Федеральное государственное бюджетное образовательное учреждение высшего образования «Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского»

Борисова Л.В.

JOPK WINE HAND а заданий по геометрии Сборник вариантов заданий для проведения контрольной работы

Саратов

2018

Задания к контрольной работе по геометрии

- 1. Дан треугольник АВС. Сделать рисунок. Найти:
 - а) Уравнения сторон;
 - b) Уравнения высот;
 - с) Уравнения медиан;
 - d) Длины сторон;
 - е) Длины высот;
 - f) Длины медиан;
 - g) Углы треугольника;
 - .F. JEPHBIJEBCKOFO h) Площадь треугольника (через векторное произведение).
- 2. Написать уравнение прямой l, удовлетворяющей условию. Сделать рисунок, сделать подробное описание решения.
- 3. Найти точку пересечения прямых l и d и расстояние от этой точки до прямой р. Сделать рисунок, сделать подробное описание решения.
- 4. Написать каноническое уравнение и начертить следующую кривую.
- 5. Упростить уравнения линий. Определить вид кривой, начертить кривую. Указать преобразование системы координат.
- 6. Написать уравнение геометрического места точек, отношение расстояний каждой из которых от точки F и от плоскости р равно г. Построить поверхность.
- 7. Индивидуальное задание для каждого варианта.

$$N$$
 $\underline{0}$ 1 A (3,−1); B (2;2); C (−1;3);

$$N_{2} 2 ||(2x+2y-1=0); A(1;1) \in l$$

No3
$$l: y = 2x - 5$$
; $d: y = x - 2$; $p: y = 3 - x$

 $N_{\underline{0}4}$

- а) Гиперболу с эксцентриситетом 3 и вершиной в точке A(2;0) b) Эллипс с директрисой x=4 и вершиной x=4 и вершиной в точке A(2;0)

$$N_{2}5 \ 2x^2 - 10x + y^2 + 8y = 0$$

$$N_{2}6 F(0;0;6); p:z=18; r=1.$$

№7 Показать, что прямые

$$\frac{x+3}{1} = \frac{y+1}{2} = \frac{z+1}{1}$$
 и $\begin{cases} x = 3z - 4 \\ y = z + 2 \end{cases}$ пересекаются, найти точку пересечения.

Вариант 2

$$N_{2}1$$
 A(-3,1); B(2;-4); C(-1;-3);

No1
$$A(-3,1)$$
; $B(2;-4)$; $C(-1;-3)$;
No2 $l|(x+3y-2=0)$; $A(1;3)∈ l$

No3
$$l: y = 2x+1; d: y = x+3; p: y = 3x-1$$

 $N_{0}4$

- а) Гиперболу с фокусом в точке F(2;0) и директрисой x=1
- b) Эллипс с эксцентриситетом $\frac{1}{2}$ и фокусом в точке F(3,0).

$$\mathbf{N} \mathbf{95} \ 2x^2 + 3y^2 + 4x - 12y = 0$$

№6 F(0;4;0);
$$p: y = -4$$
; $r = 1$.

№7 Написать уравнение плоскости проходящей через ось Ох и составляющей угол 60° с плоскостью y = x

$$N_{2}1$$
 A(-2;1); B(4;-5); C(2;-1);

$$N_{2} 2 ||(2x - y - 1 = 0); A(2;1) \in l$$

№3
$$l: y = x - 2$$
; $d: y = 4x + 1$; $p: y = 2x + 1$

<u>№</u>4

- а) Гиперболу с эксцентриситетом 3 и директрисой x = 1
- b) Эллипс с директрисой x = 4 и вершиной в точке A(1,0).

$$N_{2}5 -3x^2 - 24x - 8y^2 + 32y = 0$$

No6 F(0;0;5);
$$p:z=-5$$
; $r=1$.

№7 Написать уравнение плоскости проходящей через прямую $\frac{x-1}{1} = \frac{y+1}{2} = \frac{z+2}{2}$ и перпендикулярной к плоскости 2x+3y-z=4

Вариант 4

No 1
$$A(2;1)$$
; $B(5;-3)$; $C(-4;3)$;

No2
$$l \| (3x - 2y + 1 = 0); A(1;1) \in l$$

No3 *l*:
$$y = 3x + 1$$
; *d*: $y = 2x - 1$; *p*: $y = x - 3$

№4

- а) Гиперболу с фокусом в точке F(1;0) и асимптотой y = 3x
- b) Эллипс с эксцентриситетом 1/3 и директрисой x = 2

$$\mathbf{N} \underline{\circ} 5 - 4x^2 - 7y^2 - 24x + 28y = 0$$

No6 F(2;0;0);
$$p: x = 4$$
; $r = \frac{1}{\sqrt{2}}$.

№7 Найти проекцию точки (1;2;8) на прямую $\frac{x-1}{2} = \frac{y}{-1} = z$.

$$N_{\underline{0}}1$$
 $A(2;-6)$; $B(-1;1)$; $C(4;-2)$;

$$N_2 l \| (x+2y-1=0); A(1;2) \in l$$

N
$$_{2}$$
3 *l*: *y* = 4*x* − 2; *d*: *y* = 3*x* + 2; *p*: *y* = *x* + 1

№4

- а) Гиперболу с вершиной в точке A(3;0) и эксцентриситетом 2;
- b) Эллипс с директрисой x = 3 и фокусом в точке F(1;0)

$$N_{2}5 \ 3x^{2} - 6x + 7y^{2} + 14y = 0$$

$$N_{2}6 F(0;0;6); p:z=18; r=1.$$

№7 Написать уравнение плоскости, проходящей через параллельные прямые $\frac{x-1}{1} = \frac{y+1}{-2} = \frac{z-2}{3}$ и $\frac{x}{1} = \frac{y+1}{-2} = \frac{z-1}{3}$.

Вариант 6

No 1
$$A(-3;3)$$
; $B(1;-1)$; $C(5;-2)$;

No2
$$l \| (x - y + 2 = 0); A(1;1) \in l$$

No3
$$l: y = 3x + 2$$
; $d: y = 2x + 1$; $p: y = 1 - x$

№4

- а) Гиперболу с вершиной в точке A(3;0) и директрисой x=1
- b) Эллипс с фокусом в точке F(2;0) и эксцентриситетом 1/3.

$$N_{2}5 - x^2 - 2x - 2y^2 + 6y = 0$$

No6 F(0;8;0);
$$p: y = 4$$
; $r = \sqrt{2}$.

$$\frac{x+3}{1} = \frac{y+1}{2} = \frac{z+1}{1}$$
 и $\begin{cases} x = 3z - 4 \\ y = z + 2 \end{cases}$ пересекаются, найти точку их пересечения.

$$N_{2} 2 l | (2x + 2y - 1 = 0); A(1;1) \in l$$

No3 *l*:
$$y = 2x - 2$$
; *d*: $y = x - 4$; *p*: $y = 2 - 3x$

 $N_{\underline{0}4}$

- а) Гиперболу с фокусом в точке F(1;0) и эксцентриситетом 3.
- b) Эллипс с фокусом в точке F(2;0) и директрисой x = 4

$$N_{2}5 -3x^{2} -6x -5y^{2} +20y = 0$$

№6 F(-3;0;0);
$$p: x = 3$$
; $r = 1$.

№7 Написать уравнение плоскостей, параллельных плоскости 2x + 2y + z - 8 = 0 и удаленных от нее на расстояние d = 4.

Вариант 8

№1
$$A(5;3)$$
; $B(-2;-2)$; $C(4;-6)$;

No2
$$l \| (3x + y - 1 = 0); A(1; -3) ∈ l$$

№4

- а) Гиперболу с директрисой x = 2 и фокусом в точке F(4,0);
- b) Эллипс с эксцентриситетом $\frac{1}{4}$ и директрисой x = 3.

$$N_{2}5 \ 3x^{2} + 8y^{2} - 24x - 16y = 0$$

No6 F(0;4;0);
$$p: y = -4$$
; $r = 1$.

№7 Написать уравнение плоскости, проходящей через ось Ох и составляющей угол 60^{0} с плоскостью y = x

$$N$$
 $_{2}$ $_{1}$ $_{2}$ $_{2}$ $_{3}$ $_{2}$ $_{3}$ $_{3}$ $_{3}$ $_{4}$ $_{1}$ $_{2}$ $_{3}$ $_{3}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{3}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{3}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{3}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{3}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{3}$ $_{3}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{3}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{3}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{3}$ $_{3}$ $_{4}$ $_{3}$ $_{4}$ $_{$

$$N_{2} 2 l (2x-3y+1=0); A(-2;3) \in l$$

No3 *l*:
$$y = 3x - 1$$
; *d*: $y = x + 2$; *p*: $y = 1 - 2x$

 N_{24}

- c) Гиперболу с директрисой x=3 и эксцентриситетом 2.
 d) Эллипс с директрисой x=3 и жест

$$N_{2}5 \ 2x^2 - 12x + 7y^2 + 14y = 0$$

No6 F(0;0;5);
$$p: z = -5$$
; $r = 1$.

№7 Написать уравнение плоскости проходящей через прямую $\frac{x-1}{1} = \frac{y+1}{2} = \frac{z+2}{2}$ и перпендикулярной к плоскости 2x + 3y - z = 4

Вариант 10

$$N$$
 ≥ 1 A (2;3); B (3;-2); C (1;1);

No2
$$l|(x+2y-4=0); A(2;-1) \in I$$

 $N_{\underline{0}4}$

- а) Гиперболу с асимптотой y = x и фокусом в точке F(2;0).
- b) Эллипс с директрисой x = 2 и эксцентриситетом $\frac{1}{2}$.

$$N_{2}5 7x^{2} + y^{2} - 14x + 8y = 0$$

No6 F(2;0;0);
$$p: x = 4$$
; $r = \frac{1}{\sqrt{2}}$.

№7 Найти проекцию точки (1;2;8) на прямую $\frac{x-1}{2} = \frac{y}{-1} = z$.

$$N_{2} 2 l (2x + 2y - 1 = 0); A(1;1) \in l$$

No3
$$l: y = 2x - 5$$
; $d: y = x - 2$; $p: y = 3 - x$

 N_{24}

- а) Гиперболу с эксцентриситетом 3 и вершиной в точке A(2;0
- b) Эллипс с директрисой x = 4 и вершиной в точке A(3;0).

$$N_{0}5 \ 2x^2 - 10x + y^2 + 8y = 0$$

$$N_{2}6 \text{ F}(0;0;6); p: z=18; r=1.$$

№7 Показать, что прямые

b) Эллипс с директрисой
$$x = 4$$
 и вершиной в точке $A(3;0)$.
 $N o 5 2x^2 - 10x + y^2 + 8y = 0$
 $N o 6 F(0;0;6)$; $p:z=18$; $r=1$.
 $N o 7$ Показать, что прямые
$$\frac{x+3}{1} = \frac{y+1}{2} = \frac{z+1}{1}$$
 и
$$\begin{cases} x = 3z - 4 \\ y = z + 2 \end{cases}$$
 пересекаются, найти точку пересечения.

Вариант 12

N $_{0}$ 1 *A*(4;−3); *B*(7;1); *C*(2;−2);

$$N_{\underline{0}} 2 \ l \| (3x - y - 1 = 0); \ A(1;3) \in I$$

No3 *l*:
$$y = 1 + 2x$$
; *d*: $y = x + 2$; *p*: $y = 3x - 1$

 $N_{0}4$

- а) Гиперболу с директрисой x = 2 и вершиной в точке A(4;0).
- b) Эллипс с фокусом в точке F(4;0) и эксцентриситетом $\frac{1}{2}$.

$$8.5 - 2x^2 - 3y^2 - 20x + 12y = 0$$

No6 F(0;8;0);
$$p: y = 4$$
; $r = \sqrt{2}$.

№7 Написать уравнение плоскости, проходящей через параллельные прямые $\frac{x-1}{1} = \frac{y+1}{-2} = \frac{z-2}{3}$ и $x = \frac{y+1}{-2} = \frac{z-1}{3}$.

$$N_{2} = l (x + 2y - 3 = 0); A(2;1) \in l$$

No3
$$l: y = 2x - 3$$
; $d: y = x + 3$; $p: y = x + 1$

<u>№</u>4

- а) Гиперболу с эксцентриситетом 2 и фокусом в точке F(3;0);
- b) Эллипс с директрисой x = 3 и вершиной в точке A(2,0).

$$N_{2}5 x^{2} + 2x + 2y^{2} - 4y = 0$$

No6 F(-3;0;0);
$$p: x = 3$$
; $r = 1$.

№7 Написать уравнение плоскостей, параллельных плоскости 2x + 2y + z = 8 и удаленных от нее на расстояние d = 4.

Вариант 14

№1
$$A(-3;1)$$
; $B(2;-4)$; $C(-1;-3)$;

$$\mathbb{N}_{2} \ l \| (x+3y-2=0); \ A(1;3) \in l$$

No3 *l*:
$$y = 2x + 1$$
; *d*: $y = x + 3$; *p*: $y = 3x - 1$

 $N_{\underline{0}4}$

- а) Гиперболу с фокусом в точке F(2;0) и директрисой x=1;
- b) Эллипс с эксцентриситетом $\frac{1}{2}$ и фокусом в точке F(3,0).

$$\mathbf{N} \mathbf{0} \mathbf{5} \ 2x^2 + 4x + 3y^2 - 12y = 0$$

No6 F(0;4;0);
$$p: y = -4$$
; $r = 1$.

№7 Написать уравнение плоскости, проходящей через ось Ох и составляющей угол 60^{0} с плоскостью y = x.

$$N$$
 $\underline{0}$ 1 A (−2;1); B (4;−5); C (2;−1);

$$N_{2} l \| (2x - y - 1 = 0); A(2;1) \in l$$

$$N_{2}3$$
 $l: y = x - 2$; $d: y = 4x + 1$; $p: y = 2x + 1$

№4

- а) Гиперболу с эксцентриситетом 3 и директрисой x = 1
- b) Эллипс с директрисой x = 4 и вершиной в точке A(1,0).

$$N_{2}5 - 3x^2 - 24x - 8y^2 + 32y = 0$$

No6 F(0;0;5);
$$p:z=-5$$
; $r=1$.

№7 Написать уравнение плоскости проходящей через прямую $\frac{x-1}{1} = \frac{y+1}{2} = \frac{z+2}{2}$ и перпендикулярной к плоскости 2x+3y-z=4

Вариант 16

No 1
$$A(1;-2)$$
; $B(-5;1)$; $C(4;-2)$;

$$N_{\underline{0}} 2 \ l | (2x + 2y - 1 = 0); \ A(1;1) \in l$$

No3 *l*:
$$y = 2x - 2$$
; *d*: $y = x - 4$; *p*: $y = 2 - 3x$

<u>№</u>4

- а) Гиперболу с фокусом в точке F(1;0) и эксцентриситетом 3.
- b) Эллипс с фокусом в точке F(2;0) и директрисой x = 4

$$\mathbf{N} \underline{\mathbf{05}} - 3x^2 - 6x - 5y^2 + 20y = 0$$

№6 F(-3;0;0);
$$p: x = 3$$
; $r = 1$.

№7 Написать уравнение плоскостей, параллельных плоскости 2x + 2y + z = 8 и удаленных от нее на расстояние d = 4.

$$N_{2}1 \ A(2;-6); \ B(-1;1); C(4;-2);$$

$$N_2 l \| (x+2y-1=0); A(1;2) \in l$$

N
$$_{2}$$
3 *l*: *y* = 4*x* − 2; *d*: *y* = 3*x* + 2; *p*: *y* = *x* + 1

№4

- а) Гиперболу с вершиной в точке A(3;0) и эксцентриситетом 2;
- b) Эллипс с директрисой x = 3 и фокусом в точке F(1;0)

$$N_{2}5 \ 3x^{2} - 6x + 7y^{2} + 14y = 0$$

$$N_{2}6 F(0;0;6); p:z=18; r=1.$$

№7 Написать уравнение плоскости, проходящей через параллельные прямые $\frac{x-1}{1} = \frac{y+1}{-2} = \frac{z-2}{3}$ и $x = \frac{y+1}{-2} = \frac{z-1}{3}$.

Вариант 18

No 1 A(-3;3); B(1;-1); C(5;-2);

No2
$$l \| (x - y + 2 = 0); A(1;1) \in l$$

No3
$$l: y = 3x + 2$$
; $d: y = 2x + 1$; $p: y = 1 - x$

№4

- а) Гиперболу с вершиной в точке A(3;0) и директрисой x=1
- b) Эллипс с фокусом в точке F(2;0) и эксцентриситетом 1/3.

$$N_{0}5 - x^2 - 2x - 2y^2 + 6y = 0$$

No6 F(0;8;0);
$$p: y = 4$$
; $r = \sqrt{2}$.

$$\frac{x+3}{1} = \frac{y+1}{2} = \frac{z+1}{1}$$
 и $\begin{cases} x = 3z - 4 \\ y = z + 2 \end{cases}$ пересекаются, найти точку их пересечения.

$$N_{2} 2 l | (2x + 2y - 1 = 0); A(1;1) \in l$$

No3 *l*:
$$y = 2x - 2$$
; *d*: $y = x - 4$; *p*: $y = 2 - 3x$

 $N_{\underline{0}4}$

- а) Гиперболу с фокусом в точке F(1;0) и эксцентриситетом 3.
- b) Эллипс с фокусом в точке F(2;0) и директрисой x = 4

$$N_{2}5 -3x^{2} -6x -5y^{2} +20y = 0$$

№6 F(-3;0;0);
$$p: x = 3$$
; $r = 1$.

№7 Написать уравнение плоскостей, параллельных плоскости 2x + 2y + z = 8 и удаленных от нее на расстояние d = 4.

Вариант 20

No1
$$A(5;3)$$
; $B(-2;-2)$; $C(4;-6)$;

No2
$$l \| (3x + y - 1 = 0); A(1; -3) \in l$$

No3
$$l: y = x-3$$
; $d: y = 3x+1$; $p: y = 2x-1$

<u>№</u>4

- с) Гиперболу с директрисой x = 2 и фокусом в точке F(4,0);
- d) Эллипс с эксцентриситетом $\frac{1}{4}$ и директрисой x = 3.

$$\mathbf{N} \underline{\mathbf{0}} \mathbf{5} \ 3x^2 + 8y^2 - 24x - 16y = 0$$

$$N_{2}6 F(0;4;0); p: y = -4; r = 1.$$

№7 Написать уравнение плоскости, проходящей через ось Ох и составляющей угол 60^{0} с плоскостью y = x

$$N$$
 $\underline{0}$ 1 A (2;−7); B (4;−1); C (3;3);

$$N_{2} 2 l (2x-3y+1=0); A(-2;3) \in l$$

N
$$_{2}$$
3 *l*: *y* = 3*x* − 1; *d*: *y* = *x* + 2; *p*: *y* = 1 − 2*x*

 N_{24}

- а) Гиперболу с директрисой x=3 и эксцентриситетом 2. b) Эллипс с директрисой x=3 и жест

$$N_{2}5 \ 2x^2 - 12x + 7y^2 + 14y = 0$$

No6 F(0;0;5);
$$p: z = -5$$
; $r = 1$.

№7 Написать уравнение плоскости проходящей через прямую $\frac{x-1}{1} = \frac{y+1}{2} = \frac{z+2}{2}$ и перпендикулярной к плоскости 2x + 3y - z = 4

Вариант 22

$$N_{2} l \| (x+2y-4=0); A(2;-1) \in I$$

 $N_{\underline{0}4}$

- а) Гиперболу с асимптотой y = x и фокусом в точке F(2;0).
- b) Эллипс с директрисой x = 2 и эксцентриситетом $\frac{1}{2}$.

$$N_{2}5 7x^{2} + y^{2} - 14x + 8y = 0$$

No6 F(2;0;0);
$$p: x = 4$$
; $r = \frac{\sqrt{2}}{2}$.

№7 Найти проекцию точки (1;2;8) на прямую $\frac{x-1}{2} = \frac{y}{-1} = z$.

$$N$$
 $\underline{0}$ 1 A (3,−1); B (2;2); C (−1;3);

$$N_{2} 2 ||(2x+2y-1=0); A(1;1) \in l$$

No3
$$l: y = 2x - 5$$
; $d: y = x - 2$; $p: y = 3 - x$

<u>№</u>4

- а) Гиперболу с эксцентриситетом 3 и вершиной в точке A(2;0)
- b) Эллипс с директрисой x = 4 и вершиной в точке A(3,0).

$$N_{2}5 \ 2x^2 - 10x + y^2 + 8y = 0$$

$$N_{2}6 F(0;0;6); p:z=18; r=1.$$

№7 Написать уравнение плоскости, проходящей через параллельные прямые $\frac{x-1}{1} = \frac{y+1}{-2} = \frac{z-2}{3}$ и $\frac{x}{1} = \frac{y+1}{-2} = \frac{z-1}{3}$.

Вариант 24

№1
$$A(4;-3)$$
; $B(7;1)$; $C(2;-2)$;

$$N_{\underline{0}}2 \ l \| (3x - y - 1 = 0); \ A(1;3) \in l$$

No3 *l*:
$$y = 1 + 2x$$
; *d*: $y = x + 2$; *p*: $y = 3x - 1$

<u>№</u>4

- а) Гиперболу с директрисой x = 2 и вершиной в точке A(4;0).
- b) Эллипс с фокусом в точке F(4;0) и эксцентриситетом $\frac{1}{2}$.

$$\mathbf{N} \underline{95} - 2x^2 - 3y^2 - 20x + 12y = 0$$

No6 F(0;8;0);
$$p: y = 4$$
; $r = \sqrt{2}$.

$$\frac{x+3}{1} = \frac{y+1}{2} = \frac{z+1}{1}$$
 и $\begin{cases} x = 3z - 4 \\ y = z + 2 \end{cases}$ пересекаются, найти точку пересечения.

$$N$$
 $\underline{0}$ 1 A (−3,1); B (2;−4); C (−1;−3);

No2
$$l|(x+3y-2=0); A(1;3)∈ l$$

N
$$_{2}$$
3 *l*: *y* = 2*x* + 1; *d*: *y* = *x* + 3; *p*: *y* = 3*x* − 1

 $N_{\underline{0}4}$

- а) Гиперболу с фокусом в точке F(2;0) и директрисой x=1 b) Эллипс с эксцентриситетом $\frac{1}{2}$... 1

$$N_{2}5 \ 2x^{2} + 3y^{2} + 4x - 12y = 0$$

№6 F(0;4;0);
$$p: y = -4$$
; $r = 1$.

№7 Написать уравнение плоскости проходящей через ось Ох и составляющей угол 60° с плоскостью y = x

Вариант 26

№1
$$A(-2;1)$$
; $B(4;-5)$; $C(2;-1)$;

$$N_{2} = l (2x - y - 1 = 0); \ A(2;1) \in l$$

No3
$$l: y = x-2$$
; $d: y = 4x+1$; $p: y = 2x+1$

 $N_{\underline{0}4}$

- а) Гиперболу с эксцентриситетом 3 и директрисой x = 1
- b) Эллипс с директрисой x = 4 и вершиной в точке A(1;0).

$$\mathbf{N} \underline{05} - 3x^2 - 24x - 8y^2 + 32y = 0$$

No6 F(0;0;5);
$$p: z = -5$$
; $r = 1$.

№7 Написать уравнение плоскости проходящей через прямую $\frac{x-1}{1} = \frac{y+1}{2} = \frac{z+2}{2}$ и перпендикулярной к плоскости 2x + 3y - z = 4

$$N$$
01 A (2;1); B (5;−3); C (−4;3);

$$N_{2} 2 ||(3x-2y+1=0); A(1;1) \in l$$

N
$$_{2}$$
3 *l*: *y* = 3*x* + 1; *d*: *y* = 2*x* − 1; *p*: *y* = *x* − 3

 $N_{\underline{0}4}$

- а) Гиперболу с фокусом в точке F(1;0) и асимптотой y = 3xb) Эллипс с эксцентриситетом 1/3 и писа

$$N_{2}5 - 4x^2 - 7y^2 - 24x + 28y = 0$$

No6 F(2;0;0);
$$p: x = 4$$
; $r = \frac{1}{\sqrt{2}}$

b) Эллипс с эксцентриситетом 1/3 и директрисой x=2 №5 $-4x^2-7y^2-24x+28y=0$ №6 F(2;0;0); p:x=4; $r=\frac{1}{\sqrt{2}}$. №7 Найти проекцию точки (1;2;8) на прямую $\frac{x-1}{2}=\frac{y}{-1}=z$.

Вариант 28

№1
$$A(2;-6)$$
; $B(-1;1)$; $C(4;-2)$;

No2
$$l|(x+2y-1=0); A(1;2)∈ l$$

 $N_{\underline{0}4}$

- а) Гиперболу с вершиной в точке A(3;0) и эксцентриситетом 2;
- b) Эллипс с директрисой x = 3 и фокусом в точке F(1;0)

$$\mathbf{N} \mathbf{95} \ 3x^2 - 6x + 7y^2 + 14y = 0$$

No6 F(0;0;6);
$$p:z=18$$
; $r=1$.

№7 Написать уравнение плоскости, проходящей через параллельные прямые $\frac{x-1}{1} = \frac{y+1}{-2} = \frac{z-2}{3}$ и $\frac{x}{1} = \frac{y+1}{-2} = \frac{z-1}{3}$.

$$N$$
 $\underline{0}$ 1 A (−3;3); B (1;−1); C (5;−2);

$$N_{2} = l(x - y + 2 = 0); A(1;1) \in l$$

$$N_{2}3$$
 $l: y = 3x + 2$; $d: y = 2x + 1$; $p: y = 1 - x$

 $N_{\underline{0}4}$

- а) Гиперболу с вершиной в точке A(3,0) и директрисой x=1
- b) Эллипс с фокусом в точке F(2,0) и эксцентриситетом 1/3.

$$N_{2}5 - x^2 - 2x - 2y^2 + 6y = 0$$

No6 F(0;8;0);
$$p: y = 4$$
; $r = \sqrt{2}$.

№7 Показать, что прямые

$$\frac{x+3}{1} = \frac{y+1}{2} = \frac{z+1}{1}$$
 и $\begin{cases} x = 3z - 4 \\ y = z + 2 \end{cases}$ пересекаются, найти точку их пересечения.

Вариант 30

$$N$$
 ≥ 1 $A(1;-2)$; $B(-5;1)$; $C(4;-2)$;

No1
$$A(1;-2)$$
; $B(-5;1)$; $C(4;-2)$;
No2 $l|(2x+2y-1=0)$; $A(1;1)∈ l$

No3
$$l: y = 2x - 2$$
; $d: y = x - 4$; $p: y = 2 - 3x$

 $N_{0}4$

- а) Гиперболу с фокусом в точке F(1;0) и эксцентриситетом 3.
- b) Эллипс с фокусом в точке F(2;0) и директрисой x=4

$$\mathbf{N} \mathbf{05} - 3x^2 - 6x - 5y^2 + 20y = 0$$

No6 F(-3;0;0);
$$p: x=3$$
; $r=1$.

№7 Написать уравнение плоскостей, параллельных плоскости 2x+2y+z-8=0 и удаленных от нее на расстояние d=4.

$$N$$
01 A (5;3); B (−2;−2); C (4;−6);

N
$$ext{ iny 2}$$
 $l | (3x + y - 1 = 0); A(1; -3) ∈ l$

$$N_{2}3$$
 $l: y = x - 3$; $d: y = 3x + 1$; $p: y = 2x - 1$

 $N_{\underline{0}4}$

- а) Гиперболу с директрисой x = 2 и фокусом в точке F(4;0); b) Эллипс с эксцентриситетом $\frac{1}{4}$ и

$$N_{2}5 3x^{2} + 8y^{2} - 24x - 16y = 0$$

№6 F(0;4;0);
$$p: y = -4$$
; $r = 1$.

№7 Написать уравнение плоскости, проходящей через ось Ох и составляющей угол 60^{0} с плоскостью y = x

Вариант 32

No 1
$$A(2;-7)$$
; $B(4;-1)$; $C(3;3)$;

No2
$$l \| (2x-3y+1=0); A(-2;3) ∈ l$$

N23 *l*:
$$y = 3x - 1$$
; *d*: $y = x + 2$; *p*: $y = 1 - 2x$

 $N_{\underline{0}4}$

- а) Гиперболу с директрисой x = 3 и эксцентриситетом 2.
- b) Эллипс с директрисой x = 3 и фокусом в точке F(2;0).

$$\mathbf{N} \cdot \mathbf{5} \ 2x^2 - 12x + 7y^2 + 14y = 0$$

$$N_{26} F(0;0;5); p: z = -5; r = 1.$$

№7 Написать уравнение плоскости проходящей через прямую $\frac{x-1}{1} = \frac{y+1}{2} = \frac{z+2}{2}$ и перпендикулярной к плоскости 2x + 3y - z = 4

$$N_{2} 2 l (x + 2y - 4 = 0); A(2;-1) \in l$$

No3
$$l: y = 4x + 5$$
; $d: y = x + 1$; $p: y = 1 - x$

 N_{24}

- а) Гиперболу с асимптотой y = x и фокусом в точке F(2;0). b) Эллипс с директрисой x = 2 и экс

$$N_{2}5 \ 7x^2 + y^2 - 14x + 8y = 0$$

No6 F(2;0;0);
$$p: x = 4$$
; $r = \frac{1}{\sqrt{2}}$

№1
$$A(3,-1)$$
; $B(2;2)$; $C(-1;3)$;

No2
$$l|(2x+2y-1=0); A(1;1) \in l$$

No3
$$l: y = 2x - 5$$
; $d: y = x - 2$; $p: y = 3 - x$

 $N_{\underline{0}4}$

- а) Гиперболу с эксцентриситетом 3 и вершиной в точке A(2;0)
- b) Эллипс с директрисой x = 4 и вершиной в точке A(3;0).

$$N_{2}5 \ 2x^2 - 10x + y^2 + 8y = 0$$

No6 F(0;0;6);
$$p:z=18$$
; $r=1$.

$$\frac{x+3}{1} = \frac{y+1}{2} = \frac{z+1}{1}$$
 и $\begin{cases} x = 3z - 4 \\ y = z + 2 \end{cases}$ пересекаются, найти точку пересечения.

$$N$$
 ≥ 1 $A(4;-3); B(7;1); C(2;-2);$

$$N_{2} l \| (3x - y - 1 = 0); A(1;3) \in l$$

N
$$_{2}$$
3 *l*: *y* = 1 + 2*x*; *d*: *y* = *x* + 2; *p*: *y* = 3*x* − 1

№4

- а) Гиперболу с директрисой x = 2 и вершиной в точке A(4;0)
- b) Эллипс с фокусом в точке F(4;0) и эксцентриситетом $\frac{1}{2}$.

$$N_{2}5 -2x^2 -3y^2 -20x +12y = 0$$

No6 F(0;8;0);
$$p: y = 4$$
; $r = \sqrt{2}$.

№7 Написать уравнение плоскости, проходящей через параллельные прямые $\frac{x-1}{1} = \frac{y+1}{-2} = \frac{z-2}{3}$ и $x = \frac{y+1}{-2} = \frac{z-1}{3}$.

Вариант 36

№1
$$A(2;-3)$$
; $B(4;-1)$; $C(-2;5)$;

No2
$$l \| (x+2y-3=0); A(2;1) \in l$$

No3 *l*:
$$y = 2x - 3$$
; *d*: $y = x + 3$; *p*: $y = x + 1$

№4

- а) Гиперболу с эксцентриситетом 2 и фокусом в точке F(3;0);
- b) Эллипс с директрисой x = 3 и вершиной в точке A(2;0).

$$N_{2}5 x^{2} + 2x + 2y^{2} - 4y = 0$$

№6 F(-3;0;0);
$$p: x = 3$$
; $r = 1$.

№7 Написать уравнение плоскостей, параллельных плоскости 2x + 2y + z = 8 и удаленных от нее на расстояние d = 4.

$$N$$
 $\underline{0}$ 1 A (−3,1); B (2;−4); C (−1;−3);

$$N_{2} 2 l | (x + 3y - 2 = 0); A(1;3) \in l$$

N
$$_{2}$$
3 *l*: *y* = 2*x* + 1; *d*: *y* = *x* + 3; *p*: *y* = 3*x* − 1

 $N_{\underline{0}4}$

- а) Гиперболу с фокусом в точке F(2;0) и директрисой x=1 b) Эллипс с эксцентриситетом $\frac{1}{2}$... 1

$$N_{2}5 \ 2x^{2} + 3y^{2} + 4x - 12y = 0$$

№6
$$F(0;4;0)$$
; $p: y = -4$; $r = 1$.

№7 Написать уравнение плоскости проходящей через ось Ох и составляющей угол 60° с плоскостью y = x

Вариант 38

№1
$$A(-2;1)$$
; $B(4;-5)$; $C(2;-1)$;

$$\mathbb{N} \ 2 \ l \| (2x - y - 1 = 0); \ A(2;1) \in l$$

No3
$$l: y = x-2$$
; $d: y = 4x+1$; $p: y = 2x+1$

 $N_{\underline{0}4}$

- а) Гиперболу с эксцентриситетом 3 и директрисой x = 1
- b) Эллипс с директрисой x = 4 и вершиной в точке A(1;0).

$$\mathbf{N} \underline{05} - 3x^2 - 24x - 8y^2 + 32y = 0$$

No6 F(0;0;5);
$$p: z = -5$$
; $r = 1$.

№7 Написать уравнение плоскости проходящей через прямую $\frac{x-1}{1} = \frac{y+1}{2} = \frac{z+2}{2}$ и перпендикулярной к плоскости 2x + 3y - z = 4

$$N_{2}1 \ A(2;-6); \ B(-1;1); C(4;-2);$$

$$N_{2} 2 l (x + 2y - 1 = 0); A(1;2) \in l$$

N
$$_{2}$$
3 *l*: *y* = 4*x* − 2; *d*: *y* = 3*x* + 2; *p*: *y* = *x* + 1

№4

- а) Гиперболу с вершиной в точке A(3;0) и эксцентриситетом 2;
- b) Эллипс с директрисой x = 3 и фокусом в точке F(1;0)

$$N_{2}5 \ 3x^{2} - 6x + 7y^{2} + 14y = 0$$

$$N_{2}6 F(0;0;6); p:z=18; r=1.$$

№7 Написать уравнение плоскости, проходящей через параллельные прямые $\frac{x-1}{1} = \frac{y+1}{-2} = \frac{z-2}{3}$ и $x = \frac{y+1}{-2} = \frac{z-1}{3}$.

Вариант 40

No 1
$$A(-3;3)$$
; $B(1;-1)$; $C(5;-2)$;

No2
$$l \| (x - y + 2 = 0); A(1;1) \in l$$

No3
$$l: y = 3x + 2$$
; $d: y = 2x + 1$; $p: y = 1 - x$

№4

- а) Гиперболу с вершиной в точке A(3;0) и директрисой x=1
- b) Эллипс с фокусом в точке F(2;0) и эксцентриситетом 1/3.

$$N_{0}5 - x^2 - 2x - 2y^2 + 6y = 0$$

No6 F(0;8;0);
$$p: y = 4$$
; $r = \sqrt{2}$.

$$\frac{x+3}{1} = \frac{y+1}{2} = \frac{z+1}{1}$$
 и $\begin{cases} x = 3z - 4 \\ y = z + 2 \end{cases}$ пересекаются, найти точку их пересечения.

$$N$$
 $\underline{0}$ 1 A (1;−2); B (−5;1); C (4;−2);

$$N_{2} 2 l | (2x + 2y - 1 = 0); A(1;1) \in l$$

N
$$_{2}$$
3 *l*: *y* = 2*x* − 2; *d*: *y* = *x* − 4; *p*: *y* = 2 − 3*x*

 $N_{\underline{0}4}$

- а) Гиперболу с фокусом в точке F(1;0) и эксцентриситетом 3.
 b) Эллипс с фокусом в точке F(2.0) --

$$N_{2}5 -3x^{2} -6x -5y^{2} +20y = 0$$

№6 F(-3;0;0);
$$p: x = 3$$
; $r = 1$.

№7 Написать уравнение плоскостей, параллельных плоскости 2x + 2y + z - 8 = 0 и удаленных от нее на расстояние d = 4.

Вариант 42

№1
$$A(5;3)$$
; $B(-2;-2)$; $C(4;-6)$;

No2
$$l \| (3x + y - 1 = 0); A(1; -3) ∈ l$$

 $N_{\underline{0}4}$

- а) Гиперболу с директрисой x = 2 и фокусом в точке F(4;0);
- b) Эллипс с эксцентриситетом $\frac{1}{4}$ и директрисой x = 3.

$$\mathbf{N} \cdot \mathbf{5} \ 3x^2 + 8y^2 - 24x - 16y = 0$$

No6 F(0;4;0);
$$p: y = -4$$
; $r = 1$.

№7 Написать уравнение плоскости, проходящей через ось Ох и составляющей угол 60^{0} с плоскостью y = x

$$N$$
 $\underline{0}$ 1 A (2;−7); B (4;−1); C (3;3);

$$\mathbb{N}_{2} 2 \ l (2x-3y+1=0); \ A(-2;3) \in l$$

$$N_{2}3$$
 $l: y = 3x - 1$; $d: y = x + 2$; $p: y = 1 - 2x$

 N_{24}

 $_F$ золу с директрисой x=3 и эксцентриситетом 2. Эллипс с директрисой x=3 и фокусом в точке F(2;0). $-12x+7y^2+14y=0$ 5); p:z=-5; r=1

$$N_{2}5 \ 2x^2 - 12x + 7y^2 + 14y = 0$$

$$N_{2}6 F(0;0;5); p:z=-5; r=1.$$

№7 Написать уравнение плоскости проходящей через прямую $\frac{x-1}{1} = \frac{y+1}{2} = \frac{z+2}{2}$ и перпендикулярной к плоскости 2x + 3y - z = 4

Вариант 44

$$N$$
 ≥ 1 $A(2;-3); B(3;-2); C(1;1);$

$$N_{2} l \| (x+2y-4=0); A(2;-1) \in I$$

 $N_{\underline{0}}4$

- а) Гиперболу с асимптотой y = x и фокусом в точке F(2;0).
- b) Эллипс с директрисой x = 2 и эксцентриситетом $\frac{1}{2}$.

$$N_{2}5 7x^{2} + y^{2} - 14x + 8y = 0$$

No6 F(2;0;0);
$$p: x = 4$$
; $r = \frac{1}{\sqrt{2}}$.

№7 Найти проекцию точки (1;2;8) на прямую $\frac{x-1}{2} = \frac{y}{-1} = z$.

$$N$$
 $\underline{0}$ 1 A (3,−1); B (2;2); C (−1;3);

$$N_{2} 2 ||(2x+2y-1=0); A(1;1) \in l$$

№3
$$l: y = 2x - 5$$
; $d: y = x - 2$; $p: y = 3 - x$

 $N_{\underline{0}4}$

- K. HERHAIIIEBOKOKO а) Гиперболу с эксцентриситетом 3 и вершиной в точке A(2;0)
- b) Эллипс с директрисой x = 4 и вершиной в точке A(3,0).

$$N_{2}5 \ 2x^2 - 10x + y^2 + 8y = 0$$

$$N_{2}6 F(0;0;6); p:z=18; r=1.$$

№7 Написать уравнение плоскости, проходящей через параллельные прямые $\frac{x-1}{1} = \frac{y+1}{-2} = \frac{z-2}{3}$ и $x = \frac{y+1}{-2} = \frac{z-1}{3}$

Вариант 46

№1
$$A(4;-3)$$
; $B(7;1)$; $C(2;-2)$;

No2
$$l \| (3x - y - 1 = 0); A(1;3) \in l$$

$$N_{2}3$$
 $l: y = 1 + 2x$; $d: y = x + 2$; $p: y = 3x - 1$

 $N_{\underline{0}4}$

- а) Гиперболу с директрисой x = 2 и вершиной в точке A(4;0).
- b) Эллипс с фокусом в точке F(4;0) и эксцентриситетом $\frac{1}{2}$.

$$\mathbf{N} \underline{\mathbf{05}} - 2x^2 - 3y^2 - 20x + 12y = 0$$

№6 F(0;8;0);
$$p: y = 4$$
; $r = \sqrt{2}$.

$$\frac{x+3}{1} = \frac{y+1}{2} = \frac{z+1}{1}$$
 и $\begin{cases} x = 3z - 4 \\ y = z + 2 \end{cases}$ пересекаются, найти точку пересечения.

$$N$$
 $\underline{0}$ 1 A (2;−7); B (4;−1); C (3;3);

$$\mathbb{N}_{2} 2 \ l (2x-3y+1=0); \ A(-2;3) \in l$$

$$N_{2}3$$
 $l: y = 3x - 1; d: y = x + 2; p: y = 1 - 2x$

 N_{24}

 $_F$ золу с директрисой x=3 и эксцентриситетом 2. Эллипс с директрисой x=3 и фокусом в точке F(2;0). $-12x+7y^2+14y=0$ 5); p:z=-5; r=1

$$N_{2}5 \ 2x^2 - 12x + 7y^2 + 14y = 0$$

$$N_{2}6 F(0;0;5); p:z=-5; r=1.$$

№7 Написать уравнение плоскости проходящей через прямую $\frac{x-1}{1} = \frac{y+1}{2} = \frac{z+2}{2}$ и перпендикулярной к плоскости 2x + 3y - z = 4

Вариант 48

$$N$$
 ○1 $A(2;3); B(3;-2); C(1;1);$

$$N_{2} l \| (x+2y-4=0); A(2;-1) \in I$$

No3 *l*:
$$y = 4x + 5$$
; *d*: $y = x + 1$; *p*: $y = 1 - x$

 $N_{\underline{0}4}$

- а) Гиперболу с асимптотой y = x и фокусом в точке F(2;0).
- b) Эллипс с директрисой x = 2 и эксцентриситетом $\frac{1}{2}$.

$$\mathbf{N} \underline{9} 5 \ 7x^2 + y^2 - 14x + 8y = 0$$

No6 F(2;0;0);
$$p: x = 4$$
; $r = \frac{1}{\sqrt{2}}$.

№7 Найти проекцию точки (1;2;8) на прямую $\frac{x-1}{2} = \frac{y}{-1} = z$.

$$N_{2} 2 ||(2x+2y-1=0); A(1;1) \in l$$

No3
$$l: y = 2x - 5$$
; $d: y = x - 2$; $p: y = 3 - x$

 N_{24}

- а) Гиперболу с эксцентриситетом 3 и вершиной в точке A(2;0) b) Эллипс с директрисой x=4 и вершиной в x=4
- b) Эллипс с директрисой x = 4 и вершиной в точке A(3;0). $25 2x^2 10x + y^2 + 8y = 0$ 26 F(0;0;6); p:z=18; r=1. 27 Показать, что прямые

$$\mathbf{N} \underline{\mathbf{95}} \ \ 2x^2 - 10x + y^2 + 8y = 0$$

$$N_{2}6 F(0;0;6); p:z=18; r=1.$$

№7 Показать, что прямые

$$\frac{x+3}{1} = \frac{y+1}{2} = \frac{z+1}{1}$$
 и $\begin{cases} x = 3z - 4 \\ y = z + 2 \end{cases}$ пересекаются, найти точку пересечения.

Вариант 50

No 1 A(4;-3); B(7;1); C(2;-2);

$$N_{\underline{0}} 2 \ l \| (3x - y - 1 = 0); \ A(1;3) \in I$$

No3
$$l: y = 1 + 2x$$
; $d: y = x + 2$; $p: y = 3x - 1$

 $N_{0}4$

- с) Гиперболу с директрисой x = 2 и вершиной в точке A(4;0).
- d) Эллипс с фокусом в точке F(4;0) и эксцентриситетом $\frac{1}{2}$.

$$N_{2}5 - 2x^2 - 3y^2 - 20x + 12y = 0$$

No6 F(0;8;0);
$$p: y = 4$$
; $r = \sqrt{2}$.

№7 Написать уравнение плоскости, проходящей через параллельные прямые $\frac{x-1}{1} = \frac{y+1}{-2} = \frac{z-2}{3}$ и $x = \frac{y+1}{-2} = \frac{z-1}{3}$.

$$N_{2} 2 l | (2x + 2y - 1 = 0); A(1;1) \in l$$

No3 *l*:
$$y = 2x - 2$$
; *d*: $y = x - 4$; *p*: $y = 2 - 3x$

<u>№</u>4

- с) Гиперболу с фокусом в точке F(1;0) и эксцентриситетом 3.
- d) Эллипс с фокусом в точке F(2;0) и директрисой x=4

$$N_{2}5 -3x^{2} -6x -5y^{2} +20y = 0$$

№6 F(-3;0;0);
$$p: x = 3$$
; $r = 1$.

№7 Написать уравнение плоскостей, параллельных плоскости 2x + 2y + z = 8 и удаленных от нее на расстояние d = 4.

Вариант 52

No 1
$$A(5;3)$$
; $B(-2;-2)$; $C(4;-6)$;

No2
$$l \| (3x + y - 1 = 0); A(1; -3) \in l$$

No3
$$l: y = x-3$$
; $d: y = 3x+1$; $p: y = 2x-1$

<u>№</u>4

- е) Гиперболу с директрисой x = 2 и фокусом в точке F(4,0);
- f) Эллипс с эксцентриситетом $\frac{1}{4}$ и директрисой x = 3.

$$\mathbf{N} \underline{\mathbf{0}} \mathbf{5} \ 3x^2 + 8y^2 - 24x - 16y = 0$$

$$N_{2}6 F(0;4;0); p: y = -4; r = 1.$$

№7 Написать уравнение плоскости, проходящей через ось Ох и составляющей угол 60^{0} с плоскостью y = x

$$N$$
 $\underline{0}$ 1 A (5;3); B (−2;−2); C (4;−6);

$$N_2 2 l \| (3x + y - 1 = 0); A(1; -3) \in l$$

N
$$_{2}$$
3 *l*: *y* = *x* − 3; *d*: *y* = 3*x* + 1; *p*: *y* = 2*x* − 1

 $N_{\underline{0}4}$

- с) Гиперболу с директрисой x = 2 и фокусом в точке F(4;0); d) Эллипс с эксцентриситетом $\frac{1}{4}$ и $\frac{1}{4}$ $\frac{1}{4}$

$$N_{2}5 3x^{2} + 8y^{2} - 24x - 16y = 0$$

№6 F(0;4;0);
$$p: y = -4$$
; $r = 1$.

№7 Написать уравнение плоскости, проходящей через ось Ох и составляющей угол 60^{0} с плоскостью y = x

Вариант 54

№1
$$A(2;-7)$$
; $B(4;-1)$; $C(3;3)$;

$$\mathbb{N} \ 2 \ l \| (2x - 3y + 1 = 0); \ A(-2;3) \in l$$

N23 *l*:
$$y = 3x - 1$$
; *d*: $y = x + 2$; *p*: $y = 1 - 2x$

 $N_{\underline{0}4}$

- с) Гиперболу с директрисой x = 3 и эксцентриситетом 2.
- d) Эллипс с директрисой x = 3 и фокусом в точке F(2,0).

$$\mathbf{N} \underline{9} 5 \ 2x^2 - 12x + 7y^2 + 14y = 0$$

$$N_{26} F(0;0;5); p: z = -5; r = 1.$$

№7 Написать уравнение плоскости проходящей через прямую $\frac{x-1}{1} = \frac{y+1}{2} = \frac{z+2}{2}$ и перпендикулярной к плоскости 2x + 3y - z = 4

$$N$$
 $\underline{0}$ 1 A (−3,1); B (2;−4); C (−1;−3);

$$N_{2} 2 l | (x + 3y - 2 = 0); A(1;3) \in l$$

$$N_{2}3$$
 $l: y = 2x + 1$; $d: y = x + 3$; $p: y = 3x - 1$

 $N_{\underline{0}4}$

- с) Гиперболу с фокусом в точке F(2;0) и директрисой x=1 d) Эллипс с эксцентриситетом $\frac{1}{2}$... 1

$$N_{2}5 \ 2x^{2} + 3y^{2} + 4x - 12y = 0$$

No6 F(0;4;0);
$$p: y = -4$$
; $r = 1$.

№7 Написать уравнение плоскости проходящей через ось Ох и составляющей угол 60° с плоскостью y = x

Вариант 56

№1
$$A(-2;1)$$
; $B(4;-5)$; $C(2;-1)$;

$$N_{2} = l (2x - y - 1 = 0); \ A(2;1) \in l$$

No3
$$l: y = x-2$$
; $d: y = 4x+1$; $p: y = 2x+1$

 $N_{\underline{0}4}$

- с) Гиперболу с эксцентриситетом 3 и директрисой x = 1
- d) Эллипс с директрисой x = 4 и вершиной в точке A(1;0).

$$\mathbf{N} \underline{05} - 3x^2 - 24x - 8y^2 + 32y = 0$$

No6 F(0;0;5);
$$p: z = -5$$
; $r = 1$.

№7 Написать уравнение плоскости проходящей через прямую $\frac{x-1}{1} = \frac{y+1}{2} = \frac{z+2}{2}$ и перпендикулярной к плоскости 2x + 3y - z = 4

$$N_{2}1 \ A(2;-6); \ B(-1;1); C(4;-2);$$

$$N_2 l \| (x+2y-1=0); A(1;2) \in l$$

N
$$_{2}$$
3 *l*: *y* = 4*x* − 2; *d*: *y* = 3*x* + 2; *p*: *y* = *x* + 1

Nº4

- с) Гиперболу с вершиной в точке A(3;0) и эксцентриситетом 2;
- d) Эллипс с директрисой x = 3 и фокусом в точке F(1;0)

$$N_{2}5 \ 3x^{2} - 6x + 7y^{2} + 14y = 0$$

$$N_{2}6 F(0;0;6); p:z=18; r=1.$$

№7 Написать уравнение плоскости, проходящей через параллельные прямые $\frac{x-1}{1} = \frac{y+1}{-2} = \frac{z-2}{3}$ и $x = \frac{y+1}{-2} = \frac{z-1}{3}$.

Вариант 58

$$N_{0}1$$
 A(-3;3); B(1;-1); C(5;-2);

No2
$$l \| (x - y + 2 = 0); A(1;1) \in l$$

No3
$$l: y = 3x + 2$$
; $d: y = 2x + 1$; $p: y = 1 - x$

№4

- с) Гиперболу с вершиной в точке A(3;0) и директрисой x=1
- d) Эллипс с фокусом в точке F(2;0) и эксцентриситетом 1/3.

$$N_{0}5 - x^2 - 2x - 2y^2 + 6y = 0$$

No6 F(0;8;0);
$$p: y = 4$$
; $r = \sqrt{2}$.

$$\frac{x+3}{1} = \frac{y+1}{2} = \frac{z+1}{1}$$
 и $\begin{cases} x = 3z - 4 \\ y = z + 2 \end{cases}$ пересекаются, найти точку их пересечения.

N ≥ 1 A(3,-1); B(2;2); C(-1;3);

No2
$$l|(2x+2y-1=0); A(1;1) \in l$$

$$N_{2}3$$
 $l: y = 2x - 5$; $d: y = x - 2$; $p: y = 3 - x$

 $N_{\underline{0}4}$

- с) Гиперболу с эксцентриситетом 3 и вершиной в точке A(2;0)
- d) Эллипс с директрисой x = 4 и вершиной в точке A(3,0).

$$N_{2}5 \ 2x^{2} - 10x + y^{2} + 8y = 0$$

$$N_{2}6 F(0;0;6); p:z=18; r=1.$$

№7 Показать, что прямые

$$\frac{x+3}{1} = \frac{y+1}{2} = \frac{z+1}{1}$$
 и $\begin{cases} x = 3z - 4 \\ y = z + 2 \end{cases}$ пересекаются, найти точку пересечения.

Вариант 60

No1 A(-3,1); B(2;-4); C(-1;-3); No2 l||(x+3y-2=0); A(1;3)∈ l

$$N_{2} 2 l | (x + 3y - 2 = 0); A(1;3) \in I$$

No3
$$l: y = 2x+1; d: y = x+3; p: y = 3x-1$$

 $N_{0}4$

- с) Гиперболу с фокусом в точке F(2;0) и директрисой x=1
- d) Эллипс с эксцентриситетом $\frac{1}{2}$ и фокусом в точке F(3;0).

$$N_{2}5 \ 2x^2 + 3y^2 + 4x - 12y = 0$$

No6 F(0;4;0);
$$p: y = -4$$
; $r = 1$.

№7 Написать уравнение плоскости проходящей через ось Ох и составляющей угол 60° с плоскостью y = x

$$N_{2} 2 l (2x + 2y - 1 = 0); A(1;1) \in l$$

No3
$$l: y = 2x - 5$$
; $d: y = x - 2$; $p: y = 3 - x$

 $N_{\underline{0}4}$

- с) Гиперболу с эксцентриситетом 3 и вершиной в точке A(2;0)
- d) Эллипс с директрисой x = 4 и вершиной в точке A(3,0).

$$N_{2}5 \ 2x^2 - 10x + y^2 + 8y = 0$$

$$N_{2}6 F(0;0;6); p:z=18; r=1.$$

№7 Написать уравнение плоскости, проходящей через параллельные прямые $\frac{x-1}{1} = \frac{y+1}{-2} = \frac{z-2}{3}$ и $\frac{x}{1} = \frac{y+1}{-2} = \frac{z-1}{3}$.

Вариант 62

№1
$$A(4;-3)$$
; $B(7;1)$; $C(2;-2)$;

$$N_{\underline{0}}2 \ l \| (3x - y - 1 = 0); \ A(1;3) \in l$$

No3 *l*:
$$y = 1 + 2x$$
; *d*: $y = x + 2$; *p*: $y = 3x - 1$

<u>№</u>4

- с) Гиперболу с директрисой x = 2 и вершиной в точке A(4;0).
- d) Эллипс с фокусом в точке F(4;0) и эксцентриситетом $\frac{1}{2}$.

$$\mathbf{N} \underline{95} - 2x^2 - 3y^2 - 20x + 12y = 0$$

No6 F(0;8;0);
$$p: y = 4$$
; $r = \sqrt{2}$.

$$\frac{x+3}{1} = \frac{y+1}{2} = \frac{z+1}{1}$$
 и $\begin{cases} x = 3z - 4 \\ y = z + 2 \end{cases}$ пересекаются, найти точку пересечения.