные точки, проводим термоизоплеты за весь период.

Выход изоплет к поверхности и дну согласуется с графиками распределения температуры (рис. 2 а). Например, местоположение изоплеты 20°С определяется пунктирными линиями, опущенными из точек а графика распределения температуры у поверхности. Положение изоплеты 8°С в сентябре определено пунктиром из точки графика распределения донной температуры.

Полученное распределение термоизоплет дает наглядное представление о ходе температуры озера по глубине за год. Температура оз. Свентес в зимний период, как видно из характера термоизоплет, имеет очень плавный ход, равномерно уменьшаясь от 10 до 3°С, причем температура сохраняется постоянной по все толще воды. С января по март наблюдается обратная стратификация с небольшим вертикальным градиентом. С конца апреля до начала мая температура в озере выравнивается, увеличиваясь до 8°С, и со второй половины мая устанавливается прямая стратификация с явно выраженным слоем температурного скачка.

По изоплетам можно определить границы распространения по глубине и по времени любых температур, что может иметь большое значение при изучении флоры и фауны водоема и решении других практических задач.

Применяя метод интерполяции, по термоизоплетам можно определить температуру на заданной глубине в любой день года. При решении

практических задач масштабы должны быть выбраны с расчетом обеспечения необходимой точности расчета.

Таблица 2 Маритуй, 1909–1916 гг., Средняя глубина в месте наблюдений около 1000 м

Глубина,	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII
M											(C)	J'
0,5	0,1	0,1	0,2	0,4	3,4	3,8	9,8	13,6	8,9	7,3	4,3	2,1
5	0,2	0,3	0,3	0,6	3,1	3,5	6,6	12,2	8,5	7,2	4,3	2,3
10	0,2	0,3	0,3	0,6	3	3,3	5,1	10,3	8,1	7	4,2	2,5
20	0,5	0,5	0,4	0,6	2,9	3,3	4,1	9	8	6,8	4,2	2,6
30	1	0,9	0,9	0,7	2,8	3,1	3,9	7,9	6,9	6,8	4,2	2,6
50	1,1	1,4	1,3	1,5	2,9	2,8	3,6	5,4	6,4	6,4	4,2	3
100	3,4	2,8	2,9	2,7	3,2	3,3	3,6	4,1	4,4	5	4	3,2
150	3,2	3,4	3,3	3,3	3,4	3,4	3,6	3,8	3,9	4,6	4	3,3
200	3,5	3,5	3,5	3,5	3,4	3,5	3,6	3,7	3,8	4,2	4	3,4
300	3,6	3,6	3,6	3,6	3,5	3,5	3,6	3,7	3,8	3,7	3,8	3,5

Таблица 3 Песчаная бухта, 1911–1916 гг., средняя глубина в месте наблюдений около $270~\mathrm{M}$

Глубина,	I,	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII
M	CT X											
0,5	0,1	0,3	0,6	1,3	2	3,3	7,1	13	10,9	7	4	2,1
5	0,1	0,4	0,7	1,3	2,1	3,3	6	12,5	9,8	7	4,2	2,2
10	0,2	0,4	0,8	1,4	2,1	3	5,4	11,6	9,5	7	4,2	2,3
20	0,5	0,5	0,8	1,4	2	3	5,4	8,6	8,4	6,9	4,2	2,5
35	0,8	1	0,9	_	2,1	-	4,3	5,3	6,8	6,7	4,2	2,9
50	1,3	1,7	1,3	1,6	2,2	3,2	4,2	4,9	5,3	6,6	4,2	2,9
100	2,4	2,8	2,9	2,9	2,5	3,2	4	4,2	4,2	5,1	4,2	3,3
150	2,8	3,4	3,4	3,5	3,1	3,2	3,8	4	4	4,1	3,9	3,4
200	3,5	3,5	3,6	3,6	3,4	3,4	3,8	3,9	3,9	3,9	3,8	3,5

Таблица 4 Б. Ушканий остров, 1911–1916 гг., средняя глубина в месте наблюдений около 250 м

Глубина,	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII
M												
0,5	0	0	0,1	0,3	0,9	3,4	6,3	10,9	9,7	5,7	2,7	0,6
5	0	0	0,1	0,5	1	2,6	4,7	9,8	9,2	5,4	3,1	0,7
10	0	0	0,2	0,5	1	2,5	4,3	7,9	8,4	5,3	3,2	0,8
20	0,1	0,1	0,2	0,5	1	2,5	4	5,8	6,6	5	3,3	0,9
35	0,1	0,1	0,2	0,5	1	2,5	3,9	4,4	5	4,8	3,3	1,2
50	1	0,7	0,7	0,9	1,2	2,5	3,8	4,2	4,4	4,5	3,5	1,8
100	2,9	2,9	2,8	2,9	2,9	2,9	3,8	4	4,1	4,1	3,8	3,1
150	3,3	3,4	3,4	3,4	3,3	3,3	3,7	3,9	4	4	3,8	3,5
200	3,4	3,4	3,4	3,5	3,4	3,3	3,7	3,8	3,9	4	3,8	3,5

Таблица 5 Танхой, 1940—1949 гг., средняя глубина в месте наблюдений около 450 м

Глубина,	I	II	III	IVX	V	VI	VII	VIII	IX	X	XI	XII
M				W,								
0	0,1	0,1	0,1	0,4	1,6	4,5	10,6	15,1	11,8	8,1	4,9	1,7
5	0,2	0,2	0,2	0,4	1,6	4,0	9,5	14,2	11,5	7,9	4,9	1,9
10	0,3	0,4	0,4	0,5	1,6	3,7	8,0	12,4	11,0	7,6	4,9	2,1
25	0,6	0,7	0,7	0,8	1,7	3,5	5,8	8,6	10,0	7,1	4,8	2,3
50	1,7	1,6	1,5	1,6	2,1	3,3	4,4	5,5	6,2	5,9	4,6	2,9
75	2,4	2,2	2,2	2,5	2, 6	3,4	4,2	4,4	5,1	5,4	4,5	3,3
100	3,0	2,9	3,0	3,0	3	3,4	4	3,9	4,2	4,7	4,3	3,5
125	3,3	3,4	3,4	3,5	3,5	3,5	3,8	3,8	3,9	4,2	4,1	3,6
150	3,4	3,6	3,6	3,6	3,6	3,5	3,7	3,7	3,8	3,9	4,0	3,7
200	3,6	3,6	3,6	3,6	3,6	3,6	3,6	3,6	3,7	3,7	3,8	3,7
250	3,6	3,6	3,6	3,6	3,6	3,6	3,6	3,6	3,6	3,6	3,7	3,7
300	3,6	3,6	3,6	3,6	3,6	3,6	3,5	3,5	3,6	3,6	3,7	3,7

Таблица 6 Листвянка, 1940—1941 и 1945—1960 гг., средняя глубина в месте наблюдений около 1000 м

Глубина,	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII
M												
0	0,5	0,2	0,3	0,5	1,7	3,3	7,2	12,5	10,7	7,4	4,9	2,6
5	0,6	0,3	0,4	0,8	1,7	3,3	6,1	11,3	10,2	7,4	5,0	2,7
10	0,7	0,4	0,5	0,9	1,7	3,2	5,7	9,9	10,2	7,2	4,8	2,7
25	1	0,6	0,7	1,0	1,8	3,2	4,8	8,0	8, 6	7,0	4,9	2,9
50	1,7	1,3	1,3	1,4	1,9	3,3	4,4	5,6	6,5	6,6	4,8	3,2
75	2,4	2,1	2,2	2,3	2,7	_	4,4	4,3	4,8	6,1	_	_
100	2,8	2,7	2,7	2,8	2,7	3,3	3,9	4,1	4,5	5,3	4,5	3,4
125	3,2	3,3	3,3	3,4	2,8	3,4	3,9	3,9	4,1	_	_	_
150	3,4	3,5	3,5	3,5	3,3	3,4	3,6	3,9	3,8	4,1	4,3	3,4
200	3,4	3,5	3,6	3,6	3,6	3,5	3,7	3,8	3,8	3,9	4,1	3,6
250	3,5	3,6	3,6	3,6	3,5	3,5	3,7	3,6	3,7	3,8	4,1	_
300	3,5	3,5	3,5	3,6	3,5	3,5	3,6	3,6	3,7	3,7	3,8	3,5

Список гидрологических объектов.

Европа

Озера: Балатон, Баскунчак, Белое, Воже, Эльтон, Женевское, Ильмень, Имандра, Ладожское, Онежское, Селигер, Чудское с Псковским.

Водохранилища: Выгозерское, Верхне-Свирское, Волховское, Киевское, Кременчугское, Цымлянское, Камское, Волгоградское, Саратовское, Куйбышевское, Горьковское, Рыбинское.

Реки: Печора – правый приток Уса; Северная Двина (образована от слияния рек Сухоны, Юг, Вычегды); Неман – правый приток Вилия; Висла – правый приток Буг; Дунай – правые притоки: Драва, Сава, Морава, левые притоки: Тиса, Сирет, Прут; Днепр – правые притоки: Березина, Припять, Тетерев, Ингулец, левые притоки: Сож, Десна, Псел, Ворксла;

Дон – правый приток Северный Донец, левые притоки: Воронеж, Хопер, Медведица, Маныч;

Волга – правые притоки: Ока с Москвой и Клязьмой, Сура, левые притоки: Кама с Вяткой и Белой; Онега, Свирь, Нева, Волхов, Нарва, Западная Двина, Одер, Эльба, Рейн, Темза, Сена, Луара, По, Днестр, Южный Буг, Гвадалквивир, Кубань, Терек, Урал.

Каналы: Беломорско-Балтийский (Онежская губа — Выгозеро — Онежское озеро — р. Свирь); Волго-Донской им. В.И.Ленина; Волго-Балтийский водный путь (р.Шексна — Белое озеро — р.Ковжа — р.Вытегда — Онежское озеро — р.Свирь — Ладожское озеро — р.Нева).

Азия

Озера: Алаколь, Аральское, Байкал, Балхаш, Иссык-Куль, Каспийское, Севан, Таймыр, Телецкое, Ханка, Мертвое море (оз.).

Реки: Тигр, Ефрат, Инд, Ганг, Брахмапутра, Меконг, Янцзы, Хуанхэ, Анадырь, Колыма, Индигирка, Яна, Или, Чу, Сырдарья, Амударья; Амур – правые притоки: Уссури, Сунгари, левые притоки: Зея, Бурея; Лена – правые

притоки: Витим, Олекма, Алдан, левый приток Вилюй; Енисей – правые притоки: Ангара, Подкаменная Тунгуска, Нижняя Тунгуска; Обь – правые притоки: Томь, Чулым, левые притоки: Иртыш с Ишимом и Тоболом.

Водохранилища: Братское, Красноярское, Иркутское, Новосибирское, PHPIIIEBCKOLO Вилюйское

Каналы: Каракумский, Большой Ферганский, Суэцкий.

Африка

Озера: Чад, Виктория, Ньяса, Танганьика.

Реки: Сенегал, Нигер, Оранжевая, Лимпопо, Замбези; Конго – правый приток Убанги, левый приток Касан; Нил – правый приток Голубой Нил.

Австралия

Реки: Муррей – правый приток Дарлинг.

Озера: Эйр, Герднер.

Северная Америка

Реки: Маккензи, Юкон, Колумбия, Колорадо, Святого Лаврентия, Миссисипи – правые притоки Арканзас, Миссури, левый приток Огайо.

Озера: Большое Медвежье, Большое Невольничье, Атабаска, Виннипег, Большое Соленое, Никарагуа, Верхнее, Мичиган, Гурон, Эри, Онтарио.

Каналы: Панамский.

Южная Америка

Реки: Ориноко, Сан-Франсиску, Амазонка – правый приток Мадейра, левый приток Риу-Негру, Парана – правый приток Парагвай, левый приток Уругвай.

Озера: Титикака, Маракайбо.

Список литературы.

- 1. Богословский Б.Б., Самохин А.А., Иванов К.Е., Соколов Д.П. Общая гидрология (гидрология суши). Л.: Гидрометиздат, 1984. 422 с.
- 2. Лучшева А.А. Практическая гидрология. Л.: Гидрометиздат, 1976. 440 с.
- CAPATOBORNINTOCYTLARCTBEHHAM NHABERCARE LANGUAGE CARRATOROCYTLARCTBEHHAM NHABERCARE CARRATOROCYTLARCTBEHH 3. Соломенцев Н.А., Львов А.М., Симиренко С.Л., Чекмарев В.А.

Червяков Максим Юрьевич Нейштадт Яков Андреевич

левич
Андреевич
Гидрология сущи.
е для студентов, стакладная гит Учебно-методическое пособие для студентов, обучающихся по направлению ATY ARTHUR PORTURE TRANSPORTED TO STREET TO STREET THE PROPERTY OF THE PROPERT 05.03.05 Прикладная гидрометеорология

Издается в электронном виде в авторской редакции

- © Червяков М.Ю., Нейштадт Я.А., 2018
- © Саратовский государственный университет, 2018